The present invention relates to a door which in particular is designed as a high-speed door, wherein high-speed doors are understood to mean doors having an opening or closing speed of approximately 1.0 to 3.5 m/s.
The high-speed doors known from the prior art essentially comprise a door leaf which covers a door opening and which is referred to as a hanging. For opening the door, this hanging is wound onto a shaft or a cylinder made of metal or plastic. A problem with such doors is that when transparent material such as PVC, for example, is used, these doors lose their transparency due to the friction on the individual windings so that vision through the material, necessary for accident prevention, is not maintained. In addition, such doors tend to lose their strength as the result of constant repeated winding or the elevated temperatures of approximately 30° C. and greater, so that over time the doors become too weak to withstand wind pressure.
The object of the present invention, therefore, is to provide a door, in particular a high-speed door, in which the door leaf has sufficient strength to withstand wind pressure, and in which transparency is maintained upon repeated winding.
This object is achieved by a door, in particular a high-speed door, having the features of claim 1. Preferred embodiments result from the dependent subclaims.
According to the invention a door, in particular a high-speed door, is provided which comprises at least one door leaf made of a flexible material, and a door drive for moving the door leaf between an open position and a closed position, whereby the door leaf and the door drive may be connected to one another via a fastening device which extends over the width of the door leaf, at least in places, along an upper edge of the door leaf in the closed position to form a rotatable winding axis in the shape of an open cylindrical shell.
The door is advantageously designed as a high-speed door which moves the door leaf between the open and closed positions at a speed of approximately 1.0 to 3.5 m/s, preferably 1.8 to 3.5 m/s. The door advantageously has a single door leaf which in the closed position covers the door opening enclosed by the door frame. However, a number of door leaves connected to one another in an articulated manner may also be provided. The door leaf is preferably made of a flexible material. In other words, the door leaf may be provided as a thin sheet or film having a flexible design. In this context, “flexible” means that the material is pliant so as to allow winding of the door leaf, and is not understood as a change in the length or width of the selected material. The door has a door drive for moving the door leaf between the open and closed positions. This may be performed manually, but as a rule the door is actuated electrically by use of a motor. To transfer the drive from the door drive to the door leaf a fastening device is provided via which the door drive is directly or indirectly coupled to the door leaf. The fastening device is advantageously provided at an upper edge of the door leaf, and advantageously extends over the entire width of the door leaf, at least in places. In other words, a fastening device is provided in the region of the upper lintel of the door, i.e., for a door leaf in the closed position, at the upper edge or wide side of the door leaf which extends essentially horizontally. The fastening device is rotatable about a winding axis.
Consequently, the fastening device is not coaxial with the winding axis, but instead rotates about the winding axis. The winding axis essentially corresponds to the rotational axis of the cylinder or tubular element which is formed by the door leaf during the winding. In other words, the door leaf is wound around the winding axis. The fastening device has the shape of an open cylindrical shell. In other words, the fastening device does not form a closed cylinder as such, but, rather, forms only a portion of a cylindrical shell which is not closed at any location. Thus, the cross section of the fastening device forms a section of a circular arc, or any given curved section. When the door leaf is wound up, i.e., is in the open position, it thus forms an essentially cylindrical element which encloses the fastening device. Alternatively, the fastening device may also have a solid design, thus forming a cylindrical segment of a solid cylinder.
The door leaf in the open position preferably forms a dimensionally stable, self-supporting, tubular element. In the open position the door leaf is essentially wound up, so that it has a spiral-shaped cross-sectional configuration. A geometric configuration is thus obtained which results in a roller or a tubular element that is rigid and nondeformable. Thus, the tubular element, i.e., the door leaf, supports itself in the open position without the need for a supporting function by the fastening device. The self-supporting characteristic is assisted by selection of a suitable material, a flexible material having little or no elasticity being particularly suited.
The fastening device preferably has at least one clamping device for affixing the door leaf thereto, the clamping device preferably extending essentially over the entire width of the door leaf. It is understood that instead of or in addition to the clamping device any other given fastening device may be provided, such as by gluing, welding, or attachment via mechanical fastening means, such as screws or rivets that penetrate the door leaf.
In one preferred embodiment, the fastening device has an imbalance compensation device, preferably in the form of a counterweight, situated essentially radially opposite with respect to the winding axis. In other words, the imbalance compensation device is radially displaced essentially by 180° in relation to the fastening device, thereby ensuring that the fastening device runs concentrically about the winding axis.
It is advantageous for the radial distance of the imbalance compensation device from the winding axis to be adjustable by means of an adjustment device. The adjustment device may, for example, have the design of a threaded bolt which extends radially from the winding axis and to which at the distal, i.e., free, end thereof the imbalance compensation device is fixed in such a way that the distance from the latter to the winding axis may be adjusted via the thread.
