This application claims priority to and the benefit of Chinese Patent Application Serial No. 202120186566.3, filed on Jan. 22, 2021. This application also claims priority to and the benefit of Chinese Patent Application Serial No. 202022110410.5, filed on Sep. 22, 2020. The entire contents of these applications are incorporated herein by reference in their entirety.
This application relates generally to electrical connectors, such as those used to interconnect electronic assemblies.
Electrical connectors are used in many electronic systems. It is generally easier and more cost effective to manufacture a system as separate electronic assemblies, such as printed circuit boards (“PCBs”), which may be joined together with electrical connectors. A known arrangement for joining several PCBs is to have one PCB serve as a backplane. Other PCBs, called “daughterboards” or “daughtercards”, may be connected through the backplane.
A known backplane is a PCB onto which many connectors may be mounted. Conducting traces in the backplane may be electrically connected to signal conductors in the connectors so that signals may be routed between the connectors. Signals may be routed among daughtercards through the connectors and the backplane. For example, daughtercards may also have connectors mounted thereon. The connectors mounted on a daughtercard may be plugged into the connectors mounted on the backplane.
In another know arrangement, a PCB may serve as a motherboard to which other PCBs may be attached. This configuration is often used in computers in which the mother board might be implemented with a processor and a bus configured to pass data between the processor and peripherals, such as a graphics processor or memory. Connectors may be mounted to the motherboard and connected to the bus. The peripherals may he implemented on separate PCBs with connectors that mate with the connectors on the bus such that separately manufactured peripherals may be readily integrated into a computer made with the motherboard.
To enhance the availability of peripherals, the bus and the connectors used to physically connect peripherals via the bus may be standardized. In this way, there may be a large number of peripherals available from a multitude of manufacturers. All of those products, so long as they are compliant with the standard, may be used in a computer that has a bus compliant with the standard. An example of such a standard is PCIe, which is commonly used within computers.
The PCIe standard has gone through multiple revisions, adapting to the higher performance expected from computers over time. It may be desirable for each version of the standard to be backwards compatible with prior versions. For example, PCIe 5.0 is backwards compatible with PCIe 4.0, meaning that a computer with a bus manufactured according to PCIe 5.0 can operate with peripherals manufactured according to PCIe 4.0, and vice versa. Such compatibility requires a PCIe 5.0 connector to have the same form factor as a connector manufactured according to PCIe 4.0 so that physical compatibility can be provided across versions. However, the connector manufactured according to PCIe 5.0 must pass signals at higher data rates than is required for a connector designed for use in a PCIe 4.0 system. This has led to connector manufacturers offering different products for different versions of the standard.
Aspects of the present disclosure relate to high speed electrical connectors.
Some embodiments relate to an electrical connector. The electrical connector may include a plurality of conductors each comprising a mating contact portion, a contact tail, and an intermediate portion extending between the mating contact portion and the contact tail; and a housing holding the plurality of conductors, the housing comprising a mounting face that the contact tails of the plurality of conductors extend therethrough, the mounting face comprising a slot.
In some embodiments, the housing may include a first segment and a second segment spaced apart along a longitudinal direction. The plurality of conductors may include a plurality of first signal conductors, a plurality of first ground conductors, and a plurality of second signal conductors. The plurality of first signal conductors, the plurality of first ground conductors, and the slot may be located in the first segment. The plurality of second signal conductors may be located in the second segment.
In some embodiments, the electrical connector may include a member disposed in the slot and electrically coupled with the plurality of first ground conductors.
In some embodiments, the member may abut against the plurality of first ground conductors.
In some embodiments, the slot may expose portions of the intermediate portions of the plurality of conductors.
In some embodiments, the slot may include a main opening elongated along the longitudinal direction and a plurality of branch openings extending from a side of the main opening along a transverse direction perpendicular to the longitudinal direction. The plurality of branch openings may expose portions of the intermediate portions of the plurality of first signal conductors and the plurality of first ground conductors, respectively.
In some embodiments, the plurality of conductors may be arranged in two columns extending along a longitudinal direction. The slot may be located between the two columns. The two columns may be offset from each other a predetermined distance along the longitudinal direction.
In some embodiments, the predetermined distance may be equal to half of the spacing between longitudinally adjacent conductors in the first segment.
In some embodiments, the electrical connector may be a plug electrical connector.
In some embodiments, the electrical connector may include a member disposed in the slot. The member may be insulative or lossy.
In some embodiments, the housing may include a first segment that the slot is aligned herewith, a second segment separate from the first segment, and a member disposed in the slot to combine with a surface of the first segment of the housing to create a mounting face. The second segment of the housing may have a surface defining the mounting face without an insert.
Some embodiments relate to an electrical connector. The electrical connector may include a plurality of conductors comprising a plurality of first signal conductors, a plurality of first ground conductors, and a plurality of second signal conductors; and a housing comprising a first segment and a second segment spaced apart along a longitudinal direction, the first segment holding the plurality of first signal conductor and the plurality of first ground conductors, the second segment holding the plurality of second signal conductors, the first segment comprising a member electrically coupled with the plurality of first ground conductors.
In some embodiments, the housing may include a slot. The member may be accommodated in the slot.
In some embodiments, the member may be lossy.
In some embodiments, the plurality of first signal conductors and the plurality of first ground conductors may be arranged in two columns in the first segment and extending along the longitudinal direction. The two columns may be offset from each other by a predetermined distance along the longitudinal direction.
In some embodiments, the predetermined distance may be equal to half of the spacing between longitudinally adjacent conductors in the first segment.
In some embodiments, the plurality of conductors each may include a mating contact portion, a contact tail, and an intermediate portion extending between the mating contact portion and the contact tail. The slot may expose portions of the intermediate portions of the plurality of conductors in the first segment.
In some embodiments, the slot may include a main opening elongated along the longitudinal direction and a plurality of branch openings extending from a side of the main opening along a transverse direction perpendicular to the longitudinal direction. The plurality of branch openings may expose portions of the intermediate portions of the plurality of first signal conductors and the plurality of first ground conductors, respectively.
In some embodiments, each of the first and second segments may include a tongue. The plurality of conductors may extend through the housing with tails exposed at a mounting face and mating contact portions embedded in a respective tongue.
Some embodiments relate to an electrical connector. The electrical connector may include a plurality of conductors each comprising a mating contact portion, a contact tail, and an intermediate portion extending between the mating contact portion and the contact tail, the plurality of conductors comprising a plurality of first signal conductors, a plurality of first ground conductors, and a plurality of second signal conductors; a housing comprising a first segment and a second segment spaced apart along a longitudinal direction, and a mounting face that the contact tails of the plurality of conductors extend therethrough, the mounting face comprising a slot aligned with the first segment, the first segment comprising a first tongue and holding the plurality of first signal conductors and the plurality of first ground conductors with the mating contact portions of the first signal conductors and first ground conductors embedded in the first tongue, the second segment comprising a second tongue and holding the plurality of second signal conductors with the mating contact portions of the second signal conductors embedded in the second tongue; and a member disposed in the slot and electrically coupled with the plurality of first ground conductors. The member may combine with a surface of the first segment of the housing to create the mounting face. The second segment of the housing may have a surface defining the mounting face without an insert.
Some embodiments relate to an electrical connector. The electrical connector may include an insulating housing and a plurality of conductors. A back side of the insulating housing may be provided with a slot. The plurality of conductors may be arranged in the insulating housing, the plurality of conductors may be arranged along a longitudinal direction, and the plurality of conductors may include a plurality of first signal conductors and a plurality of first ground conductors. A front side of the insulating housing may expose the plurality of conductors, the slot may expose the plurality of first ground conductors, and the slot may be used to receive a member.
In some embodiments, the insulating housing may include a first segment and a second segment, and the first segment and the second segment may be spaced apart along the longitudinal direction. The plurality of first signal conductors, the plurality of first ground conductors and the slot may be located in the first segment. The plurality of conductors further may include a plurality of second signal conductors, and the plurality of second signal conductors may be located in the second segment.
In some embodiments, the member may include a conductive plastic member, and the conductive plastic member may be electrically coupled with the plurality of first ground conductors.
In some embodiments, the member may include an insulating member, and the insulating member may abut against the plurality of first ground conductors.
In some embodiments, the slot may expose the plurality of first signal conductors.
In some embodiments, the slot may include an elongated main opening and a plurality of branch openings extending from a side of the main opening along a transverse direction, and the plurality of branch openings may expose the plurality of first signal conductors and the plurality of first ground conductors respectively.
In sonic embodiments, the plurality of conductors may be arranged in two columns extending along the longitudinal direction, the slot may be located between the two columns along a transverse direction, and the two columns may be offset from each other a predetermined distance along the longitudinal direction.
In some embodiments, the predetermined distance may be equal to half of the spacing between longitudinally adjacent conductors in the first segment.
In some embodiments, the electrical connector may be a plug electrical connector.
Some embodiments relate to an electrical connector. The electrical connector may include an insulating housing, a plurality of conductors and a conductive plastic member. The insulating housing may have a first segment and a second segment, and the first segment and the second segment may be spaced apart along a longitudinal direction. The plurality of conductors may be arranged in the insulating housing, and the plurality of conductors may be arranged along the longitudinal direction. The plurality of conductors may comprise a plurality of first signal conductors, a plurality of first ground conductors and a plurality of second signal conductors. The plurality of first signal conductors and the plurality of first ground conductors may be located in the first segment, and the plurality of second signal conductors may be located in the second segment. A front side of the insulating housing may expose the plurality of conductors. The conductive plastic member may be arranged in the first segment, and the conductive plastic member may be electrically coupled with the plurality of first ground conductors.
In some embodiments, a back side of the insulating housing may be provided with a slot, and the conductive plastic member may be accommodated in the slot.
In some embodiments, the plurality of conductors in the first segment may be arranged in two columns extending along the longitudinal direction, the slot may be located between the two columns along a transverse direction, and the two columns may be offset from each other a predetermined distance along the longitudinal direction.
These techniques may be used alone or in any suitable combination. The foregoing summary is provided by way of illustration and is not intended to be limiting.
The following accompanying drawings of the present disclosure are used here as a part of the present disclosure for understanding the present disclosure. The accompanying drawings are not intended to be drawn to scale. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
The accompanying drawings include the following reference numerals:
100, insulating housing; 102, conductor installation groove; 110, first segment; 120, second segment; 130, slot; 131, main opening; 132, branch opening; 200, conductor; 211, first signal conductor; 212, first ground conductor; 220, second signal conductor; 300, member.
The inventors have recognized and appreciated designs for a connector that may he readily configured to operate according to multiple standards. A first version, for example, may support communication at a first data rate such as may be required for a first version of a standard. A second version, which may be economically manufactured using the tooling from which the first version is manufactured, may support communication at a second, higher data rate. Connector versions suitable for use in connection with a PCIe 4.0 or a PCIe 5.0 standard, for example, may be constructed in this way.
The electrical connector may include a plurality of conductors held by a housing. Contact tails of the plurality of conductors may extend from a mounting face of the housing therethrough. The mounting face of the housing may include a slot. In some embodiments, the slot may expose portions of ground conductors of the connector and receive a member coupled with the exposed portions of the ground conductors such that the electrical connector can meet high performance requirements. The member may be inserted into or molded in the slot. In some embodiments, the slot may or may not receive a member that is insulative when the electrical connector does not need to meet the high performance requirements. Such a configuration enables the same connector to be compatible with multiple performance protocols.
In some embodiments, when the first signal conductors of the electrical connector do not need to transmit high-frequency and high-speed signals, there may be no member arranged in the slot or may be a predetermined member (such as an insulating member) arranged in the slot. When the electrical connector needs to transmit high-frequency and high-speed signals, the slot may receive another predetermined member (such as a conductive plastic member), such that the electrical connector can meet high performance requirements. Accordingly, the insulating housings that meet the two performance requirements may have the same structure, such that the insulating housings may be made with the same mold, which greatly reduces the production costs of electrical connectors. In addition, because the insulating housings of the two electrical connectors have the same structure, there is no need to reserve respective insulating housings for the two electrical connectors during manufacturing, which can reduce the inventory and management costs of the electrical connectors. Based on this, the present electrical connector can be reasonably configured according to an electronic system to which the electrical connector is applied, such that both its cost and performance can meet the needs of users, and the electrical connector has high market competitiveness.
In the following description, numerous details are provided to enable a thorough understanding of the present disclosure. However, a person skilled in the art may understand that the following description only exemplarily shows the preferred embodiments of the present disclosure, and the present disclosure may be implemented without one or more such details. In addition, in order to avoid confusion with the present disclosure, some technical features known in the art have not been described in detail.
As shown in
The electrical connector may include an insulating housing 100 and a plurality of conductors 200. The plurality of conductors 200 may be arranged in the insulating housing 100. The plurality of conductors 200 may be spaced apart from one another to ensure that the conductors 200 are electrically insulated from one another. A front side of the insulating housing 100 may expose portions of the plurality of conductors 200 including, for example, front ends of the conductors 200. Thus, when the electrical connector is engaged with an adapted electrical connector (not shown), the conductors 200 may be electrically coupled with conductors in the adapted electrical connector. When the electrical connector is configured as a plug electrical connector, the front ends of the plurality of conductors 200 protrude from the front side of the insulating housing 100 so as to be inserted into a socket electrical connector and coupled with conductors therein. When the electrical connector is configured as a socket electrical connector, the front side of the insulating housing 100 may be provided with a receiving groove, and a side wall of the receiving groove may expose the front ends of the conductors 200. The receiving groove may receive an adapted plug electrical connector or receive an adapted electronic card. Thus, optionally, the electrical connector may also be engaged with other electronic device directly, not by means of an adapted electrical connector. A back side of the insulating housing 100 may expose rear ends of the plurality of conductors 200, such that the plurality of conductors 200 are electrically coupled with conductors on a circuit board (not shown) when the electrical connector is mounted on the circuit board.
