1. Field of the Application
This invention relates to flywheels, and particularly to high speed flywheels for use in vehicles.
2. Description of the Related Art
Flywheels typically comprise a relatively heavy mass, mounted on a shaft and arranged to rotate with the shaft. The use of flywheels in vehicles is known, for example as an aid for acceleration or deceleration of the vehicle. It is also known to use a flywheel for energy storage, whereby the kinetic energy of the flywheel is converted into electrical energy. The kinetic energy of a flywheel is directly proportional to the rotational inertia and the square of the angular velocity. A flywheel used for energy storage in a vehicle must achieve an optimum balance of mass, inertia and rotational speed. The faster the flywheel can be made to rotate, the smaller and lighter it will be for a given storage capacity.
High speed flywheels are usually contained within an enclosure to which a vacuum is applied, in order to reduce energy losses caused by drag, and prevent the temperature of the flywheel from rising too high as a result of friction with surrounding air.
When a flywheel is contained within an evacuated housing, it is necessary to provide a seal between the housing and the shaft in order to allow a vacuum to be maintained within the housing. Currently known seals for shafts on which flywheels are supported are only suitable for use with shafts rotating at less than 20,000 rpm.
An example of a currently known seal for a flywheel shaft is a ferrofluid seal, wherein an oil-based fluid is doped with ferrous particles, and a magnet is provided to hold the fluid in place in an annulus around the .shaft. The fluid forms a hermetic seal to maintain the vacuum within the flywheel housing.
The efficiency of ferrofluid seals is limited by the doping of the fluid with ferrous particles, which increases the viscosity of the fluid. Furthermore, the shaft must be formed of a particular grade of stainless steel, therefore providing a limitation on the strength of the shaft. Although it is desirable to minimise the diameter of the shaft in order to minimise drag and heat generation on operation of the flywheel, for a given shaft material, the diameter must be sufficient to render the shaft sufficiently strong to support the flywheel and/or deliver the required torque.
A further problem of currently known flywheel seals is that overheating often occurs when a flywheel is operated at high speed, as the heat which is generated cannot be dissipated sufficiently.
It is an aim of the present invention to provide a seal between a flywheel and shaft which are rotating at high speed, i.e. above 20,000, to enable a vacuum to be maintained within the flywheel housing.
Accordingly the present invention provides a seal for a high speed flywheel as claimed in claim 1 of the appended claims.
An advantage of the current invention is that seal fluid is effectively cooled and the likelihood of overheating is reduced, therefore enabling the seal to be used for flywheels which are operated at speeds in excess of 20,000 rpm. It will be appreciated that the seal will also operate at lower speeds.
In the present invention, the material of the torque transfer shaft is not limited to a particular grade stainless steel. Therefore a high strength material may be used, thus allowing the diameter of the shaft to be minimised, and accordingly drag and heat generation minimised, thereby increasing the efficiency of the flywheel, and decreasing the potential for overheating of the seal.
Furthermore, the sealing fluid used in the present invention does not require doping with ferrous particles, therefore a fluid with a lower viscosity than currently known fluids may be used.
The fluid may be inserted into the seal cavity in situ, i.e. once the flywheel has been mounted onto the shaft, via a fill nipple. Whilst the cavity is being filled with fluid, air can be expelled from the cavity via a bleed nipple.
Preferably the seal includes an insert provided with a bore, wherein the size of the bore determines the volume of the annular cavity, and accordingly the amount of oil which must to be inserted to fill the cavity. The bore is preferably circular, and may be formed so as to be eccentric with the outer diameter of the insert, and therefore eccentric with the shaft on which the flywheel is supported. Therefore the fluid cavity is also eccentric with the shaft, advantageously inducing fluid flow on operation of the flywheel, thus increasing the thermal heat transfer between the fluid and the housing, and accordingly reducing the potential for overheating of the seal.
A piston may be provided within the first housing section of the seal. The piston can be moveable in accordance with the expansion of the fluid as it becomes heated on operation of the flywheel, therefore preventing an excessive pressure building up within the fluid as it becomes heated. The piston can also act to balance the pressure inside the seal with that of the air pressure outside, thus maintaining a zero pressure drop across the first lip seal. As the pressure within the seal will therefore be equal to ambient pressure, leakage of ambient air into the seal cavity will not occur.
