The present invention relates to a high-speed evaporator defrost system for defrosting refrigeration coils of evaporators in a short period of time without having to increase compressor head pressure.
In refrigeration systems found in the food industry to refrigerate fresh and frozen foods, it is necessary to defrost the refrigeration coils of the evaporators periodically, as the refrigeration systems working below the freezing point of water are gradually covered by a layer of frost which reduces the efficiency of evaporators. The evaporators become clogged up by the build-up of ice thereon during the refrigeration cycle, whereby the passage of air maintaining the foodstuff refrigerated is obstructed. Exposing foodstuff to warm temperatures during long defrost cycles may have adverse effects on their freshness and quality.
One method known in the prior art for defrosting refrigeration coils uses an air defrost method wherein fans blow warm air against the clogged-up refrigeration coils while refrigerant supply is momentarily stopped from circulating through the coils. The resulting defrost cycles may last up to about 40 minutes, thereby possibly fouling the foodstuff.
In another known method, gas is taken from the top of the reservoir of refrigerant at a temperature ranging from 80° F. to 90° F. and is passed through the refrigeration coils, whereby the latent heat of the gas is used to defrost the refrigeration coils. This also results in a fairly lengthy defrost cycle.
U.S. Pat. No. 5,673,567, issued on Oct. 7, 1997 to the present inventor, discloses a system wherein hot gas from the compressor discharge line is fed to the refrigerant coil by a valve circuit and back into the liquid manifold to mix with the refrigerant liquid. This method of defrost usually takes about 12 minutes for defrosting evaporators associated with open display cases and about 22 minutes for defrosting frozen food enclosures. The compressors are affected by hot gas coming back through the suction header, thereby causing the compressors to overheat. Furthermore, the energy costs increases with the compressor head pressure increase.
U.S. Pat. No. 6,089,033, published on Jul. 18, 2000 to the present inventor, introduces an evaporator defrost system operating at high speed (e.g., 1 to 2 minutes for refrigerated display cases, 4 to 6 minutes for frozen food enclosures) comprising a defrost conduit circuit connected to the discharge line of the compressors and back to the suction header through an auxiliary reservoir capable of storing the entire refrigerant load of the refrigeration system. The auxiliary reservoir is at low pressure and is automatically flushed into the main reservoir when liquid refrigerant accumulates to a predetermined level. The pressure difference between the low-pressure auxiliary reservoir and the typical high pressure of the discharge of the compressor creates a rapid flow of hot gas through the evaporator coils, thereby ensuring a quick defrost of the refrigeration coils. Furthermore, the suction header is fed with low-pressure gas to prevent the adverse effects of hot gas and high head pressure on the compressors.
It is a feature of the present invention to provide a high-speed defrost refrigeration system that operates a defrost of evaporators at low pressure.
It is a further feature of the present invention to provide a high-speed defrost refrigeration system having a compressor dedicated to defrost cycles.
It is a still further feature of the present invention to provide a high-speed defrost refrigeration system having a low-pressure defrost loop.
It is a still further feature of the present invention to provide a method for defrosting at high-speed refrigeration systems with low-pressure in the evaporators.
It is a still further feature of the present invention to provide a method for operating a high-speed defrost refrigeration system having a compressor dedicated to defrost cycles.
According to the above features, from a broad aspect, the present invention provides a defrost refrigeration system of the type having a main refrigeration circuit operating a refrigeration cycle, wherein a refrigerant goes through at least a compressing stage having at least a first and a second compressor, wherein said refrigerant is compressed to a high-pressure gas state to then reach a condensing stage, wherein said refrigerant in said high-pressure gas state is condensed at least partially to a high-pressure liquid state to then reach an expansion stage, wherein said refrigerant in said high-pressure liquid state is expanded to a first low-pressure liquid state to then reach an evaporator stage, wherein said refrigerant in said first low-pressure liquid state is evaporated at least partially to a first low-pressure gas state by absorbing heat, to then return to said compressing stage, said defrost refrigeration system comprising a first line extending from said first compressor to the evaporator stage and adapted to receive at least a portion of discharged refrigerant from said first compressor, a valve for stopping a suction by the compressing stage of said refrigerant in said first low-pressure liquid state in at least one evaporator of the evaporator stage and directing a flow of said discharged refrigerant to release heat to defrost the at least one evaporator and thereby changing phase at least partially to a second low-pressure liquid state, a second line for directing said refrigerant having released heat to the expansion stage of the refrigeration cycle, and a pressure reducing device downstream of the condensing stage for adjusting a pressure of the refrigerant in the high-pressure liquid state mixing with said refrigerant having released heat.