The plurality of conductors 200 may be arranged along a longitudinal direction (that is, a length direction of the electrical connector). In the figures, X represents the longitudinal direction: Y represents a transverse direction (that is, a width direction of the electrical connector); and the longitudinal direction X is perpendicular to the transverse direction Y. In some embodiments, the plurality of conductors 200 may include a plurality of first signal conductors 211 and a plurality of first ground conductors 212. The plurality of first signal conductors 211 may be interspersed with the plurality of first ground conductors 212. In the embodiment shown in the figures, a pair of adjacent first signal conductors 211 may be used to transmit a differential signal, and adjacent pairs of first signal conductors 211 may be spaced apart by a first ground conductor 212. It should be appreciated that the plurality of first signal conductors 211 and the plurality of first ground conductors 212 may be arranged in any other pattern to apply to different types of electrical connectors.
The back side of the insulating housing 100 may be provided with a slot 130. The slot 130 may expose the plurality of first ground conductors 212. The slot 130 may have any suitable shape, as long as it can expose the plurality of first ground conductors 212. The slot 130 is used to receive a member 300. The member 300 will be described in detail below.
The plurality of conductors 200 may be fabricated separately from the insulating housing 100, and then mounted in a plurality of conductor installation grooves 102 in the insulating housing 100 in one-to-one correspondence, as shown in
In some embodiments, as shown in
In some embodiments, the slot 130 may include an elongated main opening 131 and a plurality of branch openings 131 extending from a side of the main opening 131 along the transverse direction Y. The plurality of branch openings 132 may expose the plurality of first ground conductors 212, respectively. In some embodiments, the plurality of first signal conductors 211 are not exposed.
In some embodiments, the member may be electrically coupled with the plurality of first ground conductors 212. The member may be in any suitable types that have been known in the art or may appear in the future, as long as they can be electrically coupled with the plurality of first ground conductors 212. After the plurality of first ground conductors 212 are electrically coupled with the member, signals transmitted by the electrical connector are tested. The inventors find that the electrical connector is more stable when transmitting the signals at a high frequency and a high speed, and can better meet users' requirements.
In some embodiments, the member may be made of a lossy material. Any suitable lossy material may be used for these and other structures that are “lossy.” Materials that conduct, but with some loss, or material which by another physical mechanism absorbs electromagnetic energy over the frequency range of interest are referred to herein generally as “lossy” materials. Electrically lossy materials can be formed from lossy dielectric and/or poorly conductive and/or lossy magnetic materials. Magnetically lossy material can be formed, for example, from materials traditionally regarded as ferromagnetic materials, such as those that have a magnetic loss tangent greater than approximately 0.05 in the frequency range of interest. The “magnetic loss tangent” is the ratio of the imaginary part to the real part of the complex electrical permeability of the material. Practical lossy magnetic materials or mixtures containing lossy magnetic materials may also exhibit useful amounts of dielectric loss or conductive loss effects over portions of the frequency range of interest. Electrically lossy material can be formed from material traditionally regarded as dielectric materials, such as those that have an electric loss tangent greater than approximately 0.05 in the frequency range of interest. The “electric loss tangent” is the ratio of the imaginary part to the real part of the complex electrical permittivity of the material. Electrically lossy materials can also be formed from materials that are generally thought of as conductors, but are either relatively poor conductors over the frequency range of interest, contain conductive particles or regions that are sufficiently dispersed that they do not provide high conductivity or otherwise are prepared with properties that lead to a relatively weak bulk conductivity compared to a good conductor such as copper over the frequency range of interest.
Electrically lossy materials typically have a bulk conductivity of about 1 Siemen/meter to about 10,000 Siemens/meter and preferably about 1 Siemen/meter to about 5,000 Siemens/meter. In some embodiments, material with a bulk conductivity of between about 10 Siemens/meter and about 200 Siemens/meter may he used. As a specific example, material with a conductivity of about 50 Siemens/meter may be used. However, it should be appreciated that the conductivity of the material may be selected empirically or through electrical simulation using known simulation tools to determine a suitable conductivity that provides a suitably low crosstalk with a suitably low signal path attenuation or insertion loss.
Electrically lossy materials may be partially conductive materials, such as those that have a surface resistivity between 1Ω/square and 100,000Ω/square. In some embodiments, the electrically lossy material has a surface resistivity between 10Ω/square and 1000Ω/square. As a specific example, the material may have a surface resistivity of between about 20Ω/square and 80Ω/square.
In some embodiments, electrically lossy material is formed by adding to a binder a filler that contains conductive particles. In such an embodiment, a lossy member may be formed by molding or otherwise shaping the binder with filler into a desired form. Examples of conductive particles that may be used as a tiller to form an electrically lossy material include carbon or graphite formed as fibers, flakes, nanoparticles, or other types of particles. Metal in the form of powder, flakes, fibers or other particles may also be used to provide suitable electrically lossy properties. Alternatively, combinations of fillers may be used. For example, metal plated carbon particles may be used. Silver and nickel are suitable metal plating for fibers. Coated particles may be used alone or in combination with other fillers, such as carbon flake. The binder or matrix may be any material that will set, cure, or can otherwise be used to position the filler material. In some embodiments, the binder may be a thermoplastic material traditionally used in the manufacture of electrical connectors to facilitate the molding of the electrically lossy material into the desired shapes and locations as part of the manufacture of the electrical connector. Examples of such materials include liquid crystal polymer (LCP) and nylon. However, many alternative forms of binder materials may be used. Curable materials, such as epoxies, may serve as a binder. Alternatively, materials such as thermosetting resins or adhesives may be used.
Also, while the above-described binder materials may be used to create an electrically lossy material by forming a binder around conducting particle fillers, the invention is not so limited. For example, conducting particles may be impregnated into a formed matrix material or may be coated onto a formed matrix material, such as by applying a conductive coating to a plastic component or a metal component. As used herein, the term “binder” encompasses a material that encapsulates the filler, is impregnated with the filler or otherwise serves as a substrate to hold the filler.
In some embodiments, the fillers will be present in a sufficient volume percentage to allow conducting paths to be created from particle to particle. For example, when metal fiber is used, the fiber may be present in about 3% to 40% by volume. The amount of filler may impact the conducting properties of the material.
Filled materials may be purchased commercially, such as materials sold under the trade name Celestran® by Celanese Corporation which can be filled with carbon fibers or stainless steel filaments. A lossy material, such as lossy conductive carbon filled adhesive preform, such as those sold by Techfilm of Billerica, Mass., US may also be used. This preform can include an epoxy binder filled with carbon fibers and/or other carbon particles. The binder surrounds carbon particles, which act as a reinforcement for the preform. Such a preform may be inserted in a connector wafer to form all or part of the housing. In some embodiments, the preform may adhere through the adhesive in the preform, which may be cured in a heat treating process. In some embodiments, the adhesive may take the form of a separate conductive or non-conductive adhesive layer. In some embodiments, the adhesive in the preform alternatively or additionally may be used to secure one or more conductive elements, such as foil strips, to the lossy material.
Various forms of reinforcing fiber, in woven or non-woven form, coated or non-coated may be used. Non-woven carbon fiber is one suitable material. Other suitable materials, such as custom blends as sold by RTP Company, can be employed, as the present disclosure is not limited in this respect.
In some embodiments, a lossy portion may be manufactured by stamping a preform or sheet of lossy material. For example, a lossy portion may be formed by stamping a preform as described above with an appropriate pattern of openings. However, other materials may be used instead of or in addition to such a preform. A sheet of ferromagnetic material, for example, may be used.
However, lossy portions also may be formed in other ways. In some embodiments, a lossy portion may be termed by interleaving layers of lossy and conductive material such as metal foil. These layers may be rigidly attached to one another, such as through the use of epoxy or other adhesive, or may be held together in any other suitable way. The layers may be of the desired shape before being secured to one another or may be stamped or otherwise shaped after they are held together. As a further alternative, lossy portions may be formed by plating plastic or other insulative material with a lossy coating, such as a diffuse metal coating.
The member may effectively suppress resonance in the ground conductors, which may interfere with signals. Suppressing resonance can improve signal integrity. The electrical connector using the conductive plastic member may improve the integrity of high-frequency signals, and the signals are hardly distorted when passing through the electrical connector, such that an electronic system using the electrical connector can have higher operational stability. The electrical connector using the conductive plastic member may meet the requirements of PCI GEN 5 (Peripheral Component Interconnect Generation 5) for performance.
In some embodiments, the member may be made of an insulating material. The member may abut against the plurality of first ground conductors 212. The member may be in various types that have been known in the art or may appear in the future, as long as insulation can be created among the plurality of first ground conductors 212 abutted against the insulating member. On some embodiments, the member may be made of the same material as the insulating housing 100. This can reduce the types of materials for the electrical connector and reduce the difficulty of manufacturing. The electrical connector using the member may meet the requirements of PCI GEN 4 (Peripheral Component Interconnect Generation 4) for performance. For example, if the performance of the PCI GEN 5 is not required, the member of the insulating material may be mounted in the slot 130 of the insulating housing 100, or no member is mounted therein.
In some embodiments, when the first signal conductors 211 of the electrical connector do not need to transmit high-frequency and high-speed signals, there may be no member 300 arranged in the slot 130 or may be a predetermined member 300 (such as an insulating member) arranged in the slot 130. In some embodiments, when the electrical connector needs to transmit high-frequency and high-speed signals, the slot 130 may receive another predetermined member 300 (e.g., a conductive plastic member), such that the electrical connector can meet high performance requirements. Accordingly, the insulating housings 100 that meet the two performance requirements may have the same structure, such that the insulating housings 100 may be made with the same mold, which greatly reduces the production costs of electrical connectors. In addition, because the insulating housings 100 of the two electrical connectors have the same structure, there is no need to reserve respective insulating housings for the two electrical connectors during manufacturing, which can reduce the inventory and management costs of the electrical connectors. Based on this, the present electrical connector can be reasonably configured according to an electronic system to which the electrical connector is applied, such that both its cost and performance can meet the needs of users, and the electrical connector has high market competitiveness.
It could be appreciated that when there is no need to transmit high-frequency and high-speed signals by the electrical connector, the insulating housing 100 may not be provided with the slot 130. Then, the cost of the electrical connector may be further lowered. Of course, in a case where the cost and other factors are not considered, even if the electrical connector is not used to transmit high-frequency and high-speed signals, the slot 130 may also be provided, and the conductive plastic member is arranged in the slot 130.
In some embodiments, the plurality of conductors 200 may be not uniformly arranged at equal intervals along their entire longitudinal direction. As required by physical structure, data transmission and the like of an electrical connector, the plurality of conductors 200 may be divided into several piles along the longitudinal direction X of the electrical connector, and each pile is referred to as a segment herein. There are conductors 200 arranged in each segment, and in each segment, these conductors may be substantially uniformly arranged at equal intervals along the longitudinal direction. The conductor spacing between the adjacent segments may be relatively larger. Exemplarily, as shown in
The plurality of first signal conductors 211, the plurality of first ground conductors 212 and the slot 130 may be located in the first segment 110. The plurality of conductors 200 may also include a plurality of second signal conductors 220. The plurality of second signal conductors 220 and the plurality of first signal conductors 211 may be the same or different. The plurality of second signal conductors 220 may be located in the second segment 120.
With this arrangement, the first signal conductors 211 in the first segment 110 may be used to transmit high-frequency and high-speed signals. The second signal conductors 220 in the second segment 120 may be used to transmit signals having low requirements for transmission rate and frequency. Therefore, when multiple kinds of signals need to be transmitted, the electrical connector may be configured to meet performance requirements and lower costs, such that the market competitiveness of the electrical connector is further improved.
It should be appreciated that the electrical connector may not include the second segment 120 but includes one or more first segments 110, when the electrical connector only needs to transmit high-frequency and high-speed signals.
In some embodiments, as shown in
Further, as shown in
According to another aspect of the disclosure, an electrical connector is further provided. The electrical connector may include an insulating housing 100, a plurality of conductors 200, and a conductive plastic member.
The insulating housing 100 may have a first segment 110 and a second segment 120. The first segment 110 and the second segment 120 may be spaced apart along a longitudinal direction X.
The plurality of conductors 200 may be arranged in the insulating housing 100. The plurality of conductors 200 may be arranged along the longitudinal direction X. The plurality of conductors 200 may include a plurality of first signal conductors 211, a plurality of first ground conductors 212, and a plurality of second signal conductors 220. The plurality of first signal conductors 211 and the plurality of first ground conductors may be located in the first segment 110. The plurality of second signal conductors 220 may be located in the second segment 120. A front side of the insulating housing 100 exposes the plurality of conductors 200.
The conductive plastic member may be arranged in the first segment 110. The conductive plastic member may be electrically coupled with the plurality of first ground conductors 212. Thus, an electronic system using the electrical connector is more stable when transmitting high-frequency and high-speed signals, and can better meet needs of users. Moreover, for electronic systems having different signal transmission requirements, the electrical connector can be reasonably configured to meet performance requirements and lower costs, such that the market competitiveness of the electrical connector is improved.
In some embodiments, the insulating housing 100 may be provided with a slot 130 as described above, and the conductive plastic member is mounted in the insulating housing 100 by mounting into the slot 130. In some embodiments, the conductive plastic member may be embedded inside the insulating housing 100, not exposed. For example, the conductive plastic member may be formed in the insulating housing 100 by means of injection molding. It should be appreciated that the disclosure does not limit the processing and installation means of the conductive plastic member.
