1. Field of the Invention
The present invention relates to a high speed high density connector assembly and particularly to a high speed high density connector assembly with improved manufacturability and anti-EMI performance.
2. Description of Related Art
U.S. Pat. No. 6,899,566, issued to Kline et al. on May 31, 2005, discloses a high speed connector assembly including a header and a receptacle. The header has an array of signal pins and shield plates and the receptacle has an array of holes respectively receiving the signal pins and the shield plates. This much increases the complexity of the receptacle and insertion force when the header and the receptacle are mated. Furthermore, the shield plate is L-shaped and could not shielding the signal pins in all perimeter.
Europe Patent issued No. 1166396B1, on Mar. 19, 2008, discloses a high speed backplane connector assembly further disclosing an array of U-shaped shield plates. However, contacts of receptacle has tuning-fork-shaped contacting portion for clipping pins of the header which increases the profile of the connector and decreases the density of the connector.
Additionally, the contacts disclosed in latter two prior art references are prone to damage since the contacts are exposed to outside during most of the manufacturing processes of the connector.
An object of the present invention is to provide a high speed connector assembly comprising a first connector and a mating second connector. The first connector comprises an array of first contacts arranged in lines and columns, a plurality of first insulators and a plurality of first shields arranged in lines alternating with corresponding lines of the first contacts. Each line of first contacts are grouped in pairs adapted for transferring signal differential pairs. Each of the first contacts has a contacting portion and fastened in the first insulator. Each of the first shields has a contacting portion. The second connector has a main body, the main body defining a front face and a plurality of receiving holes in the front face. The second connector comprises an array of second contacts arranged in lines and columns, a plurality of second insulator fastening the second contacts and a plurality of second shields arranged in lines alternating with the lines of the second contacts. Each line of second contacts are grouped in pairs adapted for transferring signal differential pairs. Each of the second contacts has a contacting portion to mate with the contacting portion of corresponding first contact. Each of the second shields has a contacting portion to mate with the contacting portion of corresponding first shield. The contact portions of each pair of the first contacts and corresponding first shield are received in the same one of the receiving holes when the first connector and the second connector are mated.
Another object of the present invention is to provide a high speed connector assembly comprises a first connector and a mating second connector. The first connector comprises a pair of first contacts for transferring a signal differential pair, a first insulator fastening the pair of first contacts and a first shield having a contacting portion besides the contacting portions of the first contact pair. Each of the first contacts has a contacting portion. The second connector comprises a pair of second contacts for transferring a signal differential pair, a second insulator fastening the pair of first contacts and a second shield having a contacting portion half surrounding the contacting portions of the second contact pair with an open left. Each of the second contacts has a contacting portion to mate with the contacting portion of the first contacts respectively. The contacting portion of the first shield seals the open of the contacting portion of the second shield and forms a sealed circumference around the contacting portions of the first and the second contact pairs when the two connector are mated. The contacting portions of the second contact pair are flexible to sway towards the contacting portion of the first shield when mated with the contacting portion of corresponding first contact. The second insulator has a first portion isolating the contacting portions of the second contact pair from the contacting portion of the second shield and sheltering front ends of the second contact pair with only one side of the contacting portions of the second contact pair left reachable for the first contact pair.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of a preferred embodiment when taken in conjunction with the accompanying drawings.
Reference will now be made to the drawing figures to describe the present invention in detail.
Referring to
Referring to
Each of the first contacts 22 has a fastening portion 221 held by the first insulator, a contacting portion 222 extending forwardly from a front end of the fastening portion 221, and a terminal portion extending backwardly from an opposite rear end of the fastening portion 221 adapted to be mounted onto a printed circuit board (not shown). The contacting portion 222 further includes a first contacting portion 2221 forwardly extending from the fastening portion 221, and a second contacting portion 2222, 2223 continuously and forwardly extending from the first contacting portion 2221 with a transverse offset 2224 comparing the first contacting portion 2221. The first contacting portion 2221 is shaped like a planar board and the second contacting portion is shaped like a tuning fork 2222, 2223. The contacting portions 222 of each first contact pair 22 and corresponding contacting portion of the first shield 23 has mating faces facing away from each other.