Further in accordance with the present invention, there is provided a method for defrosting evaporators in a refrigeration system of the type having a cooling refrigerant circulating sequentially between a compression stage, a condensing stage, an expansion stage and an evaporation stage to then return to the compression stage, comprising the steps of: i) stopping a suction of the cooling refrigerant in a first evaporator of the evaporation stage; ii) directing defrost refrigerant from the compression stage to the first evaporator so as to defrost the first evaporator; iii) directing the defrost refrigerant from the first evaporator upstream of the expansion stage; and iv) mixing the cooling refrigerant from the condensing stage with the defrost refrigerant by controlling a cooling refrigerant pressure downstream of the condensing stage; whereby a second evaporator of the evaporation stage is cooled with the mixture of cooling refrigerant from the condensing stage with the defrost refrigerant.
Still further in accordance with the present invention, there is provided a method for installing a defrost system in a refrigeration system of the type having a cooling refrigerant circulating sequentially between a compression stage, a condensing stage, an expansion stage and an evaporation stage to then return to the compression stage, comprising the steps of providing a valve to stop a suction of cooling refrigerant in at least a first evaporator of the evaporation stage, positioning a first line feeding the first evaporator with cooling refrigerant from the compression stage, positioning a second line between the first evaporator and a main line between the condensing stage and the expansion stage to direct the defrost refrigerant from the first evaporator to the main line, and providing a pressure reducing device in the main line to reduce the pressure of the cooling refrigerant for a subsequent mixing with the defrost refrigerant from the second line.
A preferred embodiment of the present invention will now be described with reference to the accompanying drawings in which:
Referring to the drawings, and more particularly to
The compressors 12 are connected to the condenser units 14 by lines 28. High-pressure gas refrigerant is discharged from the compressors 12 and flows to the condenser units 14 through the line 28. A line 30 diverges from the line 28 by way of three-way valve 32. The line 30 extends between the three-way valve 32 and the heat reclaim unit 22. A line 34 connects the condenser units 14 to the high-pressure reservoir 16, and a line 36 links the heat reclaim unit 22 to the high-pressure reservoir 16. The condenser units 14 are typically rooftop condensers that are used to release energy of the high-pressure gas refrigerant discharged by the compressors 12 by a change to the liquid phase. Accordingly, refrigerant accumulates in the high-pressure reservoir 16 in a liquid state.
Evaporator units 17 are connected between the high-pressure reservoir 16 and the compressors 12/12A. Each of the evaporator units 17 has an evaporator 20 and an expansion valve 18. The expansion valves 18 are connected to the high-pressure reservoir 16 by line 38. As known in the art, the expansion valves 18 create a pressure differential so as to control the pressure of saturated liquid/gas refrigerant sent to the evaporators 20. The outlet of the evaporators 20 are connected to the compressors 12 by lines 48. The compressors 12 are supplied with low-pressure gas refrigerant via supply lines 48. The expansion valves 18 control the pressure of the cooling refrigerant that is sent to the evaporators 20, such that the cooling refrigerant changes phases in the evaporators 20 by a fluid, such as air, blown across the evaporators 20 to reach refrigerated display counters (e.g., refrigerators, freezers or the like) at low refrigerating temperatures.
Refrigerant in the refrigeration system 10 is in a high-pressure gas state when discharged from the compressors 12. For instance, a typical head pressure of the compressors is 200 Psi. The compressor head pressure changes as a function of the outdoor temperature to which the refrigerant in the condensing stage will be subjected. The high-pressure gas refrigerant is conveyed to the condenser units 14 and, if applicable, to the heat reclaim unit 22 via the line 28 and the line 30, respectively.