Therefore, the present disclosure has been described in way of the above several embodiments. It should be understood that a person skilled in the art can make more variations, modifications and improvements based on the teachings of the present disclosure, and these variations, modifications and improvements shall fall within the spirit and the protection scope of the present disclosure. The protection scope of the present disclosure is defined by the appended claims and their equivalent scopes. The foregoing embodiments are only for the purpose of illustration and description, and are not intended to limit the present disclosure to the scope of the described embodiments.
Various changes may be made to the illustrative structures shown and described herein. For example, the electrical connector may be any suitable electrical connector, such as card edge connecter, backplane connector, daughter card connector, stacking connector, Mezzanine connector, I/O connector, chip socket, Gen Z connector, etc. The principle of the present disclosure can be adopted, when these connectors are used to transmit signals.
Furthermore, although many inventive aspects are shown and described with reference to a vertical connector, it should be appreciated that aspects of the present disclosure is not limited in this regard. As mentioned, any of the inventive concepts, whether alone or in combination with one or more other inventive concepts, may be used in other types of electrical connectors, such as right angle connectors, coplanar electrical connectors, etc.
In the description of the present disclosure, it needs to be understood that the orientation or positional relationship indicated by the orientation terms such as “front”, “rear”, “upper”, “lower”, “left”, “right”, “transverse”, “vertical”, “perpendicular”, “horizontal”, “top”, “bottom”, etc. is usually based on the orientation shown in the drawings, and is only for the convenience of describing the present disclosure and simplifying the description. These orientation terms do not indicate or imply that the device or element has to have a specific orientation or be constructed and operated in a specific orientation, except as otherwise noted. Therefore, they cannot be understood as a limitation on the scope of the present disclosure, The orientation terms, “inside” and “outside”, refer to the inside and outside relative to the contour of each component itself.
For ease of description, spatial terms, such as “above”, “on”, etc., can be used herein to describe the spatial relationship between one or more components or features shown in the drawings and other components or features. It should be understood that the spatial terms not only include the orientation of the components shown in the drawings, but also include other orientations in use or operation. For example, if the components in the drawings are inverted as a whole, a component “above other components or features” becomes to the component “below other a components or structures”. Thus, the exemplary term “above” can include both orientations “above” and “below”. In addition, these components or features can also be positioned at other different angles (for example, rotated by 90 degrees or other angles), and this disclosure intends to cover all of these situations.
It should be noted that the terms used herein are only for describing specific implementations, and are not intended to limit to the exemplary implementations according to the present application. As used herein, unless the context clearly indicates otherwise, the singular form is also intended to include the plural form, In addition, the use of “including”, “comprising”, “haying”, “containing”, or “involving”, and variations thereof herein, is meant to encompass the items listed thereafter (or equivalents thereof) and/or as additional items.
It should be noted that the terms “first” and “second” in the description, the claims and the drawings of the application are used to distinguish similar objects, and are not necessarily used to describe a specific sequence. It should be understood that numbers used in this way can be interchanged under appropriate circumstances such that the embodiments of the present disclosure described herein can be implemented in a sequence other than those illustrated or described herein.
Number | Date | Country | Kind |
---|---|---|---|
202022110410.5 | Sep 2020 | CN | national |
202120186566.3 | Jan 2021 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
2996710 | Pratt | Aug 1961 | A |
3002162 | Garstang | Sep 1961 | A |
3134950 | Cook | May 1964 | A |
3243756 | Ruete et al. | Mar 1966 | A |
3322885 | May et al. | May 1967 | A |
3390369 | Zavertnik et al. | Jun 1968 | A |
3390389 | Bluish | Jun 1968 | A |
3505619 | Bishop | Apr 1970 | A |
3573677 | Detar | Apr 1971 | A |
3731259 | Occhipinti | May 1973 | A |
3743978 | Fritz | Jul 1973 | A |
3745509 | Woodward et al. | Jul 1973 | A |
3786372 | Epis et al. | Jan 1974 | A |
3825874 | Peverill | Jul 1974 | A |
3848073 | Simons et al. | Nov 1974 | A |
3863181 | Glance et al. | Jan 1975 | A |
3999830 | Herrmann, Jr. et al. | Dec 1976 | A |
4155613 | Brandeau | May 1979 | A |
4175821 | Hunter | Nov 1979 | A |
4195272 | Boutros | Mar 1980 | A |
4215910 | Walter | Aug 1980 | A |
4272148 | Knack, Jr. | Jun 1981 | A |
4276523 | Boutros et al. | Jun 1981 | A |
4371742 | Manly | Feb 1983 | A |
4408255 | Adkins | Oct 1983 | A |
4447105 | Ruehl | May 1984 | A |
4457576 | Cosmos et al. | Jul 1984 | A |
4471015 | Ebneth et al. | Sep 1984 | A |
4472765 | Hughes | Sep 1984 | A |
4484159 | Whitley | Nov 1984 | A |
4490283 | Kleiner | Dec 1984 | A |
4518651 | Wolfe, Jr. | May 1985 | A |
4519664 | Tillotson | May 1985 | A |
4519665 | Althouse et al. | May 1985 | A |
4571014 | Robin et al. | Feb 1986 | A |
4605914 | Harman | Aug 1986 | A |
4607907 | Bogursky | Aug 1986 | A |
4632476 | Schell | Dec 1986 | A |
4636752 | Saito | Jan 1987 | A |
4655518 | Johnson et al. | Apr 1987 | A |
4674812 | Thom et al. | Jun 1987 | A |
4678260 | Gallusser et al. | Jul 1987 | A |
4682129 | Bakermans et al. | Jul 1987 | A |
4686607 | Johnson | Aug 1987 | A |
4728762 | Roth et al. | Mar 1988 | A |
4737598 | O'Connor | Apr 1988 | A |
4751479 | Parr | Jun 1988 | A |
4761147 | Gauthier | Aug 1988 | A |
4806107 | Arnold et al. | Feb 1989 | A |
4824383 | Lemke | Apr 1989 | A |
4836791 | Grabbe et al. | Jun 1989 | A |
4846724 | Sasaki et al. | Jul 1989 | A |
4846727 | Glover et al. | Jul 1989 | A |
4871316 | Herrell et al. | Oct 1989 | A |
4876630 | Dara | Oct 1989 | A |
4878155 | Conley | Oct 1989 | A |
4889500 | Lazar et al. | Dec 1989 | A |
4902243 | Davis | Feb 1990 | A |
4948922 | Varadan et al. | Aug 1990 | A |
4970354 | Iwasa et al. | Nov 1990 | A |
4971726 | Maeno et al. | Nov 1990 | A |
4975084 | Fedder et al. | Dec 1990 | A |
4984992 | Beamenderfer et al. | Jan 1991 | A |
4992060 | Meyer | Feb 1991 | A |
5000700 | Masubuchi et al. | Mar 1991 | A |
5046084 | Barrett et al. | Sep 1991 | A |
5046952 | Cohen et al. | Sep 1991 | A |
5046960 | Fedder | Sep 1991 | A |
5066236 | Broeksteeg | Nov 1991 | A |
5135405 | Fusselman et al. | Aug 1992 | A |
5141454 | Garrett et al. | Aug 1992 | A |
5150086 | Ito | Sep 1992 | A |
5166527 | Solymar | Nov 1992 | A |
5168252 | Naito | Dec 1992 | A |
5168432 | Murphy et al. | Dec 1992 | A |
5176538 | Hansell, III et al. | Jan 1993 | A |
5190472 | Voltz et al. | Mar 1993 | A |
5246388 | Collins et al. | Sep 1993 | A |
5259773 | Champion et al. | Nov 1993 | A |
5266055 | Naito et al. | Nov 1993 | A |
5280257 | Cravens et al. | Jan 1994 | A |
5281762 | Long et al. | Jan 1994 | A |
5287076 | Johnescu et al. | Feb 1994 | A |
5323299 | Weber | Jun 1994 | A |
5334050 | Andrews | Aug 1994 | A |
5335146 | Stucke | Aug 1994 | A |
5340334 | Nguyen | Aug 1994 | A |
5346410 | Moore, Jr. | Sep 1994 | A |
5352123 | Sample et al. | Oct 1994 | A |
5403206 | McNamara et al. | Apr 1995 | A |
5407622 | Cleveland et al. | Apr 1995 | A |
5429520 | Morlion et al. | Jul 1995 | A |
5429521 | Morlion et al. | Jul 1995 | A |
5433617 | Morlion et al. | Jul 1995 | A |
5433618 | Morlion et al. | Jul 1995 | A |
5456619 | Belopolsky et al. | Oct 1995 | A |
5461392 | Mott et al. | Oct 1995 | A |
5474472 | Niwa et al. | Dec 1995 | A |
5484310 | McNamara et al. | Jan 1996 | A |
5490372 | Schlueter | Feb 1996 | A |
5496183 | Soes et al. | Mar 1996 | A |
5499935 | Powell | Mar 1996 | A |
5539148 | Konishi et al. | Jul 1996 | A |
5551893 | Johnson | Sep 1996 | A |
5554050 | Marpoe, Jr. | Sep 1996 | A |
5562497 | Yagi et al. | Oct 1996 | A |
5564949 | Wellinsky | Oct 1996 | A |
5571991 | Highum et al. | Nov 1996 | A |
5597328 | Mouissie | Jan 1997 | A |
5605469 | Wellinsky et al. | Feb 1997 | A |
5620340 | Andrews | Apr 1997 | A |
5651702 | Hanning et al. | Jul 1997 | A |
5660551 | Sakurai | Aug 1997 | A |
5669789 | Law | Sep 1997 | A |
5702258 | Provencher et al. | Dec 1997 | A |
5755597 | Panis et al. | May 1998 | A |
5795191 | Preputnick et al. | Aug 1998 | A |
5796323 | Uchikoba et al. | Aug 1998 | A |
5803768 | Zell et al. | Sep 1998 | A |
5831491 | Buer et al. | Nov 1998 | A |
5833486 | Shinozaki | Nov 1998 | A |
5833496 | Hollander et al. | Nov 1998 | A |
5842887 | Andrews | Dec 1998 | A |
5870528 | Fukuda | Feb 1999 | A |
5885095 | Cohen et al. | Mar 1999 | A |
5887158 | Sample et al. | Mar 1999 | A |
5904594 | Longueville et al. | May 1999 | A |
5924899 | Paagman | Jul 1999 | A |
5931686 | Sasaki et al. | Aug 1999 | A |
5959591 | Aurand | Sep 1999 | A |
5961355 | Morlion et al. | Oct 1999 | A |
5971809 | Ho | Oct 1999 | A |
5980321 | Cohen et al. | Nov 1999 | A |
5981869 | Kroger | Nov 1999 | A |
5982253 | Perrin et al. | Nov 1999 | A |
5993259 | Stokoe et al. | Nov 1999 | A |
5997361 | Driscoll et al. | Dec 1999 | A |
6019616 | Yagi et al. | Feb 2000 | A |
6042394 | Mitra et al. | Mar 2000 | A |
6083047 | Paagman | Jul 2000 | A |
6102747 | Paagman | Aug 2000 | A |
6116926 | Ortega et al. | Sep 2000 | A |
6120306 | Evans | Sep 2000 | A |
6123554 | Ortega et al. | Sep 2000 | A |
6132255 | Verhoeven | Oct 2000 | A |
6132355 | Derie | Oct 2000 | A |
6135824 | Okabe et al. | Oct 2000 | A |
6146202 | Ramey et al. | Nov 2000 | A |
6152274 | Blard et al. | Nov 2000 | A |
6152742 | Cohen et al. | Nov 2000 | A |
6152747 | McNamara | Nov 2000 | A |
6163464 | Ishibashi et al. | Dec 2000 | A |
6168469 | Lu | Jan 2001 | B1 |
6171115 | Mickievicz et al. | Jan 2001 | B1 |
6171149 | van Zanten | Jan 2001 | B1 |
6174202 | Mitra | Jan 2001 | B1 |
