The presently disclosed embodiments are directed to providing an auto-collation system, and more particularly, to a collation system having a belt pusher system that moves collated sets downstream to an adhesive dispensing station.
Retail stores often utilize signage to convey information regarding products offered for sale, for example, product cost, unit cost, sale pricing, etc. Such signage must be updated and/or replaced on a periodic basis. For example, regular product pricing may change, or during a sale, a discounted price may be necessary. Changes to signage may be required for hundreds or even thousands of products and these changes may be required daily, weekly or another periodic term. In some states, it is critical that the signage be updated in a timely fashion as the retail store may be obligated to honor the price displayed adjacent the product. In other words, if the store fails to remove signage that displays a discounted cost, the store must charge that cost if a customer relies upon that price when making a purchase selection. In view of the foregoing, it should be apparent that proper timing and placement of signage is a critical responsibility of a retail store.
Although some retail chain stores share common store layouts, also known as a store planogram, most retail locations, even within a chain store, have unique store planograms. The changeover of signage can incur significant time which in turn incurs significant cost. A common practice is to print sheets of signage and an employee or group of employees are tasked with signage changeover. These methods include various deficiencies, for example, sheets printed out of order or not matched to the store planogram, sheets that require further separation of individual signage labels, etc.
In view of the foregoing issues, some stores require signage to be in a per store planogram order and to be pre-separated, both to facilitate the efficient changeover of signage. It has been found that to achieve this arrangement of signage, signage labels or cards are imposed so that each set of labels is in sequential order within a sheet and then across the collection of sheets. Cards may be delivered to various stores in different sized stacks. For example, a stack of ninety-six cards would require eight sheets, each sheet containing twelve labels, to be collated sequentially to produce a complete stack. Cards of this type may be cut using a high speed cutting system. The cards may be fed from a slitter system into bins, however it has been found that these systems are ineffective as the cards are not guided and adjacent cards interfere with each other as they bounce and settle into the bins. Such systems cause a high percentage of media jams and thus result is downtime and increased costs.
The heretofore mentioned problems were addressed in U.S. Pat. No. 9,463,946 which is incorporated herein by reference to the extent needed to practice the present disclosure and provides a system for collating a plurality of media including a first bin, a second bin arranged adjacent to the first bin, a collated stack receiver arranged proximate the second bin opposite the first bin, first, second and third guides, where the first and second guides are positioned on opposing sides of the first bin, and the second and third guides are positioned on opposing sides of the second bin, and a pusher. When the first, second and third guides are positioned in non-retracted locations, a first set of the plurality of media is deposited in the first bin and a second set of the plurality of media is deposited in the second bin, and when the first, second and third guides are positioned in retracted locations, the pusher moves the first set to the second bin vertically above the second set to form a first combined set and then moves the first combined set to a collated stack receiver.
This system employs a set of static angled collation bins and a one-direction pusher that directs media into a single bander. After each push the collation system resets by dynamically dropping the pusher and rewinding the pusher under the bins and then actuating the pusher into an up position to home to prepare for the next collation. Because the system must reset to the home position after each push, significant time is added to the overall process and system timing is negatively affected. In addition, the drop and reset to height causes additional vibration and settling issues and an attempt was made to address this issue is in U.S. Pat. No. 10,071,877 included herein by reference. System timing is also affected because the original imposition for 26″ sheets (32 cards/sheet), allowed the complete push operation to be accomplished with one skipped pitch. However, with a current aisle sort requirement (each aisle's cards are to be banded) the 32″ up and 26″ sheet is no longer valid. The smallest aisle stack is only 12 cards and the average is 24 cards. This is accomplished with sheets that are <13″. This makes the pitch timing very short due to the small set sizes. Based on that the number of skipped pitches for the average sets is approximately 3 to 4 skipped pitches for every 5 pitches for small aisle sets. This significantly reduces the productivity of each of the systems. In addition, once the banded sign stacks are brought to each aisle of a store for application they are unbanded and adhered to store shelving. This is difficult and the signs are often dropped and scattered where an applier must pick them up reorder them and continue to apply them to shelves.
The present disclosure addresses all of these problems in a practical and cost effective system and method.
Accordingly, an adhesive retail signage pack is disclosed that is based on aisles where an adhesive is applied along an edge of a stack to make a solid pack that allows for the sign applier at the store to remove one sign at a time from the pack. The store sign appliers are able to hold the pack with one hand while peeling each successive sign from the top of the pack. The retail signage packs are compiled with a continuous belt pusher system with multiple pushers that allow the accumulated sets to be collated and pushed to a downstream transport system that forwards them for the application of hot-melt adhesive to a side edge of the pack while simultaneously eliminating skipped pitches.
Other objects, features and advantages of one or more embodiments will be readily appreciable from the following detailed description and from the accompanying drawings and claims.
Various embodiments are disclosed, by way of example only, with reference to the accompanying drawings in which corresponding reference symbols indicate corresponding parts, in which:
At the outset, it should be appreciated that like drawing numbers on different drawing views identify identical, or functionally similar, structural elements of the embodiments set forth herein. Furthermore, it is understood that these embodiments are not limited to the particular methodology, materials and modifications described and as such may, of course, vary. It is also understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to limit the scope of the disclosed embodiments, which are limited only by the appended claims.
Moreover, although any methods, devices or materials similar or equivalent to those described herein can be used in the practice or testing of these embodiments, some embodiments of methods, devices, and materials are now described.
Prior art
In
A 90° pusher belt collation system, configured in accordance with the present disclosure, is shown in
In
In recapitulation, the elimination of the return reset of current pusher systems is accomplished by introducing a continuous belt pusher system with multiple pushers connected thereto that allows accumulated sets of cards to be collated and pushed to a downstream transport system. As an active pusher is moving a card stack, the next pusher on the belt is reset to a push position ready for the next accumulation of cards in an angled accumulator. A downstream system slows the stack motion by collapsing the push distance and thus reduces the inter-stack spacing. The stacks are then transported past an automated variable side adhesive/hot-melt station that applies an adhesive along the stack edge based on stack height. This height is determined by the number of signs in the stack and the media thickness. An adhesive patch is adjusted to match the height of each stack and the timing is set to apply the adhesive to the prescribed length and thickness. Productivity of the collation system is increased by eliminating the recycling pusher, combining the primary belt push with a secondary collection system and integrating a variable hot-melt system to optimally apply adhesive for a stable stack.
The claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material.
Number | Name | Date | Kind |
---|---|---|---|
4863154 | Hirakawa | Sep 1989 | A |
5039082 | Littleton | Aug 1991 | A |
5950510 | Scheffer | Sep 1999 | A |
6023034 | Nakajima | Feb 2000 | A |
6350333 | Welch | Feb 2002 | B1 |
6644644 | Vedoy | Nov 2003 | B2 |
9463945 | Herrmann | Oct 2016 | B2 |
9463946 | Herrmann | Oct 2016 | B2 |
9527693 | Herrmann | Dec 2016 | B2 |
9624062 | Herrmann | Apr 2017 | B1 |
9668621 | Andersson | Jun 2017 | B2 |
10071877 | Herrmann et al. | Sep 2018 | B2 |
10968068 | Herrmann | Apr 2021 | B1 |