In the condenser units 14 and the heat reclaim unit 22, the refrigerant releases heat so as to go from the gas state to a liquid state, with the pressure remaining generally the same. Accordingly, the high-pressure reservoir 16 accumulates high-pressure liquid refrigerant that flows thereto by the lines 34 and 36, as previously described.
The compressors 12 exert a suction on the evaporators 20 through the supply lines 48. The expansion valves 18 control the pressure in the evaporators 20 as a function of the suction by the compressors 12. Accordingly, high-pressure liquid refrigerant accumulates in the line 38 to thereafter exit through the expansion valves 18 to reach the evaporators 20 via the lines 43 in a low-pressure saturated liquid/gas state. During a refrigeration cycle, the refrigerant absorbs heat in the evaporators 20, so as to change state to become a low-pressure gas refrigerant. Finally, the low-pressure gas refrigerant flows through the line 48 so as to be compressed once more by the compressors 12 to complete the refrigeration cycle.
As frost and ice build-up are frequent on the evaporators, the evaporators 20 are provided with a defrost system for melting the frost and ice build-up. Only one of the evaporator units 17 is shown having defrost equipment, for simplicity of the drawings, but all evaporator units 17 can be provided with defrost equipment.
Valves are provided in the evaporator units 17 so as to control the flow of refrigerant in the evaporators 20. A valve 114 is typically provided in the line 38. The valve 114 is normally open, but is closed during defrosting of its evaporator unit 17. A valve 116 is positioned on the line 48 and is normally open. The line 106 merges with the line 48 between the valve 116 and the evaporator 20. The line 106 has a valve 118 therein.
In a normal refrigeration cycle, refrigerant flows in the line 38 through the valve 114, to reach the expansion valves 18. A pressure drop in refrigerant is caused at the expansion valve 18. The resulting low-pressure liquid refrigerant reaches the evaporators 20, wherein it will absorb heat to change state to gas. Thereafter, refrigerant flows through the low-pressure gas refrigerant line 48 and the valve 116 therein to the compressors 12.
During a defrost cycle of an evaporator 20, valves 118 and 120 are open, whereas the valves 114 and 116 are closed. Accordingly, the expansion valve 18 and the evaporator 20 will not be supplied with low-pressure liquid refrigerant from the line 38, as it is closed by valve 114.
The dedicated compressor 12A collects low-pressure gas refrigerant from a suction header 204 that also supplies the other compressors 12 in refrigerant. However, the compressor 12A is the only compressor supplying evaporators in defrost cycles, whereby its discharge pressure can be lowered. This is performed by having line 106 connected to the evaporators 20 by valve 116 closing to direct refrigerant via line 48 thereto (shown connected to only one line 48 in
Thereafter, the refrigerant exiting from the defrosted evaporators 20 is injected into the evaporators 20 in a refrigeration cycle. Line 112′ collects liquid refrigerant exiting from the evaporators 20 in defrost, and converges with the line 38 upstream of the expansion valves 18, such that the liquid refrigerant can be injected in the evaporators 20 in the refrigeration cycle. A valve 202 (e.g., pressure regulating valve) ensures that a proper refrigerant pressure is provided to the line 38, and compensates a lack of refrigerant pressure by transferring liquid refrigerant from the high-pressure reservoir 16 to the line 38. The combination of the dedicated compressor 12A (i.e., low-pressure refrigerant feed to the defrost evaporators, also achievable by a pressure regulator, as described for the refrigeration system of
As seen in
A bypass line 134 and a check valve 136 therein are connected from the line 48 to the compressor 12A. The check valve 136 enables a flow of refrigerant therethrough such that the inlet pressure at the compressors 12 and the dedicated compressor 12A is generally the same.
When the defrost cycle has been completed, the valves are reversed so as to return the defrosted evaporator 20 to the refrigeration cycle. More specifically, the valves 114 and 116 are opened, and the valves 118 and 120 are closed. It is preferred that the valve 116 be of the modulating type (e.g., Mueller modulating valve, www.muellerindustries.com), or a pulse valve. Accordingly, a pressure differential in the line 48 between upstream and downstream portions with respect to the valve 116 will not cause water hammer when the valve 116 is open. The pressure will gradually be decreased by the modulation of the valve 116. Furthermore, the refrigerant reaching the compressors 12 via the line 48 will remain at advantageously low pressures.
