The field of the present invention relates to a robotic system and robotic end-effector, and more particularly to one capable of high speed manipulation of objects with variable or undefined shape, structure, or size.
In the realm of robotic pick-and-place applications there has been a central focus on performing well-defined, repeatable tasks. This paradigm is fundamentally predictable and specific. Classical computation is adept at processing a precise list of instructions. As a result, technologies have been developed for a narrow range of applications allowing for the interaction with the real world. One such subset is robotic end-effectors for manipulation of objects. An example may be found in food handling applications. Although small variations may exist, the rules for any given operation tend to be very precise and the target object is well-defined. Pick-and-place grasping can be found in numerous industries, but commodity-based grasping is typically designed to leave no trace of handling. Applications exist where destructive methods of grasping can be utilized, one such field is waste handling.
Increases in computation power has led to the expansion of deep learning algorithms. In this paradigm the computer program is much more abstract and the inputs are no longer discrete, such as image recognition. Advancements in this field have numerous industrial applications. One such industry is recycling, the sorting of recycled materials. The nature of recycling is unpredictable with materials varying largely by region and have extreme variations even within that subset. The mechanical component of the robotic system is becoming a limiting factor of these robotic systems. The present inventors have recognized that similar to the shift in software, mechanical technologies need be developed to interact with objects of unpredictable size, shape, orientation, and composition.
The embodiments described herein are directed to material handling systems, or more specifically, robotic arm sorting systems and methods of sorting, and in one embodiment to a robotic arm sorting system with grasping mechanism/end-effector design capable of reliably manipulating/grasping non-uniform objects. Even objects of indeterminate size, shape, orientation, and surface condition can be grasped and relocated in a given space. This grasping functionality need not be dependent to the specific grasping point chosen by the grasping mechanism. The system may be suitable when miscellaneous objects of indeterminate/varied shape and size are located in the vicinity of the target object and the working environment is not controlled for cleanliness, and/or where the preservation of the object's condition is irrelevant.
Certain embodiments will now be described with reference to the drawings. To facilitate description, any element numeral representing an element in one figure will represent the same element in any other figure. It is noted that embodiments of the grabbing/end-effector mechanisms will be described with reference to a particular robotic arm system, but it will be appreciated that details of the described mechanisms may be applied in other any robotic arm systems or the like.
The system 10 may be described as a vacuum pick-up apparatus that includes a specially designed grasping mechanism/end effector, shown as a flexible suction cup unit 100 disposed on the distal end of a tube or pipe section 60 at the bottom of the suction head 50. The suction cup unit 100 is specially designed to provide a high vacuum air flow capacity as will be described further below.
The system 10 is provided with high air flow vacuum pump system (comprising the means to applying a high subsonic vacuum air flow). To meet a desired high vacuum air flow, the system 10 may be constructed with a dual vacuum pump system comprised of a first vacuum pump 12 and a second vacuum pump 32 disposed in parallel. The first vacuum pump 12 is connected via a first flexible hose 18 drawing air through the flexible hose 18 and through a filter 16 and exhausting out through exhaust 14. The flexible hose 18 is connected via a hose barb 19 to a rigid hose 20 which in turn is connected via a second hose barb 21 to a second flexible hose section 22. The second flexible hose section 22 is then connected to vacuum connector/port 54 of the wye connector 52.
Similarly, on the other side, the second vacuum pump 32 is connected via a second flexible hose 38 drawing air through the second flexible hose 38 and through a filter 36 and exhausting out through exhaust 34. The second flexible hose 38 is connected via a hose barb 39 to a rigid hose 40 which in turn is connected via a second hose barb 41 to a second flexible hose section 42. The second flexible hose section 42 is then connected to vacuum connector/port 56 of the wye connector 52.
The wye connector 52 is a multi-port connector/manifold which is shown in
Alternately, the vacuum air flow may be provided by a single vacuum pump, three (or more) vacuum pumps, or another suitable vacuum source or sources. It is noted that a vacuum pump may comprise any suitable device that draws a vacuum, such as a positive displacement vacuum pump, liquid ring vacuum pump, momentum transfer vacuum pump, regenerative vacuum pump, a venturi vacuum pump, or other.
Following is an example method of grasping items, comprising the steps of:
As described below, in one embodiment, the vacuum pump system is operable for applying a high vacuum flow rate of at least 60 scfm (standard cubic feet per minute) through the suction cup unit 100 of the suction head 50 when the pick-up apparatus is free from grasping a target object (i.e., no item is being grasped by the suction cup unit 100).
