The inventions generally relate to a high speed connector with backward compatibility to USB 2.0.
Universal Serial Bus (USB) is a serial bus standard to interface devices. USB was designed to allow peripherals to be connected using a single standard interface socket, and to improve plug-and-play capabilities by allowing devices to be connected and disconnected without rebooting the computer (hot swapping). USB also provides other features including power low-consumption devices without the need for an external power supply, and allowing some devices to be used without requiring individual device drivers to be installed. USB can be used to connect, for example, computer peripherals such as mouse devices, keyboards, personal digital assistants (PDAs), smart phones, gamepads, joysticks, scanners, digital cameras, and/or printers, etc. USB 1.0 (low speed) operates at a rate of 1.5 Mbit/s, USB 1.1 (full speed) operates at a rate of 12 Mbit/s, and USB 2.0 (hi-speed) operates at a rate of 480 Mbit/s. USB signals are transmitted on a twisted pair data cable, labeled D+ and D− and using half-duplex differential signaling to combat the effects of electromagnetic noise on longer lines. USB 2.0 uses four pins, including VCC (or PWR), D−, D+, and GND pins.
The inventions will be understood more fully from the detailed description given below and from the accompanying drawings of some embodiments of the inventions which, however, should not be taken to limit the inventions to the specific embodiments described, but are for explanation and understanding only.
Some embodiments of the inventions relate to a high speed connector with backward compatibility to USB 2.0.
In some embodiments a connector plug includes a plurality of USB 2.0 pins and one or more pins that are not USB 2.0 pins, the one or more pins to enable higher speed data transmission than USB 2.0 data transmission.
In some embodiments a connector receptacle includes a plurality of USB 2.0 pins and one or more pins that are not USB 2.0 pins, the one or more pins to enable higher speed data transmission than USB 2.0 data transmission.
In some embodiments a connector includes a connector plug and a connector receptacle. The connector plug includes a plurality of USB 2.0 pins and one or more pins that are not USB 2.0 pins, the one or more pins of the connector plug to enable higher speed data transmission than USB 2.0 data transmission. The connector receptacle includes a plurality of USB 2.0 pins and one or more pins that are not USB 2.0 pins, the one or more pins of the connector receptacle to enable higher speed data transmission than USB 2.0 data transmission.
In some embodiments a system includes a processor and a connector receptacle. The connector receptacle includes a plurality of USB 2.0 pins and one or more pins that are not USB 2.0 pins, the one or more pins to enable higher speed data transmission than USB 2.0 data transmission.
As more digital content becomes available, there is an increasing demand for higher speed communication between computers and input/output (I/O) devices, for example. This is particularly true, for example, for transferring high definition video files. USB 2.0, which runs at a speed of 480 Mbit/s, is too slow for such applications. For example, using USB 2.0 to transfer a 25 GB high definition movie will take approximately 14 minutes, which is far short of today's users' expectations of a few seconds. To address these emerging needs a new higher speed bus and connector/receptacle arrangement will become necessary, while maintaining backward compatibility with USB 2.0. Different connector solutions may be used to address this challenge.
In some embodiments contemplated by the inventors, a new interface might be adopted for a new higher speed connector that is independent of USB 2.0. Such a connector might be made in combination with a USB 2.0 connector (for example, in a side by side arrangement or a stacked arrangement). Such a solution, however, is not likely to be advantageous in desktop and/or notebook (laptop) computers and I/O devices due to a lack of available board space and form factor constraints, for example. Therefore, it would be advantageous to have a new higher speed connector (for example, a new higher speed USB connector) that works in a USB 2.0 form factor and is backwards compatible with USB 2.0.
In some embodiments a new higher speed connector allows for transmission at rates that are at least 5-10 times faster than the transmission rate of USB 2.0. In some embodiments additional signal pins than the four signal pins used for USB 2.0 are used to support additional bandwidth and functionality available using USB 2.0, since the bi-directional USB 2.0 signaling architecture alone would be difficult to support such higher data rates.
In some embodiments a high speed connector that is faster than USB 2.0 is backward compatible with USB 2.0 connectors. This allows for easier technology transition between USB 2.0 and the higher speed connector while still maintaining compatibility for legacy USB 2.0 connectors. In some embodiments high speed data rates may be supported (for example, 5 Gbit/s) with more pins while maintaining backward compatibility with USB 2.0.
In some embodiments pins 802 are electrically coupled to pins 812 (and/or pins 802 and 812 are the same pins) such that pins 812 provide signals that are compatible with USB 2.0 (for example, to a host). In some embodiments pins 804 are electrically coupled to pins 814 (and/or pins 804 and 814 are the same pins) such that pins 814 provide signals that are not compatible with USB 2.0 (for example, to a host), but that help to allow higher speed data rate transfers than USB 2.0 data rate transfers.
Pins 812 and 814 illustrate a high speed pinout of a high speed connector according to some embodiments. In some embodiments the pinout of the connector as illustrated in
In some embodiments the additional pins of
In some embodiments, more pins than the USB 2.0 pins may be supported in order to provide higher data rate bandwidth and functionality while still maintaining backward compatibility with the USB 2.0 connector form factor. This will allow a smooth transition to the new technology.