It is pointed out that line 112′ and valve 120 are generically illustrated in
It is also contemplated to operate defrost systems without the valve 114, as shown in
Accordingly, the pressure is greater downstream of the expansion valve 18 in defrost than upstream. The defrost refrigerant pressure therefore prevents circulation of cooling refrigerant through the expansion valve 18 associated with an evaporator 20 being defrosted.
Referring to
In the refrigeration system 10′ of
In the refrigeration system 10′ of
Once the evaporator 20 has been defrosted with the defrost refrigerant, the defrost refrigerant is directed to the line 38, thereby mixing with cooling refrigerant, for subsequently being fed to evaporator units 17 in defrost, as was described previously for the refrigeration system 10 of
Referring to
The sub-cooling system 300 is provided so as to reduce the amount of flash gas that is fed to the evaporators 20 in the refrigeration cycle. More specifically, due to the mixture of defrost refrigerant with cooling refrigerant for injection in the evaporators 20 in the evaporation stage, it is possible that some flash gas is present in the mixture of refrigerants. Therefore, the sub-cooling system 300 is provided so as to liquefy the cooling refrigerant prior to being mixed with the defrost refrigerant. Various sub-cooling systems may be used, and the sub-cooling system 300 is provided as two separate examples.
Referring to
Also in
In
It is obvious that the control of valve operation is preferably fully automated. The valve operation for controlling the defrost of evaporators 20, namely the control of valves 114, 116, 118 and 120, is fully automated.
The defrosting of one of the evaporators 20 can be stopped according to a time delay. More precisely, a defrost cycle of an evaporator 20 can be initiated periodically and have its duration predetermined. For instance, a typical defrost portion of a defrost cycle can last 8 minutes for low pressures of refrigerant fed to the evaporators 20 and can be even shorter for higher pressures. Thereafter, a period is required to have the defrosted evaporator 20 returned to its normal refrigeration operating temperature, and such a period is typically up to 7 minutes in duration. It is also possible to have a sensor positioned downstream of the evaporator 20 in a defrost cycle, that will control the duration of the defrost cycle of a respective evaporator 20 by monitoring the temperature of the refrigerant having defrosted the respective evaporator 20. A predetermined low refrigerant temperature detected by the sensor could trigger an actuation of the valves 114, 116, 118 and 120, to switch the respective evaporator 20 to a refrigeration cycle 20.
It is obvious that the various components enabling the defrost cycle can be regrouped in a pack so as to be provided on site as a defrost system ready to operate. This can simplify the installation of the defrost system to an existing refrigeration system, as the major step in the installation would be to connect the various lines to the defrost system.
Although the refrigeration system 10 of the present invention enables the defrosting of the evaporators 20 at high pressure, it is preferable that the pressure regulator 108 or dedicated compressor 12A reduce the pressure of the refrigerant fed to the evaporators 20 in defrost cycles. In such a case, less refrigerant is required to defrost an evaporator, whereby a plurality of evaporators 20 can be defrosted simultaneously. Moreover, the use of high-pressure refrigerant causes non-negligible thermal expansion of the refrigerant lines. This may result in damages to the lines, as well as rupture of insulating sleeves provided on the refrigerant lines. Accordingly, in an embodiment of the present invention, the refrigeration systems of FIGS. 1 to 5 overcome this disadvantage by using defrost refrigerant of a pressure that is closer to the pressure of the cooling refrigerant.
It is within the ambit of the present invention to cover any obvious modifications of the embodiments described herein, provided such modifications fall within the scope of the appended claims.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 10/863,495, filed on Jun. 9, 2004, by the present Applicant, which is a divisional of U.S. patent application Ser. No. 10/189,462, filed on Jul. 8, 2002, now U.S. Pat. No. 6,775,993.
Number | Date | Country | |
---|---|---|---|
Parent | 10189462 | Jul 2002 | US |
Child | 10863495 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10863495 | Jun 2004 | US |
Child | 11056117 | Feb 2005 | US |