The first insulator comprises a first portion 24 and a second portion 21 separately molded and assembled together. The first portion 24 is disposed between a contacting portion 231 of the first shield 23 and the contacting portions 222 of corresponding first contacts pair 22. The first portion 24 isolates the contacting portions 222 of the first contact pair 22 from the contacting portion 231 of the first shield 23 and shelters front ends of the first contact pair 22 with only one side of the contacting portions 222 of the first contact pair 22 left reachable for the second connector 300. The contacting portions 222 of the first contact pair 22 are flexible to sway towards the contacting portion 231 of the first shield 23. The first portion 24 having a front section 241 and a rear section 242. The front section 241 defines two cavities 243 respectively receiving main portions of the contacting portions 222 of the second contact pair 22. Each of the cavities 243 forms a protrusion 2413 dividing the cavity 243 into a first portion 2411 and a second portion 2412. The protrusion 2413 defines a slot 2414 to position the contacting portion 222 of the first contact 22.
Referring to
Each line of second contacts 42 being grouped in pairs adapted for transferring signal differential pairs. Each of the second contacts 42 has a fastening portion 421 and a contacting portion 422 to mate with the contacting portion of corresponding first contact 22. The contacting portion 422 has first contacting portion 4221 and second contacting portion 4222, 4223 (similar to the contacting portion 222 of the first contact 22). Each of the second shields 43 has a U-shaped contacting portion 433 to mate with the contacting portion 231 of corresponding first shield 23. During insertion of the second connector 300 into the first connector 100, the second contacting portion 2222, 2223 of the first contact 22 does not scratch the second contacting portion 4222, 4223 of the second contact 42. When the two connectors are mated, the contact portions 222, 231 of each pair of the first contacts 22 and corresponding first shield 23 are received in the same one of the receiving holes 305 (shown in
Each of the second insulators has a plurality of first portion 44 and a board like second portion 41. The first portions 44 and the second portion 41 of the second insulator are separately molded and assembled together. Each first portion 44 is disposed between the contacting portion 433 of the second shield 43 and the contacting portions 422 of corresponding second contacts pair 42. The first portion 44 of the second insulator has similar structure as the first portion 24 of the first insulator and so there is no burden needed to deliberate again.
The contacting portion 433 of the second shield 43 has a U-shaped inner face. The first portion 44 of the second insulator is secured in the U-shaped inner face. Each of the second shields 43 has a U-shaped fastening portion 432 extending along center portions of corresponding second contact pair. The fastening portion 432 defines a plurality of slots 4321 for making interference fit with the second portion 41 of the second insulator.
The second connector 300 further comprises a third shield 45 and a front housing 3. The third shield 45 has a board portion sealing the opens of the U-shaped fastening portions 432. The front housing 3 receives the contacting portion 422, 433 of the second contact 42 and the second shield 43.
The disclosure is illustrative only, changes may be made in detail, especially in matter of shape, size, and arrangement of parts within the principles of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0080651 | Mar 2011 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5167528 | Nishiyama | Dec 1992 | A |
6780059 | Payne | Aug 2004 | B1 |
6814619 | Stokoe | Nov 2004 | B1 |
6899566 | Kline et al. | May 2005 | B2 |
6913490 | Whiteman et al. | Jul 2005 | B2 |
7163421 | Cohen | Jan 2007 | B1 |
7604502 | Pan | Oct 2009 | B2 |
7811128 | Pan | Oct 2010 | B2 |
7976340 | Saraswat et al. | Jul 2011 | B1 |
8398431 | Whiteman et al. | Mar 2013 | B1 |
8398432 | McClellan et al. | Mar 2013 | B1 |
8398434 | Davis et al. | Mar 2013 | B2 |
8430691 | Davis | Apr 2013 | B2 |
8444434 | Davis et al. | May 2013 | B2 |
Number | Date | Country |
---|---|---|
1166396 | Mar 2008 | EP |
Number | Date | Country | |
---|---|---|---|
20120252271 A1 | Oct 2012 | US |