Preferably, the fluid used in the present invention does not vaporise at the pressure of the evacuated core of the flywheel. Therefore if fluid is caused to seep into the evacuated flywheel core, a loss of vacuum is not caused as the fluid will not vaporise within the evacuated flywheel core.
The housing of the seal may be made from a light alloy, such as aluminium, having a good thermal conductivity. Where weight is not important, other materials having good thermal conductivity such as copper may be used. Therefore the cooling of the seal fluid is more efficient than in currently known ferrofluid type seals, which are surrounded by magnets and steel, which exhibit lower thermal conductivity than light alloys.
The lip seals may feature a sealing lip made of a polymer blend which includes PTFE.
An embodiment of the present invention will now be described by way of example and with reference to the accompanying drawings in which:
Referring to
On an assembled flywheel, the first housing section 6 faces outwardly from the flywheel and is accessible. The second housing section 8 faces inwardly into an evacuated flywheel core, and is therefore not accessible.
The first housing section 6 fits into the second housing section 8 such that a space 14 is formed between the housings. Annular shoulders 16, 18 are formed in the first and second housing sections 6, 8 to accommodate a first modified PTFE lip seal 20 and second modified PTFE lip seal 22, respectively. The depth of each of the annular shoulders 16, 18 is generally equal to the width of the lip seals 20, 22, such that the lip seals 20, 22 do not impinge upon the space 14.
An ring-shaped insert 24a is provided in the space 14. The outer diameter 26 of the insert is such that it fits into the second housing section 8. Referring to
An annular cavity 30 is formed between the lip seals 20,22. The cavity is bounded by the lip seals 20, 22, the housing sections 6, 8, and the insert 24. The insert 24a acts as a volume reducer, wherein the volume of the annular cavity is the volume of the space between the housing 20, 22 sections, less the volume of the insert 24a.
The seal 2 is mounted on the shaft 4 such that the shaft 4 passes through the housing sections 6, 8, lip seals 20, 22, and the centre of the insert 24a.
The lip seals 20, 22 are arranged such that a lip 32, 34 of the lip seals points towards the annular cavity 30 and is in contact with the shaft 4.
The cavity 30 is filled, via a fill nipple 36, with an oil based fluid 40 (
As the fill nipple 36 and the bleed nipple 38 face outwardly from the flywheel and are accessible, the fluid 40 can be inserted into the cavity 30 in situ, i.e. after the flywheel has been mounted onto the shaft 4. The seal is formed by the fluid 40 surrounding the shaft 4; with the lip seals 20, 22 preventing the fluid 40 from seeping out of the cavity 30 and along the shaft 4.
When the flywheel is operated at high speeds, the fluid 40 also provides lubrication and cooling to prevent the lip seals 20, 22 from overheating. The heat absorbed by the fluid 40 is dissipated by conduction through the housing sections 6, 8.
A piston 42 is provided within the first housing section 6. The piston 42 is moveable in accordance with the expansion of the fluid 40 as it becomes heated on operation of the flywheel, therefore preventing an excessive pressure building up within the fluid 40 as it becomes heated. The piston 42 also acts to balance the pressure inside the seal with that of the air pressure outside, thus maintaining a zero pressure drop across the first lip seal 20. As the pressure of within the cavity 30 is therefore equal to ambient pressure, leakage of ambient air into the cavity 30 is prevented. The second lip seal 22 acts to maintain a pressure drop of 1 bar. However, if any fluid 40 were to be caused to seep from the cavity 30, past the second lip seal 22 into the evacuated flywheel core, a loss of vacuum would not be caused, as the fluid will not vaporise at the pressure of the evacuated core.
The seal 2 may incorporate an alternative insert 24 as required. As the insert 24 reduces the volume of the cavity 30, a larger insert would occupy a larger proportion of the cavity 30, thereby reducing the amount of fluid 40 required to fill the cavity 30.
In the alternative embodiment illustrated in
Number | Date | Country | Kind |
---|---|---|---|
0708665.5 | May 2007 | GB | national |
Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
Number | Date | Country | |
---|---|---|---|
Parent | 12598196 | Oct 2009 | US |
Child | 14280435 | US |