In some embodiments a USB 2.0 type of interface may be implemented while adding extra pins to support higher data rate signal and functionality requirements (for example, USB 3.0). Backward compatibility with USB 2.0 and USB 2.0 form factors may be maintained. In some embodiments, additional pins are added to a USB 2.0 connector to interface at higher speeds.
In some embodiments, pins are added to a USB 2.0 connector using four added blade contacts to the receptacle. This allows higher speed (for example, USB 3.0) signals to coexist with the USB 2.0 spring contacts on the receptacle. Similarly, in some embodiments, four spring contacts are added to the USB 2.0 connector plug, and these spring contacts are able to coexist with the blade contacts on the USB 2.0 plug. In some embodiments, four additional pins are able to be added without shorting between the added new pins used for higher speed transmission and the USB 2.0 pins when plugging in a USB 2.0 plug.
In some embodiments four or more pins may be added to a USB 2.0 mini-B connector.
In some embodiments a high speed connector (for example, a USB 3.0 connector) may be modified (for example, keyed) in any way to prevent the new high speed connector from being inserted into the older USB 2.0 receptacles.
In some embodiments a semi-circular groove (or key) may be used to implement new higher speed connectors.
In some embodiments, connector pinouts and/or wire termination schemes may be implemented where the differential wires and/or ground/power references are in close proximity.
In some embodiments a high speed I/O interface may be implemented in which a fully duplex, unidirectional transmission method is used.
In some embodiments a high speed connector receptacle is included in a computer (for example, a host computer), and/or a peripheral device such as a mouse device, a keyboard, a personal digital assistant (PDA), a smart phone, a gamepad, a joystick, a scanner, a digital camera, and/or a printer, etc. In some embodiments the receptacle is coupled to a printed circuit board, a motherboard, a processor, an Input/Output Controller, and/or an Input/Output Controller Hub, etc.
In some embodiments, any number of pins may be added to a USB 2.0 connector plug and/or receptacle. Although this application generally discussed the addition of four pins the invention is not limited to that number of additional pins. In some embodiments new USB 3.0 connectors may be implemented. However, the invention is not limited to USB 3.0 but applies to higher speed connectors that include the ability to still connect with lower speed connectors (for example, USB 2.0 connectors or other connectors).
In some embodiments, a groove (and/or “key” and/or “keying”) structure in plastic or metal, for example, has been illustrated and described herein as being a semicircle or in a semicircular pattern. However, in some embodiments such a semicircle or semicircular pattern is not included. For example, in some embodiments a groove may be used that is a “V” shaped groove. In some embodiments a groove may be used that is a triangular shaped groove. In some embodiments other groove shapes may be used. In some embodiments grooves (and/or “keys”) have been illustrated and described as being concave and/or convex (that is into or out of material such as metal or plastic), but according to some embodiments a convex groove (and/or “key”) may be implemented where a concave groove (and/or “key”) has been illustrated and/or described. Similarly, according to some embodiments a concave groove (and/or “key”) may be implemented where a convex groove (and/or “key”) has been illustrated and/or described.
In some embodiments a high speed connector plug is prevented from being plugged into a USB 2.0 receptacle (for example, using elements such as groove 106 in
Although some embodiments have been described in reference to particular implementations, other implementations are possible according to some embodiments. Additionally, the arrangement and/or order of circuit elements or other features illustrated in the drawings and/or described herein need not be arranged in the particular way illustrated and described. Many other arrangements are possible according to some embodiments.
In each system shown in a figure, the elements in some cases may each have a same reference number or a different reference number to suggest that the elements represented could be different and/or similar. However, an element may be flexible enough to have different implementations and work with some or all of the systems shown or described herein. The various elements shown in the figures may be the same or different. Which one is referred to as a first element and which is called a second element is arbitrary.
In the description and claims, the terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
An algorithm is here, and generally, considered to be a self-consistent sequence of acts or operations leading to a desired result. These include physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers or the like. It should be understood, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities.
Some embodiments may be implemented in one or a combination of hardware, firmware, and software. Some embodiments may also be implemented as instructions stored on a machine-readable medium, which may be read and executed by a computing platform to perform the operations described herein. A machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium may include read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, the interfaces that transmit and/or receive signals, etc.), and others.
An embodiment is an implementation or example of the inventions. Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the inventions. The various appearances “an embodiment,” “one embodiment,” or “some embodiments” are not necessarily all referring to the same embodiments.
Not all components, features, structures, characteristics, etc. described and illustrated herein need be included in a particular embodiment or embodiments. If the specification states a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, for example, that particular component, feature, structure, or characteristic is not required to be included. If the specification or claim refers to “a” or “an” element, that does not mean there is only one of the element. If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.
Although flow diagrams and/or state diagrams may have been used herein to describe embodiments, the inventions are not limited to those diagrams or to corresponding descriptions herein. For example, flow need not move through each illustrated box or state or in exactly the same order as illustrated and described herein.
The inventions are not restricted to the particular details listed herein. Indeed, those skilled in the art having the benefit of this disclosure will appreciate that many other variations from the foregoing description and drawings may be made within the scope of the present inventions. Accordingly, it is the following claims including any amendments thereto that define the scope of the inventions.