This invention generally relates to a method and apparatus for manufacturing golf balls, and more specifically to a high-speed golf ball handling and management system.
The manufacture of golf balls typically involves a series of sequential processes performed at different processing stations, typically spatially separated one from another. These different processing stations may require manual movement of the golf balls between different stations. For example, golf balls may need to be manually moved from a processing station to a printing area and hand-fed into a printing line. Conventional automation tools have limited applicability to golf balls, because of the wide variety of markings that are printed on golf balls, often in small quantities. Different individual printing stations may require individual preparation, planning, and turnover to produce golf balls with different printed markings, such as custom logos or other indicia. The disclosed embodiments provide automation tools for improving the processing speed and efficiency of manufacturing golf balls, especially the process of printing markings on golf balls.
In some embodiments, a golf ball printing system is disclosed. The golf ball printing system includes a plurality of stations and a plurality of station tracks. The plurality of stations include an orienting station, a printing station, and a offloading station, and each of the plurality of station tracks include an orienting station track, a printing station track, and an offloading station track. The golf ball printing system also includes a primary track connecting each of the plurality of station tracks and a plurality of shuttles configured to traverse the primary track and the plurality of station tracks. The golf ball printing system further includes a control system configured to control the movement of the plurality of shuttles to print a marking on a golf ball on each of the plurality of shuttles at the printing station.
In another embodiment, a method for manufacturing a golf ball is disclosed. The method includes delivering a first plurality of golf balls to a first orienting station, placing each of the first plurality of golf balls on a shuttle connected to a first orienting station track, delivering the shuttles to a first printing station track via a primary track, printing a first marking on each of the first plurality of golf balls at a first printing station, delivering the shuttles to a first offloading station track via the primary track, and offloading the first plurality of golf balls from the shuttles at a first offloading station.
In another embodiment, a computer-implemented method for manufacturing a golf ball at a golf ball handling system is disclosed. The golf ball handling system includes a control system including a processing unit and a memory storying instructions for the processing unit to perform a process. The process includes receiving a plurality of processing orders, generating a plurality of processing plans for each of the processing orders, and executing the processing plans on the golf ball handling system to simultaneously perform different manufacturing tasks on different golf balls within the golf ball handling system.
According to disclosed embodiments, a high-speed golf ball handling and management system is disclosed for golf ball manufacturing, and, more particularly, golf ball orientation, printing, offloading, and packaging. The disclosed embodiments include a transportation system for moving a plurality of golf balls through one or more processing stations via an interconnected track system. A control system is connected with the track system and various stations to control the movement of golf-ball-transporting shuttles within the handling and management system. The shuttles may be configured to switch between the plurality of tracks based on instructions from the control system. The golf ball handling and management system includes at least one processing station, such as a printing station, that performs a manufacturing or processing task related to the golf ball.
In at least some embodiments, the control system is configured to manage a plurality of simultaneous tasks within the handling and management system. For example, the control system may be configured to control a first shuttle to arrive at a first processing station for a first processing task while simultaneously controlling a second shuttle to arrive at a second processing station for a second task. In an exemplary embodiment, the control system is configured to generate a processing plan for a golf ball and/or lot of golf balls received at an onboarding station and thereafter control the movement of multiple shuttles simultaneously to increase the throughput of the system. For example, the control system may simultaneously control different printing processes for different golf ball lots and deliver the golf balls to a packaging station for grouping and packaging of similar lots.
Further embodiments may include particularized tools and equipment for processing golf balls using the disclosed transportation system. For example, some embodiments include a golf ball holder configured to mount to a shuttle that is transported by the disclosed transportation system. The holder may include features to hold and maintain a golf ball in a desired orientation on a shuttle such that when the shuttle is delivered to a processing station, the golf ball can be processed with precision and reliability. For example, the holder may be configured to orient a golf ball to expose a portion of the golf ball for printing on the golf ball. The holder may further include features for interacting with a processing station, such as a printing station. Similarly, the processing station may include particularized features for interacting with the holder and/or shuttle.
In an exemplary embodiment, the system 100 is configured to receive a plurality of golf balls from a golf ball delivery system 124, transport the plurality of golf balls between stations 110, 112, and 114, and output the processed golf balls though a golf ball output system 126. Within the system 100, the golf balls may move between stations 110, 112, and 114 via connections from the primary track 116. For example, a golf ball may be input at the golf ball delivery system 124, placed onto station track 118 via the station 110, transfer to the primary track 116 where it is delivered to station track 120 for processing at station 112, and transferred back to the primary track 116 before it is delivered to station track 122 for removal via station 114. In some embodiments, the golf ball is transferred to multiple stations 112 before transfer to a station track 122.