6174203 | Asao | Jan 2001 | B1 |
6174944 | Chiba et al. | Jan 2001 | B1 |
6179651 | Huang | Jan 2001 | B1 |
6179663 | Bradley et al. | Jan 2001 | B1 |
6196853 | Harting et al. | Mar 2001 | B1 |
6203396 | Asmussen et al. | Mar 2001 | B1 |
6206729 | Bradley et al. | Mar 2001 | B1 |
6210182 | Elco et al. | Apr 2001 | B1 |
6210227 | Yamasaki et al. | Apr 2001 | B1 |
6217372 | Reed | Apr 2001 | B1 |
6227875 | Wu et al. | May 2001 | B1 |
6231391 | Ramey et al. | May 2001 | B1 |
6238245 | Stokoe et al. | May 2001 | B1 |
6267604 | Mickievicz et al. | Jul 2001 | B1 |
6273758 | Lloyd et al. | Aug 2001 | B1 |
6293827 | Stokoe | Sep 2001 | B1 |
6296496 | Trammel | Oct 2001 | B1 |
6299438 | Sahagian et al. | Oct 2001 | B1 |
6299483 | Cohen et al. | Oct 2001 | B1 |
6299484 | Van Woensel | Oct 2001 | B2 |
6299492 | Pierini et al. | Oct 2001 | B1 |
6328572 | Higashida et al. | Dec 2001 | B1 |
6328601 | Yip et al. | Dec 2001 | B1 |
6333468 | Endoh et al. | Dec 2001 | B1 |
6343955 | Billman et al. | Feb 2002 | B2 |
6343957 | Kuo et al. | Feb 2002 | B1 |
6347962 | Kline | Feb 2002 | B1 |
6350134 | Fogg et al. | Feb 2002 | B1 |
6358088 | Nishio et al. | Mar 2002 | B1 |
6358092 | Siemon et al. | Mar 2002 | B1 |
6364711 | Berg et al. | Apr 2002 | B1 |
6364713 | Kuo | Apr 2002 | B1 |
6375510 | Asao | Apr 2002 | B2 |
6379188 | Cohen et al. | Apr 2002 | B1 |
6380485 | Beaman et al. | Apr 2002 | B1 |
6392142 | Uzuka et al. | May 2002 | B1 |
6394839 | Reed | May 2002 | B2 |
6396712 | Kuijk | May 2002 | B1 |
6398588 | Bickford | Jun 2002 | B1 |
6409543 | Astbury, Jr. et al. | Jun 2002 | B1 |
6413119 | Gabrisko, Jr. et al. | Jul 2002 | B1 |
6428344 | Reed | Aug 2002 | B1 |
6431914 | Billman | Aug 2002 | B1 |
6435913 | Billman | Aug 2002 | B1 |
6435914 | Billman | Aug 2002 | B1 |
6441313 | Novak | Aug 2002 | B1 |
6454605 | Bassler et al. | Sep 2002 | B1 |
6461202 | Kline | Oct 2002 | B2 |
6471549 | Lappohn | Oct 2002 | B1 |
6478624 | Ramey et al. | Nov 2002 | B2 |
6482017 | Van Doorn | Nov 2002 | B1 |
6491545 | Spiegel et al. | Dec 2002 | B1 |
6503103 | Cohen et al. | Jan 2003 | B1 |
6506076 | Cohen et al. | Jan 2003 | B2 |
6517360 | Cohen | Feb 2003 | B1 |
6520803 | Dunn | Feb 2003 | B1 |
6527587 | Ortega et al. | Mar 2003 | B1 |
6528737 | Kwong et al. | Mar 2003 | B1 |
6530790 | McNamara et al. | Mar 2003 | B1 |
6533613 | Turner et al. | Mar 2003 | B1 |
6537087 | McNamara et al. | Mar 2003 | B2 |
6538524 | Miller | Mar 2003 | B1 |
6538899 | Krishnamurthi et al. | Mar 2003 | B1 |
6540522 | Sipe | Apr 2003 | B2 |
6540558 | Paagman | Apr 2003 | B1 |
6540559 | Kemmick et al. | Apr 2003 | B1 |
6541712 | Gately et al. | Apr 2003 | B1 |
6544072 | Olson | Apr 2003 | B2 |
6544647 | Hayashi et al. | Apr 2003 | B1 |
6551140 | Billman et al. | Apr 2003 | B2 |
6554647 | Cohen et al. | Apr 2003 | B1 |
6565387 | Cohen | May 2003 | B2 |
6565390 | Wu | May 2003 | B2 |
6579116 | Brennan et al. | Jun 2003 | B2 |
6582244 | Fogg et al. | Jun 2003 | B2 |
6585540 | Gutierrez et al. | Jul 2003 | B2 |
6592381 | Cohen et al. | Jul 2003 | B2 |
6595802 | Watanabe et al. | Jul 2003 | B1 |
6602095 | Astbury, Jr. et al. | Aug 2003 | B2 |
6607402 | Cohen et al. | Aug 2003 | B2 |
6608762 | Patriche | Aug 2003 | B2 |
6609933 | Yamasaki | Aug 2003 | B2 |
6612871 | Givens | Sep 2003 | B1 |
6616482 | De La Cruz et al. | Sep 2003 | B2 |
6616864 | Jiang et al. | Sep 2003 | B1 |
6621373 | Mullen et al. | Sep 2003 | B1 |
6652318 | Winings et al. | Nov 2003 | B1 |
6652319 | Billman | Nov 2003 | B1 |
6655966 | Rothermel et al. | Dec 2003 | B2 |
6663427 | Billman et al. | Dec 2003 | B1 |
6663429 | Korsunsky et al. | Dec 2003 | B1 |
6692272 | Lemke et al. | Feb 2004 | B2 |
6705895 | Hasircoglu | Mar 2004 | B2 |
6706974 | Chen et al. | Mar 2004 | B2 |
6709294 | Cohen et al. | Mar 2004 | B1 |
6712648 | Padro et al. | Mar 2004 | B2 |
6713672 | Stickney | Mar 2004 | B1 |
6717825 | Volstorf | Apr 2004 | B2 |
6722897 | Wu | Apr 2004 | B1 |
6741141 | Kormanyos | May 2004 | B2 |
6743057 | Davis et al. | Jun 2004 | B2 |
6749444 | Murr et al. | Jun 2004 | B2 |
6762941 | Roth | Jul 2004 | B2 |
6764341 | Lappoehn | Jul 2004 | B2 |
6776645 | Roth et al. | Aug 2004 | B2 |
6776659 | Stokoe et al. | Aug 2004 | B1 |
6786771 | Gailus | Sep 2004 | B2 |
6792941 | Andersson | Sep 2004 | B2 |
6806109 | Furuya et al. | Oct 2004 | B2 |
6808419 | Korsunsky et al. | Oct 2004 | B1 |
6808420 | Whiteman, Jr. et al. | Oct 2004 | B2 |
6814519 | Policicchio et al. | Nov 2004 | B2 |
6814619 | Stokoe et al. | Nov 2004 | B1 |
6816486 | Rogers | Nov 2004 | B1 |
6817870 | Kwong et al. | Nov 2004 | B1 |
6823587 | Reed | Nov 2004 | B2 |
6830478 | Ko et al. | Dec 2004 | B1 |
6830483 | Wu | Dec 2004 | B1 |
6830489 | Aoyama | Dec 2004 | B2 |
6857899 | Reed et al. | Feb 2005 | B2 |
6872085 | Cohen et al. | Mar 2005 | B1 |
6875031 | Korsunsky et al. | Apr 2005 | B1 |
6899566 | Kline et al. | May 2005 | B2 |
6903939 | Chea, Jr. et al. | Jun 2005 | B1 |
6913490 | Whiteman, Jr. et al. | Jul 2005 | B2 |
6932649 | Rothermel et al. | Aug 2005 | B1 |
6957967 | Petersen et al. | Oct 2005 | B2 |
6960103 | Tokunaga | Nov 2005 | B2 |
6971916 | Tokunaga | Dec 2005 | B2 |
6979202 | Benham et al. | Dec 2005 | B2 |
6979226 | Otsu et al. | Dec 2005 | B2 |
6982378 | Dickson | Jan 2006 | B2 |
7004793 | Scherer et al. | Feb 2006 | B2 |
7021969 | Matsunaga | Apr 2006 | B2 |
7044794 | Consoli et al. | May 2006 | B2 |
7057570 | Irion, II et al. | Jun 2006 | B2 |
7074086 | Cohen et al. | Jul 2006 | B2 |
7094102 | Cohen et al. | Aug 2006 | B2 |
7108556 | Cohen et al. | Sep 2006 | B2 |
7120327 | Bozso et al. | Oct 2006 | B2 |
7137849 | Nagata | Nov 2006 | B2 |
7163421 | Cohen et al. | Jan 2007 | B1 |
7182643 | Winings et al. | Feb 2007 | B2 |
7229318 | Winings et al. | Jun 2007 | B2 |
7261591 | Korsunsky et al. | Aug 2007 | B2 |
7270573 | Houtz | Sep 2007 | B2 |
7285018 | Kenny et al. | Oct 2007 | B2 |
7303427 | Swain | Dec 2007 | B2 |
7309239 | Shuey et al. | Dec 2007 | B2 |
7309257 | Minich | Dec 2007 | B1 |
7316585 | Smith et al. | Jan 2008 | B2 |
7322855 | Mongold et al. | Jan 2008 | B2 |
7331830 | Minich | Feb 2008 | B2 |
7335063 | Cohen et al. | Feb 2008 | B2 |
7347721 | Kameyama | Mar 2008 | B2 |
7351114 | Benham et al. | Apr 2008 | B2 |
7354274 | Minich | Apr 2008 | B2 |
7365269 | Donazzi et al. | Apr 2008 | B2 |
7371117 | Gailus | May 2008 | B2 |
7390218 | Smith et al. | Jun 2008 | B2 |
7390220 | Wu | Jun 2008 | B1 |
7407413 | Minich | Aug 2008 | B2 |
7494383 | Cohen et al. | Feb 2009 | B2 |
7540781 | Kenny et al. | Jun 2009 | B2 |
7554096 | Ward et al. | Jun 2009 | B2 |
7581990 | Kirk et al. | Sep 2009 | B2 |
7585186 | McAlonis et al. | Sep 2009 | B2 |
7588464 | Kim | Sep 2009 | B2 |
7588467 | Chang | Sep 2009 | B2 |
7594826 | Kobayashi et al. | Sep 2009 | B2 |
7604490 | Chen et al. | Oct 2009 | B2 |
7604502 | Pan | Oct 2009 | B2 |
7674133 | Fogg et al. | Mar 2010 | B2 |
7690946 | Knaub et al. | Apr 2010 | B2 |
7699644 | Szczesny et al. | Apr 2010 | B2 |
7699663 | Little et al. | Apr 2010 | B1 |
7722401 | Kirk et al. | May 2010 | B2 |
7731537 | Amleshi et al. | Jun 2010 | B2 |
7753731 | Cohen et al. | Jul 2010 | B2 |
7758357 | Pan et al. | Jul 2010 | B2 |
7771233 | Gailus | Aug 2010 | B2 |
7789676 | Morgan et al. | Sep 2010 | B2 |
7794240 | Cohen et al. | Sep 2010 | B2 |
7794278 | Cohen et al. | Sep 2010 | B2 |
7806729 | Nguyen et al. | Oct 2010 | B2 |
7828595 | Mathews | Nov 2010 | B2 |
7833068 | Bright et al. | Nov 2010 | B2 |
7871296 | Fowler et al. | Jan 2011 | B2 |
7874873 | Do et al. | Jan 2011 | B2 |
7887371 | Kenny et al. | Feb 2011 | B2 |
7887379 | Kirk | Feb 2011 | B2 |
7906730 | Atkinson et al. | Mar 2011 | B2 |
7914304 | Cartier et al. | Mar 2011 | B2 |
7927143 | Helster et al. | Apr 2011 | B2 |
7985097 | Gulla | Jul 2011 | B2 |
8018733 | Jia | Sep 2011 | B2 |
8057267 | Johnescu | Nov 2011 | B2 |
8083553 | Manter et al. | Dec 2011 | B2 |
8167631 | Ito et al. | May 2012 | B2 |
8182289 | Stokoe et al. | May 2012 | B2 |
8215968 | Cartier et al. | Jul 2012 | B2 |
8216001 | Kirk | Jul 2012 | B2 |
8251745 | Johnescu | Aug 2012 | B2 |
8267721 | Minich | Sep 2012 | B2 |
8272877 | Stokoe et al. | Sep 2012 | B2 |
8328565 | Westman et al. | Dec 2012 | B2 |
8348701 | Lan et al. | Jan 2013 | B1 |
8371875 | Gailus | Feb 2013 | B2 |
8382524 | Khilchenko et al. | Feb 2013 | B2 |
8545240 | Casher et al. | Oct 2013 | B2 |
8550861 | Cohen et al. | Oct 2013 | B2 |
8657627 | McNamara et al. | Feb 2014 | B2 |
8678860 | Minich et al. | Mar 2014 | B2 |
8715003 | Buck et al. | May 2014 | B2 |
8715005 | Pan | May 2014 | B2 |
8764460 | Smink et al. | Jul 2014 | B2 |
8764488 | Zeng | Jul 2014 | B2 |
8771016 | Atkinson et al. | Jul 2014 | B2 |
8864521 | Atkinson et al. | Oct 2014 | B2 |
8926377 | Kirk et al. | Jan 2015 | B2 |
8944831 | Stoner et al. | Feb 2015 | B2 |
8944863 | Yang | Feb 2015 | B1 |
8998642 | Manter et al. | Apr 2015 | B2 |
9004942 | Paniauqa | Apr 2015 | B2 |
9011177 | Lloyd et al. | Apr 2015 | B2 |
9022806 | Cartier, Jr. et al. | May 2015 | B2 |
9028201 | Kirk et al. | May 2015 | B2 |
9028281 | Kirk et al. | May 2015 | B2 |
9065230 | Milbrand, Jr. | Jun 2015 | B2 |
9077115 | Yang | Jul 2015 | B2 |
9083130 | Casher et al. | Jul 2015 | B2 |
9124009 | Atkinson et al. | Sep 2015 | B2 |
9166317 | Briant | Oct 2015 | B2 |
9219335 | Atkinson et al. | Dec 2015 | B2 |
9225083 | Krenceski et al. | Dec 2015 | B2 |
9225085 | Cartier, Jr. et al. | Dec 2015 | B2 |
9257778 | Buck et al. | Feb 2016 | B2 |
9257794 | Wanha et al. | Feb 2016 | B2 |
9300074 | Gailus | Mar 2016 | B2 |
9401570 | Phillips et al. | Jul 2016 | B2 |
9450344 | Cartier, Jr. et al. | Sep 2016 | B2 |
9461378 | Chen | Oct 2016 | B1 |
9484674 | Cartier, Jr. et al. | Nov 2016 | B2 |
9490585 | Yang | Nov 2016 | B2 |
9490587 | Phillips et al. | Nov 2016 | B1 |
9509101 | Cartier, Jr. et al. | Nov 2016 | B2 |
9520689 | Cartier, Jr. et al. | Dec 2016 | B2 |
9634432 | Su et al. | Apr 2017 | B2 |
9692183 | Phillips | Jun 2017 | B2 |
9692188 | Godana et al. | Jun 2017 | B2 |
9705218 | Ito | Jul 2017 | B2 |
9705255 | Atkinson et al. | Jul 2017 | B2 |
9742132 | Hsueh | Aug 2017 | B1 |
9748698 | Morgan et al. | Aug 2017 | B1 |
9831588 | Cohen | Nov 2017 | B2 |
9843135 | Guetig et al. | Dec 2017 | B2 |
9899774 | Gailus | Feb 2018 | B2 |
9923309 | Aizawa et al. | Mar 2018 | B1 |
9972945 | Huang et al. | May 2018 | B1 |
9979136 | Wu | May 2018 | B1 |
9985389 | Morgan et al. | May 2018 | B1 |
10038284 | Krenceski et al. | Jul 2018 | B2 |
10096921 | Johnescu et al. | Oct 2018 | B2 |
10122129 | Milbrand, Jr. et al. | Nov 2018 | B2 |