The door also preferably has spacing means designed such that a distance is provided between the individual windings of the door leaf in the open position. It is understood that for a door in an intermediate position between the open and closed positions, at least the region that is already wound is spaced by the spacing means. Thus, a door may advantageously be provided for which the windings of the door leaf do not touch in the open position of the door leaf, thereby preventing abrasion or scratching due to contact with the individual windings of the door leaf.
The spacing means are advantageously designed in the form of at least one belt or band which in the open position is situated between the individual windings of the door leaf. The belt or band thus acts as a spacer between the individual windings of the door leaf, so that in the open position, i.e., in the wound state, the windings of the door leaf do not contact one another. This is facilitated in particular by the material of the door leaf, which advantageously has an essentially rigid design, so that even in regions between the spacing means along the wide side of the wound door leaf the windings of the door leaf do not rest one on top of the other.
The spacing means are preferably designed in the form of at least two belts or bands, which in the open position are situated between the individual windings of the door leaf essentially on the distal broad sides of the door leaf.
It is practical for the belt to be windable on at least one winding device situated essentially on the distal broad side of the door leaf. For a door leaf that is wound up, i.e., in the open position, the winding device is essentially enclosed by the wound door leaf, whereby a layer of the belt is provided between the winding device and the first winding of the door leaf, and further winding of the door leaf results in an alternating sequence of belt and door leaf on account of the spiral winding of the belt and door leaf.
The winding device is advantageously designed as a cylinder with a spiral-shaped cross section having a pitch corresponding to the thickness of the belt. Thus, when the door leaf is wound a bulge which could result in imbalance is advantageously avoided, since the spiral pitch corresponds to the belt thickness at a distance of a circumferential angle of 360° (i.e., the distance corresponding to the circumference). Gradation at the installation site at which the belt is fastened to the winding device is thus avoided, resulting in an essentially circular cross-sectional shape of the winding device provided with the belt. This advantageously results in smooth, balanced operation which allows door opening speeds of greater than 2 m/s.
The thickness of the belt advantageously corresponds at least to the height of the clamping device, thereby also avoiding bulging and imbalance caused by the clamping device.
The belt is advantageously made of a textile material, and preferably has one or more sections that are resilient at least in places. The resilient sections are practical in order to compensate for a change in length occurring during winding and unwinding as the result of the differing material thicknesses of the belt and door leaf. A resilient section is preferably provided in particular at the end of the belt that is not fastened to the winding device, but particularly preferably at a lower part of the door leaf.
Alternatively, the belt may be made entirely of a resilient material, preferably rubber.
In one further preferred embodiment, the spacing means are provided in the form of two cones situated on the distal broad sides of the door leaf, coaxial with the winding axis, and the door leaf has a trapezoidal base, so that the converging edges of the door leaf engage with the outer surfaces of the cones in the conversion to the open position. The axis of rotational symmetry of the cones essentially corresponds to the previously mentioned winding axis. Thus, the distance of the individual windings from the wound door leaf may be fixed by means of the pitch of the cones.
The cones preferably have a graduated spiral-shaped outer surface. This allows the door leaf to be wound so that each winding engages with its own gradation on the outer surface, and the individual windings of the door leaf are thus reliably separated from one another.
The door leaf advantageously is made of preferably transparent polycarbonate. In contrast to the door leaves from the prior art made of soft polyvinyl chloride, this material contains no externally diffusing softeners which deposit on the surface of the door leaf and which on account of their health hazards, particularly in sensitive areas such as the food industry, cannot be used. In addition, no static charge develops on the surface of the polycarbonate during winding and unwinding, so that deposition of dust particles from the ambient air onto the surface of the door leaf is avoided and the transparency of the door is maintained. Lastly, polycarbonate is heat-resistant so that the door leaf maintains its strength, even at temperatures of up to 90° C., and thus withstands wind pressure even under these extreme conditions.
Further advantages and features of the present invention result from the exemplary embodiment described below with reference to the figures, which show the following:
The door according to the invention illustrated in
The door leaf 2 is made of a flexible material which advantageously is transparent, at least in places, and which preferably has no elastic properties. A door leaf 2 is thus provided which in the closed position forms a dimensionally stable, self-supporting, tubular element as illustrated in
To avoid the individual windings of the door leaf 2 from touching or making contact in at least the partially wound state, spacing means in the form of a belt 18 are advantageously provided. This belt 18 is situated essentially at the distal broad sides of the door leaf 2 such that the belt is provided between the individual windings of the door leaf 2. This results in an alternating sequence of the door leaf winding and the belt winding in the wound state of the door leaf 2. The thickness of the belt 18 advantageously is greater than the height of the clamping device, so that the clamping device 12 (
The belt 18 advantageously is made of a textile material and has one or more resilient sections 24, at least in places. The resilient section 24 is provided in particular at the second end 26 of the belt 18 (
In an alternative embodiment illustrated in
Number | Date | Country | Kind |
---|---|---|---|
102006018637.0-42 | Apr 2006 | DE | national |