As shown in
In an exemplary embodiment, the system 100 is an automated system for printing markings on a golf ball. In an exemplary embodiment, the station 112 is an orienting station configured to onboard and position a golf ball in a particular orientation on a shuttle 128. Each station 112 may be a printing station configured to print a marking on the golf ball carried by the shuttle 128. Each station 114 may be an offboarding station configured to receive a golf ball after it has been stamped and deliver the golf ball for further processing (e.g., packaging). The golf ball delivery system 124 may be configured to deliver a plurality of golf balls to the orienting stations 110 and the offboarding stations 114 may be configured to deliver the printed golf balls to the golf ball output system 126 for packaging or other processing steps. The control system 130 may be configured for high speed movement of a plurality of golf balls throughout the system 100 simultaneously. The control system 130 may be programmed with anti-collision software to ensure that a plurality of shuttles 128 can move through the system 100 smoothly and without collisions or interruptions. As a result, the system 100 is configured as a high-speed, high-throughput system for printing markings on golf balls prior to packaging and/or delivery of a final product. For example, the system 100 may achieve a processing speed of 300 balls per minute (300 printed golf balls being offloaded every minute). It should be understood, however, that printing is one example of a processing step that may be accomplished using the system 100. The system 100 may be modified and/or adapted to accomplish other golf ball and/or golf equipment processing steps in a high-speed and high-precision production line.
In step 212, the shuttle 128 is moved along the station track 118 and transferred to the primary track 116. For example, the shuttle 128 may be configured to ride along a side of the station track 118 and switch to the primary track 116 via electromagnetic force attracting the opposite side of the shuttle 128 to the side of the primary track 116. The control system 130 may be configured to continuously store a location of the shuttle 128 and move the shuttle 128 along the primary track 116 to a next destination according to a desired manufacturing process.
In step 214, the control system 130 instructs the system 100 to transfer the shuttle 128 to the station track 120. In step 216, the station track 120 delivers the shuttle 128 to the printing station 112 for printing on the oriented golf ball. The printing station 112 is not limited to any particular printing process and can include multiple steps for printing. For example, the printing station 112 may be configured with multiple printing and orienting steps for complex printing on the golf ball.
Returning to
The process 200 is an example method for processing a golf ball such that a particular type of golf ball is selected, delivered to a printing station in a desired orientation, printed according to desired specifications, and delivered to a target destination for packaging or further processing. The system 100 is configured such that this process may be continuously repeated and run simultaneously with many golf balls, even if the golf balls have different processing plans (e.g., different printing). As a result, a high-speed, high-throughput golf ball printing line may be realized.
In step 410, the control system 130 may receive a plurality of processing orders. Each processing order may include instructions for performing a manufacturing task on at least one golf ball. For example, a first processing order may include instructions for printing a first marking on one dozen golf balls. Another example may include a processing order for printing a second marking on another dozen golf balls. The processing order may include information identifying the station and/or stations 112 within the system 100 to perform the manufacturing task (e.g., which station or stations is prepared to print a desired marking).
In step 420, the control system 130 may generate processing plans based on the processing orders. For example, the control system 130 may convert the processing plans into concrete instructions for accomplishing the desired manufacturing task. In one example, the control system 130 may select a station 110 to identify and place the golf ball on a shuttle 128. The control system 130 may also select at least one station 112 to complete at least one processing step (e.g., printing, orienting, curing, painting, etc.). In some embodiments, the control system 130 may select multiple stations 112 to perform processing steps (e.g., printing at two different printing stations). The control system 130 may also select a station 114 to offload the golf ball.
In step 430, the system 100 may receive a plurality of golf balls from the golf ball delivery system 124. In some embodiments, the control system 130 may control the golf ball delivery system 124 to deliver a particular type of golf ball to a selected one of the stations 110. In step 440, the control system 130 is configured to control the system 100 to execute the processing plans on the onboarded golf balls through movement of the shuttles 128. In step 450, the finished golf balls are offloaded form the system 100 based on instructions from the control system 130.
According to some embodiments, the disclosed system 100 is applicable to quickly and efficiently process a plurality of golf balls simultaneously. The control system 130 is configured to generate processing plans and orchestrate timing of the movement of multiple shuttles 128 such that golf balls associated with different manufacturing tasks may be intermixed without losing track of processing orders. For example, a first, third, fifth, etc. golf ball through the system 100 may be oriented at a first station 110, printed at a first station 112, and offloaded a first station 114. A second, fourth, sixth, etc., golf ball through the system may be oriented at a second station 110, printed at a second station 112, and offloaded at a second station 114. The throughput/capacity of the system 100 can thus be customized based on the number of stations and tracks placed into the system and the complexity of the manufacturing tasks to be completed.