10148025 | Trout et al. | Dec 2018 | B1 |
10186814 | Khilchenko et al. | Jan 2019 | B2 |
10211577 | Milbrand, Jr. et al. | Feb 2019 | B2 |
10243304 | Kirk et al. | Mar 2019 | B2 |
10270191 | Li et al. | Apr 2019 | B1 |
10283910 | Chen et al. | May 2019 | B1 |
10348040 | Cartier, Jr. et al. | Jul 2019 | B2 |
10355416 | Pickel et al. | Jul 2019 | B1 |
10381767 | Milbrand, Jr. et al. | Aug 2019 | B1 |
10431936 | Horning et al. | Oct 2019 | B2 |
10446983 | Krenceski et al. | Oct 2019 | B2 |
10511128 | Kirk et al. | Dec 2019 | B2 |
10601181 | Lu et al. | Mar 2020 | B2 |
10777921 | Lu et al. | Sep 2020 | B2 |
10797417 | Scholeno et al. | Oct 2020 | B2 |
10847936 | Tang et al. | Nov 2020 | B2 |
10916894 | Kirk et al. | Feb 2021 | B2 |
10931050 | Cohen | Feb 2021 | B2 |
10938162 | Lin | Mar 2021 | B2 |
10965063 | Krenceski et al. | Mar 2021 | B2 |
11189971 | Lu | Nov 2021 | B2 |
11251558 | Lee | Feb 2022 | B1 |
11316307 | Chen et al. | Apr 2022 | B2 |
11381039 | Hsiao et al. | Jul 2022 | B2 |
11469553 | Johnescu et al. | Oct 2022 | B2 |
11469554 | Ellison et al. | Oct 2022 | B2 |
11522310 | Cohen | Dec 2022 | B2 |
11539171 | Kirk et al. | Dec 2022 | B2 |
11600950 | Takai et al. | Mar 2023 | B2 |
11715914 | Cartier, Jr. et al. | Aug 2023 | B2 |
11757224 | Milbrand, Jr. et al. | Sep 2023 | B2 |
11799246 | Johnescu et al. | Oct 2023 | B2 |
11817655 | Liu et al. | Nov 2023 | B2 |
11817657 | Ellison et al. | Nov 2023 | B2 |
20010012730 | Ramey et al. | Aug 2001 | A1 |
20010041477 | Billman et al. | Nov 2001 | A1 |
20010042632 | Manov et al. | Nov 2001 | A1 |
20010046810 | Cohen et al. | Nov 2001 | A1 |
20020042223 | Belopolsky et al. | Apr 2002 | A1 |
20020086582 | Nitta et al. | Jul 2002 | A1 |
20020089464 | Joshi | Jul 2002 | A1 |
20020098738 | Astbury et al. | Jul 2002 | A1 |
20020102885 | Kline | Aug 2002 | A1 |
20020111068 | Cohen et al. | Aug 2002 | A1 |
20020111069 | Astbury et al. | Aug 2002 | A1 |
20020115335 | Saito | Aug 2002 | A1 |
20020123266 | Ramey et al. | Sep 2002 | A1 |
20020136506 | Asada et al. | Sep 2002 | A1 |
20020146926 | Fogg et al. | Oct 2002 | A1 |
20020168898 | Billman et al. | Nov 2002 | A1 |
20020172469 | Benner et al. | Nov 2002 | A1 |
20020181215 | Guenthner | Dec 2002 | A1 |
20020192988 | Droesbeke et al. | Dec 2002 | A1 |
20030003803 | Billman et al. | Jan 2003 | A1 |
20030008561 | Lappoehn | Jan 2003 | A1 |
20030008562 | Yamasaki | Jan 2003 | A1 |
20030022555 | Vicich et al. | Jan 2003 | A1 |
20030027439 | Johnescu et al. | Feb 2003 | A1 |
20030109174 | Korsunsky et al. | Jun 2003 | A1 |
20030143894 | Kline et al. | Jul 2003 | A1 |
20030147227 | Egitto et al. | Aug 2003 | A1 |
20030162441 | Nelson et al. | Aug 2003 | A1 |
20030220018 | Winings et al. | Nov 2003 | A1 |
20030220021 | Whiteman et al. | Nov 2003 | A1 |
20040001299 | van Haaster et al. | Jan 2004 | A1 |
20040005815 | Mizumura et al. | Jan 2004 | A1 |
20040020674 | McFadden et al. | Feb 2004 | A1 |
20040043661 | Okada et al. | Mar 2004 | A1 |
20040072473 | Wu | Apr 2004 | A1 |
20040097112 | Minich et al. | May 2004 | A1 |
20040115968 | Cohen | Jun 2004 | A1 |
20040121652 | Gailus | Jun 2004 | A1 |
20040171305 | McGowan et al. | Sep 2004 | A1 |
20040196112 | Welbon et al. | Oct 2004 | A1 |
20040224559 | Nelson et al. | Nov 2004 | A1 |
20040235352 | Takemasa | Nov 2004 | A1 |
20040259419 | Payne et al. | Dec 2004 | A1 |
20050006119 | Cunningham et al. | Jan 2005 | A1 |
20050020135 | Whiteman et al. | Jan 2005 | A1 |
20050039331 | Smith | Feb 2005 | A1 |
20050048838 | Korsunsky et al. | Mar 2005 | A1 |
20050048842 | Benham et al. | Mar 2005 | A1 |
20050070160 | Cohen et al. | Mar 2005 | A1 |
20050090299 | Tsao et al. | Apr 2005 | A1 |
20050133245 | Katsuyama et al. | Jun 2005 | A1 |
20050148239 | Hull et al. | Jul 2005 | A1 |
20050176300 | Hsu et al. | Aug 2005 | A1 |
20050176835 | Kobayashi et al. | Aug 2005 | A1 |
20050215121 | Tokunaga | Sep 2005 | A1 |
20050233610 | Tutt et al. | Oct 2005 | A1 |
20050277315 | Mongold et al. | Dec 2005 | A1 |
20050283974 | Richard et al. | Dec 2005 | A1 |
20050287869 | Kenny et al. | Dec 2005 | A1 |
20060009080 | Regnier et al. | Jan 2006 | A1 |
20060019517 | Raistrick et al. | Jan 2006 | A1 |
20060019538 | Davis et al. | Jan 2006 | A1 |
20060024983 | Cohen et al. | Feb 2006 | A1 |
20060024984 | Cohen et al. | Feb 2006 | A1 |
20060068640 | Gailus | Mar 2006 | A1 |
20060073709 | Reid | Apr 2006 | A1 |
20060104010 | Donazzi et al. | May 2006 | A1 |
20060110977 | Matthews | May 2006 | A1 |
20060141866 | Shiu | Jun 2006 | A1 |
20060166551 | Korsunsky et al. | Jul 2006 | A1 |
20060216969 | Bright et al. | Sep 2006 | A1 |
20060255876 | Kushta et al. | Nov 2006 | A1 |
20060292932 | Benham et al. | Dec 2006 | A1 |
20070004282 | Cohen et al. | Jan 2007 | A1 |
20070004828 | Khabbaz | Jan 2007 | A1 |
20070021000 | Laurx | Jan 2007 | A1 |
20070021001 | Laurx et al. | Jan 2007 | A1 |
20070021002 | Laurx et al. | Jan 2007 | A1 |
20070021003 | Laurx et al. | Jan 2007 | A1 |
20070021004 | Laurx et al. | Jan 2007 | A1 |
20070037419 | Sparrowhawk | Feb 2007 | A1 |
20070042639 | Manter et al. | Feb 2007 | A1 |
20070054554 | Do et al. | Mar 2007 | A1 |
20070059961 | Cartier et al. | Mar 2007 | A1 |
20070111597 | Kondou et al. | May 2007 | A1 |
20070141872 | Szczesny et al. | Jun 2007 | A1 |
20070155241 | Lappohn | Jul 2007 | A1 |
20070218765 | Cohen et al. | Sep 2007 | A1 |
20070275583 | McNutt et al. | Nov 2007 | A1 |
20080050968 | Chang | Feb 2008 | A1 |
20080194146 | Gailus | Aug 2008 | A1 |
20080246555 | Kirk et al. | Oct 2008 | A1 |
20080248658 | Cohen et al. | Oct 2008 | A1 |
20080248659 | Cohen et al. | Oct 2008 | A1 |
20080248660 | Kirk et al. | Oct 2008 | A1 |
20080318455 | Beaman et al. | Dec 2008 | A1 |
20090011641 | Cohen et al. | Jan 2009 | A1 |
20090011643 | Amleshi et al. | Jan 2009 | A1 |
20090011645 | Laurx et al. | Jan 2009 | A1 |
20090029602 | Cohen et al. | Jan 2009 | A1 |
20090035955 | McNamara | Feb 2009 | A1 |
20090061661 | Shuey et al. | Mar 2009 | A1 |
20090117386 | Vacanti et al. | May 2009 | A1 |
20090124101 | Minich et al. | May 2009 | A1 |
20090149045 | Chen et al. | Jun 2009 | A1 |
20090203259 | Nguyen et al. | Aug 2009 | A1 |
20090239395 | Cohen et al. | Sep 2009 | A1 |
20090258516 | Hiew et al. | Oct 2009 | A1 |
20090291593 | Atkinson et al. | Nov 2009 | A1 |
20090305530 | Ito et al. | Dec 2009 | A1 |
20090305533 | Feldman et al. | Dec 2009 | A1 |
20090305553 | Thomas et al. | Dec 2009 | A1 |
20100048058 | Morgan et al. | Feb 2010 | A1 |
20100081302 | Atkinson et al. | Apr 2010 | A1 |
20100099299 | Moriyama et al. | Apr 2010 | A1 |
20100144167 | Fedder et al. | Jun 2010 | A1 |
20100273359 | Walker et al. | Oct 2010 | A1 |
20100291806 | Minich et al. | Nov 2010 | A1 |
20100294530 | Atkinson et al. | Nov 2010 | A1 |
20110003509 | Gailus | Jan 2011 | A1 |
20110067237 | Cohen et al. | Mar 2011 | A1 |
20110104948 | Girard, Jr. et al. | May 2011 | A1 |
20110130038 | Cohen et al. | Jun 2011 | A1 |
20110212649 | Stokoe et al. | Sep 2011 | A1 |
20110212650 | Amleshi et al. | Sep 2011 | A1 |
20110230095 | Atkinson et al. | Sep 2011 | A1 |
20110230096 | Atkinson et al. | Sep 2011 | A1 |
20110256739 | Toshiyuki et al. | Oct 2011 | A1 |
20110287663 | Gailus et al. | Nov 2011 | A1 |
20120077380 | Minich et al. | Mar 2012 | A1 |
20120094536 | Khilchenko et al. | Apr 2012 | A1 |
20120115371 | Chuang et al. | May 2012 | A1 |
20120156929 | Manter et al. | Jun 2012 | A1 |
20120184154 | Frank et al. | Jul 2012 | A1 |
20120202363 | McNamara et al. | Aug 2012 | A1 |
20120202386 | McNamara et al. | Aug 2012 | A1 |
20120202387 | McNamara | Aug 2012 | A1 |
20120214343 | Buck et al. | Aug 2012 | A1 |
20120214344 | Cohen et al. | Aug 2012 | A1 |
20130012038 | Kirk et al. | Jan 2013 | A1 |
20130017733 | Kirk et al. | Jan 2013 | A1 |
20130065454 | Milbrand Jr. | Mar 2013 | A1 |
20130078870 | Milbrand, Jr. | Mar 2013 | A1 |
20130078871 | Milbrand, Jr. | Mar 2013 | A1 |
20130090001 | Kagotani | Apr 2013 | A1 |
20130109232 | Paniaqua | May 2013 | A1 |
20130143442 | Cohen et al. | Jun 2013 | A1 |
20130196553 | Gailus | Aug 2013 | A1 |
20130217263 | Pan | Aug 2013 | A1 |
20130225006 | Khilchenko et al. | Aug 2013 | A1 |
20130237092 | Rubens | Sep 2013 | A1 |
20130273781 | Buck et al. | Oct 2013 | A1 |
20130288513 | Masubuchi | Oct 2013 | A1 |
20130316590 | Hon | Nov 2013 | A1 |
20130340251 | Regnier et al. | Dec 2013 | A1 |
20140004724 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140004726 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140004746 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140057498 | Cohen | Feb 2014 | A1 |
20140273557 | Cartier, Jr. et al. | Sep 2014 | A1 |
20140273627 | Cartier, Jr. et al. | Sep 2014 | A1 |
20150056856 | Atkinson et al. | Feb 2015 | A1 |
20150111427 | Foxconn | Apr 2015 | A1 |
20150188250 | Liu | Jul 2015 | A1 |
20150236451 | Cartier, Jr. et al. | Aug 2015 | A1 |
20150236452 | Cartier, Jr. et al. | Aug 2015 | A1 |
20150255926 | Paniagua | Sep 2015 | A1 |
20150380868 | Chen et al. | Dec 2015 | A1 |
20160000616 | Lavoie | Jan 2016 | A1 |
20160134057 | Buck et al. | May 2016 | A1 |
20160149343 | Atkinson et al. | May 2016 | A1 |
20160156133 | Masubuchi et al. | Jun 2016 | A1 |
20160172794 | Sparrowhawk et al. | Jun 2016 | A1 |
20160211618 | Gailus | Jul 2016 | A1 |
20170352970 | Liang et al. | Dec 2017 | A1 |
20180062323 | Kirk et al. | Mar 2018 | A1 |
20180109043 | Provencher et al. | Apr 2018 | A1 |
20180145438 | Cohen | May 2018 | A1 |
20180166828 | Gailus | Jun 2018 | A1 |
20180198220 | Sasame et al. | Jul 2018 | A1 |
20180205177 | Zhou et al. | Jul 2018 | A1 |
20180212376 | Wang et al. | Jul 2018 | A1 |
20180219331 | Cartier, Jr. et al. | Aug 2018 | A1 |
20180269607 | Wu et al. | Sep 2018 | A1 |
20190036256 | Martens et al. | Jan 2019 | A1 |
20190052019 | Huang et al. | Feb 2019 | A1 |
20190067854 | Ju et al. | Feb 2019 | A1 |
20190131743 | Hsu et al. | May 2019 | A1 |
20190173209 | Lu et al. | Jun 2019 | A1 |
20190173232 | Lu et al. | Jun 2019 | A1 |
20190221973 | Kirk et al. | Jul 2019 | A1 |
20190312389 | Little | Oct 2019 | A1 |
20190334292 | Cartier, Jr. et al. | Oct 2019 | A1 |
20200021052 | Milbrand, Jr. et al. | Jan 2020 | A1 |
20200076132 | Yang et al. | Mar 2020 | A1 |
20200161811 | Lu | May 2020 | A1 |
20200194940 | Cohen et al. | Jun 2020 | A1 |
20200212632 | Liong | Jul 2020 | A1 |
20200220289 | Scholeno et al. | Jul 2020 | A1 |
20200235529 | Kirk et al. | Jul 2020 | A1 |
20200251841 | Stokoe et al. | Aug 2020 | A1 |
20200259294 | Lu | Aug 2020 | A1 |