A cup screen element 110 is optionally provided and disposed within the flexible cup section 105, as shown in
The screen 110, which may be replaceable, may be integrated into the flexible cup section 105. The screen 110 is sized for the screening of materials of a desired size that are small enough or pliable enough to be suctioned into an inner chamber 107 of the flexible cup section 105, but are of such a size (or type, e.g., pliable) that would obstruct the vacuum system. The design of the screen 110 (e.g., the size of the hexagonal openings) is such as to maintain adequate (high) vacuum air flow and not become clogged by dirt and debris while promoting the full grasping functionality. Likewise, miscellaneous smaller items of certain size that are not targeted, but are in the target area, are screened by the screen 110 such that the flexible cup section 105 and any subsequent vacuum hoses 18, 38 do not become clogged with foreign objects, while particles of a given small size (that will not obstruct the vacuum system) are allowed to pass through the screen opening without clogging the screen 110 itself. The screen is sized to have openings large enough to avoid disrupting the high vacuum flow rate but small enough to screen undesirably large (or alternately pliable) items from passing through the suction head. The optional pressure source 59 may optionally assist in removing miscellaneous items trapped by the screen 110, blowing those items back out of the suction cup unit 100.
The optional foam lip unit 112 (of
The dual vacuum pumps 12, 32 connected to respective vacuum connectors 54, 56 combine to provide for a desired high vacuum air flow through lower pipe section 60 and the inner chamber 107 of the flexible cup section 105.
The flexible cup sections 105, 205 may be made of a suitable flexible material such as a flexible polymer material, e.g. polyurethane, or combinations thereof.
The design of the suction cup units may be directed to vacuum handling, that is, to create a low pressure to generate lift and holding force. In an example scenario with the suction cup positioned above the object, this lifting and holding force is accomplished by creating contact with the object and evacuating the air from above the contact area of the object. In order to achieve the vacuum, more air should be evacuated through the suction cup than is leaked through the area of contact. The design of certain embodiments described herein may function by optimizing these two aspects.
First, sealing the object and minimizing leaks into the vacuum chamber is fundamentally achieved by promoting maximum compliance of the suction cup to the surface of the object. The suction cup may be configured to be pressed against the target item without requirement of preserving the condition of the item. A multi-bellow design may allow the flexible cup section to articulate and align to non-orthogonal surfaces. In suction cup unit 200, the soft lip 205c that forms the base of suction cup unit 200 is flexible so that it can conform to ridges on the object 120. Alternately, the optional foam unit 112 (shown attached to the bottom of the suction cup unit 100 of
Second, the bore of the suction cup unit 100,200 is optimized to allow adequate (high) vacuum air flow. This high vacuum air flow capacity of the suction cup is provided to generate sufficient lift force when targeting objects with highly irregular surfaces, even porous surfaces or those containing hole(s) can be grasped. The high vacuum air flow also increases the rate of vacuum creation, which increases the speed in which an object is grasped.
The relative size of the flow opening area (determined by diameter A,A1 inlet flow opening 106,206) versus the area of the cup opening (determined by diameter D,D1 of flexible cup section internal opening 107,207) may be designed to maximize the lifting force for the application of grasping items of different/indeterminate size and shape. Suction/lifting force is a function of two variables: area and pressure. If the suction cup opening area (determined by diameter D,D1) is too large, air may not be evacuated fast enough to create the pressure differential needed to produce adequate lifting force. If the suction cup lip area is too small, a large enough lifting force might not be applied for larger/heavier object no matter what the pressure differential. As described herein, the suction cup opening area refers to the area determined by the inner diameter D,D1 of the flexible cup section 105,205.
The suction cups employing smaller openings attempt to be as efficient as possible (i.e., lowest power consumption) and employ smaller flow openings (on the order of ½ inch or smaller) according to a lower flow rate (about 10 scfm, or at most 40 scfm) (scfm=standard cubic feet per minute) and thus can only efficiently/consistently pick up smooth surface objects. Further, the flow rate through the smaller cup opening is limited, that is, the smaller ½ inch opening suction cup cannot achieve a higher flow rate, no matter the vacuum pressure applied, due to limitations allowed by air speed from subsonic to supersonic as choked flow ensues.
In contrast to other systems employing smaller openings and lower flow rates, certain embodiments described herein may provide a higher desired flow rate, e.g., a high subsonic vacuum air flow rate of at least 60 scfm, or in a range of 60 scfm to 120 scfm, during free flow when the pick-up apparatus is free from grasping a target object (i.e., no item is being grasped by the suction cup 100,200) which is achievable through the larger flow opening area (determined by A,A1) and with a ratio of inlet flow opening area to flexible cup section opening area (ND; A1/D1) of at least 0.46, or between 0.36 and 1.44, or between 0.46 and 1.15. Further, in one example, the flow opening area is such that the minimum flow rate (60 scfm) does not produce a ratio of volumetric flow rate to area which exceeds Mach 0.2, under standard conditions for temperature and pressure.
As noted, in order to create a lower pressure, more air should be evacuated than is leaked into the cavity of the suction cup. Supplemental methods/systems for closing off the gaps responsible for air leakage are envisioned.
Table A below provides vacuum pump data for an example vacuum pump suitable for use in the present system, the pump being a model piClassic available from Piab USA, Inc. of Hingham, Mass.
The vacuum pump may provide a relatively high vacuum level such as at least 16 inHG at zero air flow. To further accommodate the higher air flow rate, in an embodiment, the supply lines 18-22, 38-42 and 60 also have large (internal) diameter.
As a supplement (i.e., in conjunction with) or stand-alone, the grasping mechanism may comprise a mechanical device that pierces target objects to control and manipulate them. One such application of this design includes three primary features; a pointed flute/spike, an object contactor, and a ridged work surface.