In another example, a golf ball of a first type may be delivered to a printing station for printing of a first marking while a golf ball of a second type may be delivered to the same or a different printing station for printing of a different second marking. The differently-printed golf balls may be delivered to different sorting stations and/or sorted into different packaging locations for packaging of similar golf balls. For example, one golf ball may receive a single printing stamp at one printing station, a second golf ball may receive multiple printing stamps at the same printing station, and another golf ball may receive multiple printing stamps at different printing stations within the transportation system. In this way, multiple different golf ball lots with different parameters may be processed simultaneously without collision or interruptions. The control system 130 may associate processing steps with a particular shuttle and provide instructions to track that shuttle throughout the transportation system for accurate final delivery and/or packaging.
The disclosed embodiments further include equipment, tools, adapters, etc. configured to enable the shuttles 128 to particularly carry a golf ball and, further, for the motion components to interact with the processing stations, such as a printing station.
The golf ball holder 146 further includes a mounting plate 154 configured to attach to the mount 144 of the shuttle 128 via one or more mounting pins 156. The mounting pins 156 may be fixed to the mount 144 but movable relative to the mounting plate 154 in a vertical direction. For example, the mounting plate 154 may be configured to move upward such that the golf ball holder is spaced vertically from the mount 144. The mounting pins 156 may include enlarged heads to inhibit complete removal of the golf ball holder 146.
In addition to the golf ball holder 146 being movable in a vertical direction relative to the mount 144, the holding clamp 150 is also relatively movable in a horizontal direction relative to the mounting plate 154 and mount 144 through attachment of a sliding plate 158. The sliding plate 158 includes at least one slot 160 configured to receive a portion of the mounting pin 156 and thereby enables the sliding plate 158, holding clamp 150, and golf ball 148 to move in a horizontal direction relative to the mounting plate 154 and underlying shuttle 128. The size of the slot 160 may determine a range of horizontal movement of the holding clamp 150.
The relative movement of the holding clamp 150 helps to enable proper positioning and registration of the golf ball 148 with respect to a processing station. For example, the golf ball holder 146 may be configured for vertical linear movement to enable the mounting plate 154 to rest on a support surface during a printing operation. In another example, the golf ball holder 146 may be configured for horizontal linear movement between an open position depicted in
The vertically-movable mounting plate 154 and horizontally-movable sliding plate 158 may enable the golf ball holder 146 to move into a registration position during a manufacturing process. For example, the golf ball holder 146 may be moved vertically onto a support surface to remove 168a load from the underlying shuttle 128 and also moved into the locked position to place the golf ball into a position directly under a printing pad of a printing station.
The printing station 112 may also include a support rail 172 attached to the station track 120. The support rail 172 is raised relative to the station track 120 such that during movement of the shuttles 128 on the station track 120, each mounting plate 154 is configured to ride up onto the support rail 172, thereby moving the golf ball holder 146 upward with respect to the shuttle 128. The support rail 172 thereby provides support to the golf ball holder 146 such that a downward force onto the golf ball 148 (e.g., via the printing pads 164) is absorbed by the support rail 172. The support rail 172 may be sized to correspond to a single printing pad 164 or be extended under a plurality of printing pads 164. The support rails 172 thus helps to inhibit damage to the shuttles 128 that may otherwise be caused by the downward force of the printing pads 164.
The disclosed golf ball holder 146 may be considered an adapter for enabling a shuttle 128 to receive and hold a golf ball 148. The shuttle 128 is thus not limited to the embodiments shown and could include additional or alternative features for transporting a golf ball holder 146 on a track. While the golf ball holder 146 has been described in relation to a printing station 112, it should be understood that the disclosed embodiments are not limited to any particular manufacturing operation. For example, instead of pad printing, a station track may move a shuttle and golf ball holder into position for another golf ball manufacturing step, such as applying a spray paint or coating layer to an in-process golf ball. Such a golf ball holder may include similar features for enabling movement (i.e., locking) relative to the shuttle to position the golf ball with respect to the processing equipment.
While it is apparent that the illustrative embodiments of the invention disclosed herein fulfill the objectives stated above, it is appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments, which would come within the spirit and scope of the present invention.