20200266584 | Lu | Aug 2020 | A1 |
20200266585 | Paniagua et al. | Aug 2020 | A1 |
20200315027 | Muronoi et al. | Oct 2020 | A1 |
20200350717 | Dong | Nov 2020 | A1 |
20200350732 | Hsueh | Nov 2020 | A1 |
20200395698 | Hou et al. | Dec 2020 | A1 |
20200403350 | Hsu | Dec 2020 | A1 |
20200412060 | Hsieh | Dec 2020 | A1 |
20210036465 | Tang | Feb 2021 | A1 |
20210050683 | Sasame et al. | Feb 2021 | A1 |
20210159643 | Kirk et al. | May 2021 | A1 |
20210175670 | Cartier, Jr. et al. | Jun 2021 | A1 |
20210194187 | Chen | Jun 2021 | A1 |
20210203096 | Cohen | Jul 2021 | A1 |
20210234314 | Johnescu et al. | Jul 2021 | A1 |
20210234315 | Ellison et al. | Jul 2021 | A1 |
20210242632 | Trout et al. | Aug 2021 | A1 |
20210320461 | Buck et al. | Oct 2021 | A1 |
20210336362 | Shen | Oct 2021 | A1 |
20220102916 | Liu et al. | Mar 2022 | A1 |
20220399663 | Chang et al. | Dec 2022 | A1 |
20220407269 | Ellison et al. | Dec 2022 | A1 |
20230062661 | Johnescu et al. | Mar 2023 | A1 |
20230099389 | Cohen | Mar 2023 | A1 |
20230128519 | Kirk et al. | Apr 2023 | A1 |
Number | Date | Country |
---|---|---|
1075390 | Aug 1993 | CN |
1098549 | Feb 1995 | CN |
1237652 | Dec 1999 | CN |
1265470 | Sep 2000 | CN |
2400938 | Oct 2000 | CN |
1276597 | Dec 2000 | CN |
1280405 | Jan 2001 | CN |
1299524 | Jun 2001 | CN |
2513247 | Sep 2002 | CN |
2519434 | Oct 2002 | CN |
2519458 | Oct 2002 | CN |
2519592 | Oct 2002 | CN |
1394829 | Feb 2003 | CN |
1398446 | Feb 2003 | CN |
1401147 | Mar 2003 | CN |
1471749 | Jan 2004 | CN |
1489810 | Apr 2004 | CN |
1491465 | Apr 2004 | CN |
1502151 | Jun 2004 | CN |
1516723 | Jul 2004 | CN |
1179448 | Dec 2004 | CN |
1561565 | Jan 2005 | CN |
1203341 | May 2005 | CN |
1639866 | Jul 2005 | CN |
1650479 | Aug 2005 | CN |
1764020 | Apr 2006 | CN |
1799290 | Jul 2006 | CN |
2798361 | Jul 2006 | CN |
2865050 | Jan 2007 | CN |
1985199 | Jun 2007 | CN |
101032060 | Sep 2007 | CN |
201000949 | Jan 2008 | CN |
101124697 | Feb 2008 | CN |
101176389 | May 2008 | CN |
101208837 | Jun 2008 | CN |
101273501 | Sep 2008 | CN |
201112782 | Sep 2008 | CN |
101312275 | Nov 2008 | CN |
101316012 | Dec 2008 | CN |
201222548 | Apr 2009 | CN |
201252183 | Jun 2009 | CN |
101552410 | Oct 2009 | CN |
101600293 | Dec 2009 | CN |
201374433 | Dec 2009 | CN |
101752700 | Jun 2010 | CN |
101790818 | Jul 2010 | CN |
101120490 | Nov 2010 | CN |
101964463 | Feb 2011 | CN |
101124697 | Mar 2011 | CN |
201846527 | May 2011 | CN |
102106041 | Jun 2011 | CN |
102195173 | Sep 2011 | CN |
102232259 | Nov 2011 | CN |
102239605 | Nov 2011 | CN |
102282731 | Dec 2011 | CN |
102292881 | Dec 2011 | CN |
101600293 | May 2012 | CN |
102570100 | Jul 2012 | CN |
102598430 | Jul 2012 | CN |
101258649 | Sep 2012 | CN |
102738621 | Oct 2012 | CN |
102176586 | Nov 2012 | CN |
102859805 | Jan 2013 | CN |
202695788 | Jan 2013 | CN |
202695861 | Jan 2013 | CN |
102986091 | Mar 2013 | CN |
103036081 | Apr 2013 | CN |
103594871 | Feb 2014 | CN |
204190038 | Mar 2015 | CN |
104577577 | Apr 2015 | CN |
205212085 | May 2016 | CN |
102820589 | Aug 2016 | CN |
106099546 | Nov 2016 | CN |
107069274 | Aug 2017 | CN |
107069293 | Aug 2017 | CN |
304240766 | Aug 2017 | CN |
304245430 | Aug 2017 | CN |
206712089 | Dec 2017 | CN |
207677189 | Jul 2018 | CN |
108832338 | Nov 2018 | CN |
109994892 | Jul 2019 | CN |
111555069 | Aug 2020 | CN |
112134095 | Dec 2020 | CN |
213636403 | Jul 2021 | CN |
4109863 | Oct 1992 | DE |
4238777 | May 1993 | DE |
19853837 | Feb 2000 | DE |
102006044479 | May 2007 | DE |
60216728 | Nov 2007 | DE |
0560551 | Sep 1993 | EP |
0774807 | May 1997 | EP |
0903816 | Mar 1999 | EP |
1018784 | Jul 2000 | EP |
1779472 | May 2007 | EP |
1794845 | Jun 2007 | EP |
2169770 | Mar 2010 | EP |
2262061 | Dec 2010 | EP |
2388867 | Nov 2011 | EP |
2405537 | Jan 2012 | EP |
1794845 | Mar 2013 | EP |
1272347 | Apr 1972 | GB |
2161658 | Jan 1986 | GB |
2283620 | May 1995 | GB |
1043254 | Sep 2002 | HK |
H05-54201 | Mar 1993 | JP |
H05-234642 | Sep 1993 | JP |
H07-57813 | Mar 1995 | JP |
H07-302649 | Nov 1995 | JP |
H0963703 | Mar 1997 | JP |
H09-274969 | Oct 1997 | JP |
2711601 | Feb 1998 | JP |
H11-67367 | Mar 1999 | JP |
2896836 | May 1999 | JP |
H11-233200 | Aug 1999 | JP |
H11-260497 | Sep 1999 | JP |
2000-013081 | Jan 2000 | JP |
2000-311749 | Nov 2000 | JP |
2001-068888 | Mar 2001 | JP |
2001-510627 | Jul 2001 | JP |
2001-217052 | Aug 2001 | JP |
2002-042977 | Feb 2002 | JP |
2002-053757 | Feb 2002 | JP |
2002-075052 | Mar 2002 | JP |
2002-075544 | Mar 2002 | JP |
2002-117938 | Apr 2002 | JP |
2002-246107 | Aug 2002 | JP |
2003-017193 | Jan 2003 | JP |
2003-309395 | Oct 2003 | JP |
2004-192939 | Jul 2004 | JP |
2004-259621 | Sep 2004 | JP |
3679470 | Aug 2005 | JP |
2006-344524 | Dec 2006 | JP |
2008-515167 | May 2008 | JP |
2009-043717 | Feb 2009 | JP |
2009-110956 | May 2009 | JP |
9907324 | Aug 2000 | MX |
466650 | Dec 2001 | TW |
517002 | Jan 2003 | TW |
534494 | May 2003 | TW |
200501874 | Jan 2005 | TW |
200515773 | May 2005 | TW |
M274675 | Sep 2005 | TW |
M329891 | Apr 2008 | TW |
M357771 | May 2009 | TW |
200926536 | Jun 2009 | TW |
M403141 | May 2011 | TW |
M494411 | Jan 2015 | TW |
I475770 | Mar 2015 | TW |
M509998 | Oct 2015 | TW |
M518837 | Mar 2016 | TW |
M558481 | Apr 2018 | TW |
M558482 | Apr 2018 | TW |
M558483 | Apr 2018 | TW |
M559006 | Apr 2018 | TW |
M559007 | Apr 2018 | TW |
M460138 | May 2018 | TW |
201820724 | Jun 2018 | TW |
M562507 | Jun 2018 | TW |
M565894 | Aug 2018 | TW |
M565895 | Aug 2018 | TW |
M565899 | Aug 2018 | TW |
M565900 | Aug 2018 | TW |
M565901 | Aug 2018 | TW |
M623128 | Feb 2022 | TW |
WO 8502265 | May 1985 | WO |
WO 8805218 | Jul 1988 | WO |
WO 9835409 | Aug 1998 | WO |
WO 0139332 | May 2001 | WO |
WO 0157963 | Aug 2001 | WO |
WO 2002061892 | Aug 2002 | WO |
WO 03013199 | Feb 2003 | WO |
WO 03047049 | Jun 2003 | WO |
WO 2004034539 | Apr 2004 | WO |
WO 2004051809 | Jun 2004 | WO |
WO 2004059794 | Jul 2004 | WO |
WO 2004059801 | Jul 2004 | WO |
WO 2004114465 | Dec 2004 | WO |
WO 2005011062 | Feb 2005 | WO |
WO 2005114274 | Dec 2005 | WO |
WO 2006039277 | Apr 2006 | WO |
WO 2007005597 | Jan 2007 | WO |
WO 2007005598 | Jan 2007 | WO |
WO 2007005599 | Jan 2007 | WO |
WO 2008124052 | Oct 2008 | WO |
WO 2008124054 | Oct 2008 | WO |
WO 2008124057 | Oct 2008 | WO |
WO 2008124101 | Oct 2008 | WO |
WO 2009111283 | Sep 2009 | WO |
WO 2010030622 | Mar 2010 | WO |
WO 2010039188 | Apr 2010 | WO |
WO 2011060236 | May 2011 | WO |
WO 2011100740 | Aug 2011 | WO |
WO 2011106572 | Sep 2011 | WO |
WO 2011139946 | Nov 2011 | WO |
WO 2011140438 | Nov 2011 | WO |
WO 2011140438 | Dec 2011 | WO |
WO 2012106554 | Aug 2012 | WO |
WO 2013059317 | Apr 2013 | WO |
WO 2015112717 | Jul 2015 | WO |
WO 2016008473 | Jan 2016 | WO |
WO 2018039164 | Mar 2018 | WO |
Entry |
---|
Chinese Invalidation Request dated Aug. 17, 2021 in connection with Chinese Application No. 2005800409065. |
Chinese Invalidation Request dated Jun. 1, 2021 in connection with Chinese Application No. 2006800239976. |
Chinese Invalidation Request dated Sep. 9, 2021 in connection with Chinese Application No. 201110008089.2. |
Chinese Invalidation Request dated Jun. 15, 2021 in connection with Chinese Application No. 201180033750.3. |
Chinese Supplemental Observations dated Jun. 17, 2021 in connection with Chinese Application No. 201210249710.9. |
Chinese communication for Chinese Application No. 201580014851.4, dated Jun. 1, 2020. |
Chinese Office Action for Chinese Application No. 201580014851.4 dated Sep. 4, 2019. |
Chinese Invalidation Request dated Mar. 17, 2021 in connection with Chinese Application No. 201610952606.4. |
Chinese Office Action for Chinese Application No. 201780064531.9 dated Jan. 2, 2020. |
Chinese Office Action for Chinese Application No. 202010467444.1 dated Apr. 2, 2021. |
Chinese Office Action for Chinese Application No. 202010825662.8 dated Sep. 3, 2021. |
Chinese Office Action for Chinese Application No. 202010922401.8 dated Aug. 6, 2021. |
Extended European Search Report for European Application No. EP 11166820.8 dated Jan. 24, 2012. |
International Search Report and Written Opinion dated Dec. 28, 2021 in connection with International Application No. PCT/CN2021/119849. |
International Preliminary Report on Patentability for International Application No. PCT/US2005/034605 dated Apr. 3, 2007. |
International Search Report and Written Opinion for International Application No. PCT/US2005/034605 dated Jan. 26, 2006. |
International Preliminary Report on Patentability for International Application No. PCT/US2006/025562 dated Jan. 9, 2008. |
International Search Report with Written Opinion for International Application No. PCT/US2006/025562 dated Oct. 31, 2007. |
International Preliminary Report on Patentability for International Application No. PCT/US2010/056482 dated May 24, 2012. |
International Search Report and Written Opinion for International Application No. PCT/US2010/056482 dated Mar. 14, 2011. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/026139 dated Sep. 7, 2012. |
International Search Report and Written Opinion for International Application No. PCT/US2011/026139 dated Nov. 22, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2011/034747 dated Jul. 28, 2011. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/023689 dated Aug. 15, 2013. |
International Search Report and Written Opinion for International Application No. PCT/US2012/023689 dated Sep. 12, 2012. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/060610 dated May 1, 2014. |
International Search Report and Written Opinion for International Application No. PCT/US2012/060610 dated Mar. 29, 2013. |
International Preliminary Report on Patentability for International Application No. PCT/US2015/012463 dated Aug. 4, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2015/012463 dated May 13, 2015. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/047905, dated Mar. 7, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2017/047905 dated Dec. 4, 2017. |
International Preliminary Report on Patentability Chapter II dated Apr. 5, 2022 in connection with International Application No. PCT/US2021/015048. |
International Search Report and Written Opinion dated Jul. 1, 2021 in connection with International Application No. PCT/US2021/015048. |
International Preliminary Report on Patentability Chapter II dated Apr. 1, 2022 in connection with International Application No. PCT/US2021/015073. |
International Search Report and Written Opinion dated May 17, 2021 in connection with International Application No. PCT/US2021/015073. |