In one embodiment, the flute 302 includes a proximal end 304 attached to a drive/support mechanism of a robotic arm (as in a prior embodiment), a pointed distal end 308 for piercing the object 320, and a knurled or threaded end section 306 extending from the center to the pointed distal end 308. While the object 320 is pinned against the work surface 315, the flute 302 may be inserted into the object 320, the pointed distal end 308 piercing the wall of the object. The end section 306 may optionally comprise a spiral thread or threaded knurl section, and the flute 302 may then be axially rotated (in a first direction) during insertion into the object 320. Once inserted, the end section 306 provides a friction connection enabling the object to be lifted off the work surface 315 (and held against the part stop 310) and manipulated to a desired position for ejection. To eject or deposit the object 320, as shown in
Other embodiments are envisioned. Although the description above contains certain specific details, these details should not be construed as limiting the scope of the invention, but as merely providing illustrations of some embodiments/examples. It should be understood that subject matter disclosed in one portion herein can be combined with the subject matter of one or more of other portions herein as long as such combinations are not mutually exclusive or inoperable.
The terms and descriptions used herein are set forth by way of illustration only and not meant as limitations. It will be obvious to those having skill in the art that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the inventions.
This application is a divisional of and claims the benefit under 35 U.S.C. § 121 of U.S. patent application Ser. No. 15/946,627 (now U.S. Pat. No. 10,668,630) filed Apr. 5, 2018, which is a non-provisional of and claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 62/548,817 filed Aug. 22, 2017, the disclosures of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2604351 | Rose | Jul 1952 | A |
3191982 | Goalard | Jun 1965 | A |
3934916 | Baker | Jan 1976 | A |
4019430 | Warren | Apr 1977 | A |
4635988 | Potters et al. | Jan 1987 | A |
4681063 | Hebrank | Jul 1987 | A |
4723353 | Monforte | Feb 1988 | A |
4768919 | Borgman et al. | Sep 1988 | A |
4805778 | Nambu | Feb 1989 | A |
5054831 | Ting | Oct 1991 | A |
5136979 | Paul | Aug 1992 | A |
5344202 | Ramler et al. | Sep 1994 | A |
5365693 | Van Wingerden | Nov 1994 | A |
5421685 | Elmer et al. | Jun 1995 | A |
5800256 | Bermudez | Sep 1998 | A |
5868238 | Bonnet | Feb 1999 | A |
6131973 | Trudeau | Oct 2000 | A |
6318777 | Tanaka et al. | Nov 2001 | B1 |
6343415 | Okuda et al. | Feb 2002 | B1 |
6514018 | Martinez et al. | Feb 2003 | B2 |
6860531 | Sherwin | Mar 2005 | B2 |
6971838 | Johnson et al. | Dec 2005 | B2 |
6979032 | Damhuis | Dec 2005 | B2 |
7000311 | Reimann | Feb 2006 | B1 |
7004522 | Nagai et al. | Feb 2006 | B2 |
7065864 | Yamamoto et al. | Jun 2006 | B2 |
7261350 | Isetani et al. | Aug 2007 | B2 |
7263890 | Takahashi | Sep 2007 | B2 |
9527682 | Endlicher | Dec 2016 | B2 |
10668630 | Robinson | Jun 2020 | B2 |
20040094979 | Damhuis | May 2004 | A1 |
20100135760 | Hjornet | Jun 2010 | A1 |
20110254298 | Lomerson, Jr. et al. | Oct 2011 | A1 |
20150375401 | Dunkmann et al. | Dec 2015 | A1 |
20160059425 | Andersen | Mar 2016 | A1 |
20170355083 | Wigren et al. | Dec 2017 | A1 |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2018/026563, dated Sep. 17, 2018, 15 pages. |
Website: “AMP Robotics announces second recycling robot . . . ” https://www.amprobotics.com/single-post/2017/08/29/AMP-Robotics-announces-a-second-recycling-robot-using-artificial-intelligence-is-being-installed-to-recover-food-and-beverage-cartons (two pages) Visited Nov. 1, 2017. |
Website: “AMP Robotics Featured on CBS News” https://www.amprobotics.com/single-post/2017/05/19/AMP-Robotics-Featured-on-CBS-News (one page) Visited Nov. 1, 2017. |
Website: Robotics Industries Association, Product Catalog, DURAFLEX® Suction Cups https://www.robotics.org/product-catalog-detail.cfm?productid=3142 (two pages) Visited Oct. 15, 2018. |
Article: “Recycling robotics uses AI to sort cartons from other materials” William Reed's DairyReporter https://www.dairyreporter.com/Article/2017/03/31/Recycling-robotics-uses-AI-to-sort-cartons-from-other-material (two pages) (Mar. 30, 2017) Visited Nov. 21, 2017. |
European Patent Office, Extended European Search Report for EP Application No. 18848509.8, dated Jun. 11, 2021, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20200298421 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62548817 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15946627 | Apr 2018 | US |
Child | 16890497 | US |