Taiwanese Office Action dated Mar. 5, 2021 in connection with Taiwanese Application No. 106128439. |
Taiwanese Office Action dated Mar. 15, 2022 in connection with Taiwanese Application No. 110140608. |
Decision Invalidating CN Patent Application No. 201610952606.4, which issued as CN Utility Model Patent No. 107069274B, and Certified Translation. |
In re Certain Electrical Connectors and Cages, Components Thereof, and Prods. Containing the Same, Inv. No. 337-TA-1241, Order No. 31 (Oct. 19, 2021): Construing Certain Terms of the Asserted Claims of the Patents at Issue. |
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Complainant Amphenol Corporation's Corrected Initial Post-Hearing Brief. Public Version. Jan. 5, 2022. 451 pages. |
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Complainant Amphenol Corporation's Post-Hearing Reply Brief. Public Version. Dec. 6, 2021. 159 pages. |
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Luxshare Respondents' Initial Post-Hearing Brief. Public Version. Nov. 23, 2021. 348 pages. |
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Luxshare Respondents' Reply Post-Hearing Brief. Public Version. Dec. 6, 2021. 165 pages. |
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Notice of Prior Art. Jun. 3, 2021. 319 pages. |
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Respondents' Pre-Hearing Brief. Redacted. Oct. 21, 2021. 219 pages. |
Invalidity Claim Charts Based on CN 201112782Y (“Cai”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 25. May 7, 2021. 147 pages. |
Invalidity Claim Charts Based on U.S. Pat. No. 6,179,651 (“Huang”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 26. May 7, 2021. 153 pages. |
Invalidity Claim Charts Based on U.S. Pat. No. 7,261,591 (“Korsunsky”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 27. May 7, 2021. 150 pages. |
Petition for Inter Partes Review. Luxshare Precision Industry Co., Ltd v. Amphenol Corp. U.S. Pat. No. 10,381,767. IPR2022-00132. Nov. 4, 2021. 112 pages. |
[No. Author Listed], All About ESD Plastics. Evaluation Engineering. Jul. 1, 1998. 8 pages. https://www.evaluationengineering.com/home/article/13001136/all-about-esdplastics [last accessed Mar. 14, 2021]. |
[No Author Listed], AMP Incorporated Schematic, Cable Assay, 2 Pair, HMZD. Oct. 3, 2002. 1 page. |
[No Author Listed], Board to Backplane Electrical Connector. The Engineer. Mar. 13, 2001, [last accessed Apr. 30, 2021]. 2 pages. |
[No Author Listed], Borosil Vision Mezzo Mug Set of 2. Zola. 3 pages. https://www.zola.com/shop/product/borosil_vision_mezzao_mug_setof2_3.25. [date retrieved May 4, 2021]. |
[No Author Listed], Cable Systems. Samtec. Aug. 2010. 148 pages. |
[No Author Listed], Carbon Nanotubes For Electromagnetic Interference Shielding. SBIR/STTR. Award Information. Program Year 2001. Fiscal Year 2001. Materials Research Institute, LLC. Chu et al. Available at http://sbir.gov/sbirsearch/detail/225895. Last accessed Sep. 19, 2013. |
[No Author Listed], Coating Electrical Contacts. Brush Wellman Engineered Materials. Jan. 2002;4(1). 2 pages. |
[No Author Listed], Common Management Interface Specification. Rev 4.0. MSA Group. May 8, 2019. 265 pages. |
[No Author Listed], Electronics Connector Overview. FCI. Sep. 23, 2009. 78 pages. |
[No Author Listed], EMI Shielding Compounds Instead of Metal. RTP Company. Last Accessed Apr. 30, 2021. 2 pages. |
[No Author Listed], EMI Shielding Solutions and EMC Testing Services from Laird Technologies. Laird Technologies. Last acessed Apr. 30, 2021. 1 page. |
[No Author Listed], EMI Shielding, Dramatic Cost Reductions for Electronic Device Protection. RTP. Jan. 2000. 10 pages. |
[No Author Listed], Excerpt from The Concise Oxford Dictionary, Tenth Edition. 1999. 3 pages. |
[No Author Listed], Excerpt from The Merriam-Webster Dictionary, Between. 2005. 4 pages. |
[No Author Listed], Excerpt from Webster's Third New International Dictionary, Contact. 1986. 3 pages. |
[No Author Listed], FCI—High Speed Interconnect Solutions, Backpanel Connectors. FCI. [last accessed Apr. 30, 2021). 2 pages. |
[No Author Listed], General Product Specification for GbX Backplane and Daughtercard Interconnect System. Revision “B”. Teradyne. Aug. 23, 2005. 12 pages. |
[No Author Listed], High Speed Backplane Connectors. Tyco Electronics. Product Catalog No. 1773095. Revised Dec. 2008. 1-40 pages. |
[No Author Listed], Hozox EMI Absorption Sheet and Tape. Molex. Laird Technologies. 2013. 2 pages. |
[No Author Listed], INF-8074i Specification for SFP (Small Formfactor Pluggable) Transceiver. SFF Committee. Revision 1.0. May 12, 2001. 39 pages. |
[No Author Listed], INF-8438i Specification for QSFP (Quad Small Formfactor Pluggable) Transceiver. Rev 1.0 Nov. 2006. SFF Committee. 76 pages. |
[No Author Listed], Interconnect Signal Integrity Handbook. Samtec. Aug. 2007. 21 pages. |
[No Author Listed], Metallized Conductive Products: Fabric-Over-Foam, Conductive Foam, Fabric, Tape. Laird Technologies. 2003. 32 pages. |
[No Author Listed], Metral® 2000 Series. FCI. 2001. 2 pages. |
[No Author Listed], Metral® 2mm High-Speed Connectors 1000, 2000, 3000 Series. FCI. 2000. 119 pages. |
[No Author Listed], Metral® 3000 Series. FCI. 2001. 2 pages. |
[No Author Listed], Metral® 4000 Series. FCI. 2002. 2 pages. |
[No Author Listed], Metral® 4000 Series: High-Speed Backplane Connectors. FCI, Rev. 3. Nov. 30, 2001. 21 pages. |
[No Author Listed], Military Fibre Channel High Speed Cable Assembly. www.gore.com. 2008. [last accessed Aug. 2, 2012 via Internet Archive: Wayback Machine http://web.archive.org] Link archived: http://www.gore.com/en.sub.--xx/products/cables/copper/networking/militar-y/military.sub.--fibre . . . Last archive date Apr. 6, 2008. |
[No Author Listed], Molex Connectors as InfiniBand Solutions. Design World. Nov. 19, 2008. 7 pages. https://www.designworldonline.com/molex-connectors-as-infiniband-solutions/. [last accessed May 3, 2021]. |
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 1.11. OSFP MSA. Jun. 26, 2017. 53 pages. |
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 1.12. OSFP MSA. Aug. 1, 2017. 53 pages. |
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 2.0 OSFP MSA. Jan. 14, 2019. 80 pages. |
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 3.0 OSFP MSA. Mar. 14, 2020. 99 pages. |
[No Author Listed], Photograph of Molex Connector. Oct. 2021. 1 page. |
[No Author Listed], Photograph of TE Connector. Oct. 2021. 1 page. |
[No Author Listed], Pluggable Form Products. Tyco Electronics. Mar. 5, 2006. 1 page. |
[No Author Listed], Pluggable Input/Output Solutions. Tyco Electronics Catalog 1773408-1. Revised Feb. 2009. 40 pages. |
[No Author Listed], QSFP Market Evolves, First Products Emerge. Lightwave. Jan. 22, 2008. pp. 1-8. https://www.lightwaveonline.com/home/article/16662662. |
[No Author Listed], QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver, Rev 3.0. QSFP-DD MSA. Sep. 19, 2017. 69 pages. |
[No Author Listed], QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver, Rev 4.0. QSFP-DD MSA. Sep. 18, 2018. 68 pages. |
[No Author Listed], QSFP-DD MSA QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiever. Revision 5.0. QSFP-DD-MSA. Jul. 9, 2019. 82 pages. |
[No Author Listed], QSFP-DD MSA QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver. Revision 5.1. QSFP-DD MSA. Aug. 7, 2020. 84 pages. |
[No Author Listed], QSFP-DD MSA QSFP-DD Specification for QSFP Double Density 8X Pluggable Transceiver. Revision 1.0. QSFP-DD-MSA. Sep. 15, 2016. 69 pages. |
[No Author Listed], QSFP-DD Specification for QSFP Double Density 8X Pluggable Transceiver Specification, Rev. 2.0. QSFP-DD MSA. Mar. 13, 2017. 106 pages. |
[No Author Listed], RTP Company Introduces “Smart” Plastics for Bluetooth Standard. Press Release. RTP. Jun. 4, 2001. 2 pages. |
[No Author Listed], RTP Company Specialty Compounds. RTP. Mar. 2002. 2 pages. |
[No Author Listed], RTP Company-EMI/RFI Shielding Compounds (Conductive) Data Sheets. RTP Company. Last accessed Apr. 30, 20210. 4 pages. |
[No Author Listed], Samtec Board Interface Guide. Oct. 2002. 253 pages. |
[No Author Listed], SFF Committee SFF-8079 Specification for SFP Rate and Application Selection. Revision 1.7. SFF Committee. Feb. 2, 2005. 21 pages. |
[No Author Listed], SFF Committee SFF-8089 Specification for SFP (Small Formfactor Pluggable) Rate and Application Codes. Revision 1.3. SFF Committee. Feb. 3, 2005. 18 pages. |
[No Author Listed], SFF Committee SFF-8436 Specification for QSFP+ 4X 10 Gb/s Pluggable Transceiver. Revision 4.9. SFF Committee. Aug. 31, 2018. 88 pages. |
[No Author Listed], SFF Committee SFF-8665 Specification for QSFP+ 28 Gb/s 4X Pluggable Transceiver Solution (QSFP28). Revision 1.9. SFF Committee. Jun. 29, 2015. 14 pages. |
[No Author Listed], SFF-8075 Specification for PCI Card Version of SFP Cage. Rev 1.0. SFF Committee. Jul. 3, 2001. 11 pages. |
[No Author Listed], SFF-8431 Specifications for Enhanced Small Form Factor Pluggable Module SFP+. Revision 4.1. SFF Committee. Jul. 6, 2009. 132 pages. |
[No Author Listed], SFF-8432 Specification for SFP+ Module and Cage. Rev 5.1. SFF Committee. Aug. 8, 2012. 18 pages. |
[No Author Listed], SFF-8433 Specification for SFP+ Ganged Cage Footprints and Bezel Openings. Rev 0.7. SFF Committee. Jun. 5, 2009. 15 pages. |
[No Author Listed], SFF-8477 Specification for Tunable XFP for ITU Frequency Grid Applications. Rev 1.4. SFF Committee. Dec. 4, 2009. 13 pages. |
[No Author Listed], SFF-8672 Specification for QSFP+ 4x 28 Gb/s Connector (Style B). Revision 1.2. SNIA. Jun. 8, 2018. 21 pages. |
[No Author Listed], SFF-8679 Specification for QSFP+ 4X Base Electrical Specification. Rev 1.7. SFF Committee. Aug. 12, 2014. 31 pages. |
[No Author Listed], SFF-8682 Specification for QSFP+ 4X Connector. Rev 1.1. SNIA SFF TWG Technology Affiliate. Jun. 8, 2018. 19 pages. |
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 1 page. |
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 2 pages. URL:web.archive.org/web/20030226182710/http://www.lairdtech.com/catalog/staticdata/shieldingtheorydesign/std_3.htm. |
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 2 pages. URL:web.archive.org/web/20021223144443/http://www.lairdtech.com/catalog/staticdata/shieldingtheorydesign/std_2.htm. |
[No Author Listed], Signal Integrity—Multi-Gigabit Transmission Over Backplane Systems. International Engineering Consortium. 2003;1-8. |
[No Author Listed], Signal Integrity Considerations for 10Gbps Transmission over Backplane Systems. DesignCon2001. Teradyne Connections Systems, Inc. 2001. 47 pages. |
[No Author Listed], Specification for OSFP Octal Small Form Factor Pluggable Module. Rev 1.0. OSFP MSA. Mar. 17, 2017. 53 pages. |
[No Author Listed], TB-2092 GbX Backplane Signal and Power Connector Press-Fit Installation Process. Teradyne. Aug. 8, 2002;1-9. |
[No Author Listed], Teradyne Beefs Up High-Speed GbX Connector Platform. EE Times. Sep. 20, 2005. 3 pages. |
[No Author Listed], Teradyne Connection Systems Introduces the GbX L-Series Connector. Press Release. Teradyne. Mar. 22, 2004. 5 pages. |
[No Author Listed], Teradyne Schematic, Daughtercard Connector Assembly 5 Pair GbX, Drawing No. C-163-5101-500. Nov. 6, 2002. 1 page. |
[No Author Listed], Tin as a Coating Material. Brush Wellman Engineered Materials. Jan. 2002;4(2). 2 pages. |
[No Author Listed], Two and Four Pair HM-Zd Connectors. Tyco Electronics. Oct. 14, 2003;1-8. |
[No Author Listed], Tyco Electronics Schematic, Header Assembly, Right Angle, 4 Pair HMZd, Drawing No. C-1469048. Jan. 10, 2002. 1 page. |
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 2 Pair 25mm HMZd, Drawing No. C-1469028. Apr. 24, 2002. 1 page. |
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 3 Pair 25mm HMZd, Drawing No. C1469081. May 13, 2002. 1 page. |
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 4 Pair HMZd, Drawing No. C1469001. Apr. 23, 2002. 1 page. |
[No Author Listed], Tyco Electronics Z-Dok+ Connector. May 23, 2003. pp. 1-15. http://zdok.tycoelectronics.com. |
[No Author Listed], Tyco Electronics, SFP System. Small Form-Factor Pluggable (SFP) System. Feb. 2001. 1 page. |
[No Author Listed], Typical conductive additives—Conductive Compounds. RTP Company. https://www.rtpcompany.com/products/conductive/additives.htm. Last accessed Apr. 30, 2021. 2 pages. |
[No Author Listed], Z-Pack HM-Zd Connector, High Speed Backplane Connectors. Tyco Electronics. Catalog 1773095. 2009;5-44. |
[No Author Listed], Z-Pack HM-Zd: Connector Noise Analysis for XAUI Applications. Tyco Electronics. Jul. 9, 2001. 19 pages. |
Atkinson et al., High Frequency Electrical Connector, U.S. Appl. No. 15/645,931, filed Jul. 10, 2017. |
Beaman, High Performance Mainframe Computer Cables. 1997 Electronic Components and Technology Conference. 1997;911-7. |
Chung, Electrical applications of carbon materials. J. of Materials Science. 2004;39:2645-61. |
Dahman, Recent Innovations of Inherently Conducting Polymers for Optimal (106-109 Ohm/Sq) ESD Protection Materials. RTD Company. 2001. 8 pages. |
Do et al., A Novel Concept Utilizing Conductive Polymers on Power Connectors During Hot Swapping in Live Modular Electronic Systems. IEEE Xplore 2005; downloaded Feb. 18, 2021;340-345. |
Eckardt, Co-Injection Charting New Territory and Opening New Markets. Battenfeld GmbH. Journal of Cellular Plastics. 1987;23:555-92. |
Elco, Metral® High Bandwidth—A Differential Pair Connector for Applications up to 6 GHz. FCI. Apr. 26, 1999;1-5. |
Feller et al., Conductive polymer composites: comparative study of poly(ester)-short carbon fibres and poly(epoxy)-short carbon fibres mechanical and electrical properties. Materials Letters. Feb. 21, 2002;57:64-71. |
Getz et al., Understanding and Eliminating EMI in Microcontroller Applications. National Semiconductor Corporation. Aug. 1996. 30 pages. |
Grimes et al., A Brief Discussion of EMI Shielding Materials. IEEE. 1993:217-26. |
Housden et al., Moulded Interconnect Devices. Prime Faraday Technology Watch. Feb. 2002. 34 pages. |
McAlexander, CV of Joseph C. McAlexander III . Exhibit 1009. 2021. 31 pages. |
McAlexander, Declaration of Joseph C. McAlexander III in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,381,767. Exhibit 1002. Nov. 4, 2021. 85 pages. |
Nadolny et al., Optimizing Connector Selection for Gigabit Signal Speeds. Sep. 2000. 5 pages. |
Neelakanta, Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications. CRC. 1995. 246 pages. |
Okinaka, Significance of Inclusions in Electroplated Gold Films for Electronics Applications. Gold Bulletin. Aug. 2000;33(4):117-127. |
Ott, Noise Reduction Techniques In Electronic Systems. Wiley. Second Edition. 1988. 124 pages. |
Patel et al., Designing 3.125 Gbps Backplane System. Teradyne. 2002. 58 pages. |
Preusse, Insert Molding vs. Post Molding Assembly Operations. Society of Manufacturing Engineers. 1998. 8 pages. |
Reich et al., Microwave Theory and Techniques. Boston Technical Publishers, Inc. 1965;182-91. |
Ross, Focus on Interconnect: Backplanes Get Reference Designs. EE Times. Oct. 27, 2003 [last accessed Apr. 30, 2021]. 4 pages. |
Ross, GbX Backplane Demonstrator Helps System Designers Test High-Speed Backplanes. EE Times. Jan. 27, 2004 [last accessed May 5, 2021]. 3 pages. |
Shi et al. Improving Signal Integrity in Circuit Boards by Incorporating Absorbing Materials. 2001 Proceedings. 51st Electronic Components and Technology Conference, Orlando FL. 2001:1451-56. |
Silva et al., Conducting Materials Based on Epoxy/Graphene Nanoplatelet Composites With Microwave Absorbing Properties: Effect of the Processing Conditions and Ionic Liquid. Frontiers in Materials. Jul. 2019;6(156):1-9. doi: 10.3389/fmats.2019.00156. |
Tracy, Rev. 3.0 Specification IP (Intellectual Property). Mar. 20, 2020. 8 pages. |
Violette et al., Electromagnetic Compatibility Handbook. Van Nostrand Reinhold Company Inc. 1987. 229 pages. |
Wagner et al., Recommended Engineering Practice to Enhance the EMI/EMP Immunity of Electric Power Systems. Electric Research and Management, Inc. Dec. 1992. 209 pages. |
Weishalla, Smart Plastic for Bluetooth. RTP Imagineering Plastics. Apr. 2001. 7 pages. |
White, A Handbook on Electromagnetic Shielding Materials and Performance. Don Whie Consultants. 1998. Second Edition. 77 pages. |
White, EMI Control Methodology and Procedures. Don White Consultants, Inc. Third Edition 1982. 22 pages. |
Williams et al., Measurement of Transmission and Reflection of Conductive Lossy Polymers at Millimeter-Wave Frequencies. IEEE Transactions on Electromagnetic Compatibility. Aug. 1990;32(3):236-240. |
U.S. Appl. No. 16/518,362, filed Jan. 16, 2020, Milbrand, Jr. et al. |
U.S. Appl. No. 16/795,398, filed Feb. 19, 2020, Paniagua et al. |
U.S. Appl. No. 17/102,133, filed Nov. 23, 2020, Cartier et al. |
U.S. Appl. No. 17/158,214, filed Jan. 26, 2021, Johnescu et al. |
U.S. Appl. No. 17/158,543, filed Jan. 26, 2021, Ellison et al. |
U.S. Appl. No. 17/164,400, filed Feb. 1, 2021, Kirk et al. |
U.S. Appl. No. 17/181,639, filed Feb. 22, 2021, Cohen. |
U.S. Appl. No. 17/477,352, filed Sep. 16, 2021, Liu et al. |
CN 200580040906.5, Aug. 17, 2021, Chinese Invalidation Request. |
CN 200680023997.6, Jun. 1, 2021, Chinese Invalidation Request. |
CN 201110008089.2, Sep. 9, 2021, Chinese Invalidation Request. |
CN 201180033750.3, Jun. 15, 2021, Chinese Invalidation Request. |
CN 201210249710.9, Jun. 17, 2021, Jun. 17, 2021, Chinese Supplemental Observations. |
CN 201580014851.4, Jun. 1, 2020, Chinese communication. |
CN 201580014851.4, Sep. 4, 2019, Chinese Office Action. |
CN 201610952606.4, Mar. 17, 2021, Chinese Invalidation Request. |
CN 201780064531.9, Jan. 2, 2020, Chinese Office Action. |
CN 202010467444.1, Apr. 2, 2021, Chinese Office Action. |
CN 202010825662.8, Sep. 3, 2021, Chinese Office Action. |
CN 202010922401.8, Aug. 6, 2021, Chinese Office Action. |
EP 111668208, Jan. 24, 2012, Extended European Search Report. |
PCT/CN2021/119849, Dec. 28, 2021, International Search Report and Written Opinion. |
PCT/US2005/034605, Apr. 3, 2007, International Preliminary Report on Patentability. |
PCT/US2005/034605, Jan. 26, 2006, International Search Report and Written Opinion. |
PCT/US2006/025562, Jan. 9, 2008, International Preliminary Report on Patentability. |
PCT/US2006/025562, Oct. 31, 3007, International Search Report with Written Opinion. |
PCT/US2010/056482, May 24, 2012, International Preliminary Report on Patentability. |
PCT/US2010/056482, Mar. 14, 2011, International Search Report and Written Opinion. |
PCT/US2011/026139, Sep. 7, 2012, International Preliminary Report on Patentability. |
PCT/US2011/026139, Nov. 22, 2011, International Search Report and Written Opinion. |
PCT/US2011/034747, Jul. 28, 2011, International Search Report and Written Opinion. |
PCT/US2012/023689, Aug. 15, 2013, International Preliminary Report on Patentability. |
PCT/US2012/023689, Sep. 12, 2012, International Search Report and Written Opinion. |
PCT/US2012/060610, May 1, 2014, International Preliminary Report on Patentability. |
PCT/US2012/060610, Mar. 29, 2013, International Search Report and Written Opinion. |
PCT/US2015/012463, Aug. 4, 2016, International Preliminary Report on Patentability. |
PCT/US2015/012463, May 13, 2015, International Search Report and Written Opinion. |
PCT/US2017/047905, Mar. 7, 2019, International Preliminary Report on Patentability. |
PCT/US2017/047905, Dec. 4, 2017, International Search Report and Written Opinion. |
PCT/US2021/015048, Apr. 5, 2022, International Preliminary Report on Patentability Chapter II. |
PCT/US2021/015048, Jul. 1, 2021, International Search Report and Written Opinion. |
PCT/US2021/015073, Apr. 1, 2022, International Preliminary Report on Patentability Chapter II. |
PCT/US2021/015073, May 17, 2021, International Search Report and Written Opinion. |
TW 106128439, Mar. 5, 2021, Taiwanese Office Action. |
TW 110140608, Mar. 15, 2022, Taiwanese Office Action. |
U.S. Appl. No. 18/075,313, filed Dec. 5, 2022, Cohen. |
U.S. Appl. No. 18/085,093, filed Dec. 20, 2022, Kirk et al. |
U.S. Appl. No. 18/318,890, filed May 17, 2023, Zeng. |
U.S. Appl. No. 18/335,472, filed Jun. 15, 2023, Cartier et al. |
U.S. Appl. No. 18/449,520, filed Aug. 14, 2023, Milbrand et al. |
U.S. Appl. No. 18/465,351, filed Sep. 12, 2023, Johnescu et al. |
In the Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Final Initial Determination on Violation of Section 337. Public Version. March 11, 2022. 393 pages. |
Cartier et al., High Speed, High Density Electrical Connector With Shielded Signal Paths, U.S. Appl. No. 18/335,472, filed Jun. 15, 2023. |
Johnescu et al., High Speed Connector, U.S. Appl. No. 18/465,351, filed Sep. 12, 2023. |
Milbrand et al., High Performance Cable Connector, U.S. Appl. No. 18/449,520, filed Aug. 14, 2023. |
Zeng, High Speed Electrical Connector With High Manufacturing Tolerance, U.S. Appl. No. 18/318,890, filed May 17, 2023. |
Number | Date | Country | |
---|---|---|---|
20220094099 A1 | Mar 2022 | US |