This application is one of three patent applications having a same title of “HIGH SPEED MODULAR JACK” and being filed on a same date.
The present invention relates to modular jack, and particularly, to a high speed modular jack having stacked mating ports.
U.S. Pat. No. 6,655,988, issued to Simmons et al. on Dec. 2, 2003, discloses a stacked jack modular jack assembly having a multi-port housing. The assembly includes the housing, a plurality of jack modules, a plurality of LEDs, and a plurality of LED modules. The jack module 10 includes an outer insulating housing holding a jack subassembly. The jack subassembly comprises an upper jack portion, an intermediate shield, and a lower jack portion, a lower housing portion, two vertical component boards, and a vertical shield member disposed between the two vertical component boards.
U.S. Pat. No. 6,659,807, issued to Zheng et al. on Dec. 9, 2003, discloses another multiport modular jack. The modular jack has an insulating housing and a plurality of jack subassemblies. Each jack subassembly has a base member, a first and second horizontal printed circuit boards (PCB), a pair of insert portions mounted on corresponding PCBs, and a plurality of terminals insert molded in the insert portions. One of the insert portions has a plurality of first positioning posts and first mounting holes, the other insert portion has a plurality of second positioning posts and mounting holes second stably engaging with the first mounting holes and the first positioning posts.
U.S. Pat. No. 6,511,348, issued to Wojtacki et al. on Jan. 28, 2003, discloses another multiport modular jack. The modular jack comprises an outer housing and a plurality of modular jack subassemblies. The modular jack subassemblies are comprised of an elongate beam support having a plurality of modular jack contacts on both sides thereof. The contacts extend into printed circuit board contacts and extend to and beyond the side edges of the elongate beam support, leaving the space above and below the printed circuit board contacts and the beam support free, to accommodate signal conditioning component. Two printed circuit board modules are mounted orthogonally to the side edges of the beam support and include signal conditioning components. A vertical shield plate is interposed between two adjacent subassemblies.
Such multi-port connectors are used for networks and operated at high rates of one gigabyte and higher so that excellent conditioning of the signals to be transferred is required. Shielding is therefore normally necessary in order for example to provide a so-called Common Mode Rejection (CMR) and to guarantee a specified electromagnetic compatibility (EMC) and/or resistance to electromagnetic disturbance. For the purpose of conditioning the signals it is therefore further necessary to incorporate within the arrangement corresponding components such as particularly magnet coils but also capacitive components in order to correspondingly condition the signals.
An object of the invention consequently consists of providing a new and substantially improved modular jack connector structure with respect to the prior art and particularly for use in the case of Ethernet networks so as to provide a modular jack connector with complete shielding between any two adjacent ports and required signals conditioning.
In accordance with the invention, a modular jack connector is therefore provided adapted to be mounted onto a horizontal mother PCB. The modular jack comprises a housing defining an upper port and a lower port vertically stacked under the upper port, and a contact module assembled to the housing. The contact module further comprises an upper row of mating contacts extending into the upper port for mating with a module plug inserted therein, a horizontal upper PCB bearing the upper row of contacts, a vertical right PCB electrically connecting the upper PCB, a plurality of right transferring contacts electrically connecting the right PCB to the horizontal mother PCB, a lower row of mating contacts extending into the lower port for mating with another module plug inserted therein, a horizontal lower PCB bearing the lower row of contacts, a vertical left PCB electrically connecting the lower PCB, a plurality of left transferring contacts electrically connecting the left PCB to the horizontal mother PCB.
In accordance with the invention, another modular jack connector is therefore provided to be mounted onto a horizontal mother PCB. The modular jack comprises a housing defining an upper port and a lower port vertically stacked under the upper port; and a contact module assembled to the housing. The contact module further comprises an upper row of mating contacts extending into the upper port for mating with a module plug inserted therein, a vertical right PCB electrically connecting the upper mating contacts, a plurality of right transferring contacts for electrically connecting the right PCB to the horizontal mother PCB, a lower row of mating contacts extending into the lower port for mating with another module plug inserted therein, a vertical left PCB electrically connecting the lower mating contacts, a plurality of left transferring contacts for electrically connecting the left PCB to the horizontal mother PCB, a left plastic body supporting the left PCB, a right plastic body supporting the right PCB, and a vertical shield plate sandwiched between the left plastic body and the right plastic body.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of a preferred embodiment when taken in conjunction with the accompanying drawings.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Reference will now be made to the drawing figures to describe the present invention in detail.
Referring to
Referring to
Referring to
The front plastic body 415 is unitarily injection molded with a horizontal board 410. The horizontal board 410 has opposite top face and bottom face. The front plastic body 415 forms two upper guide slots 414 laterally opening face to face and an upper post 412 on the top face, and two lower guide slots 414 laterally opening face to face and a lower post 412 on the bottom face. When the upper and the lower circuit boards 43, 45 are assembled to the front plastic body 415, the circuit board 43, 45 are obliquely sliding onto the top and the bottom face under the guide of the guide slots 414 and then positioned by the post 412.
Referring to
The vertical shield plate 50 has a marginal edge being scaled as possible so that the crosstalk is better shielded between the upper ports 204 and the lower ports 204. In the present embodiment, the marginal edge extends beyond the marginal edges of the left PCB 46 and the right PCB 47 in all directions. The vertical shield plate 50 has an upper edge 501 extending along upwardly beyond a top face of the contact module 400 and reaching the outer shell 126, 128. The housing 200 defines a top slot 201 to receive the upper edge 501 of the vertical shield plate 50.
The left PCB 46 and the right PCB 47 sandwich opposite sides of the center bracket 500. The left PCB 46 and the right PCB 47 have interior faces facing to each other and a plurality of electronic components mounted thereon. The left plastic body 48 defines cavities receiving the electronic components on the left PCB 46. The left PCB 46 defines a lower slot 464 opening forwardly and receiving a left edge 451 of the lower PCB 45. A plurality of conductive pads 453 are disposed on opposite surface of the lower PCB 45 and lined along the left edge 451. A corresponding number of conductive pads 466 are disposed along opposite sides of the lower slot 464 on an exterior face of the left PCB 46. A number of connecting conductors 468 electrically connect the conductive pads 453 of the lower PCB 45 to the conductive pads 466 of the left PCB 46. The right plastic body 49 defines cavities receiving the electronic components on the right PCB 47. The right PCB 47 defines an upper slot 474 opening forwardly and receiving a right edge 431 of the upper PCB 43. A plurality of conductive pads 433 are disposed on opposite surface of the lower PCB 43 and lined along the left edge 431. A corresponding number of conductive pads 476 are disposed along opposite sides of the upper slot 474 on an exterior face of the right PCB 47. A number of connecting conductors 478 electrically connect the conductive pads 433 of the upper PCB 43 to the conductive pads 476 of the right PCB 47.
It is noted that as an alternative embodiment of the present invention, the upper PCB 45 and the left PCB 46 are redesigned to be electrically connected, and the lower PCB 43 and the right PCB 47 are redesigned to be electrically connected.
Referring to
Referring to
Referring to
The plastic body 55 defines a left slot 552 and a right slot 553 extending along a front-to-rear direction on opposite side. The left slot 552 mates a rib (not shown) of the housing and receives the right edge 431 of the upper PCB 43. The right slot 553 mates a rib 207 of the housing and receives the left edge 451 of the lower PCB 45. The shield plate 548 is bent according to the shape of the left slot 552 and the right slot 553, so that the plastic body 55 could be easier for injection molding. The plastic body 55 further forms two ribs 556 extending along the front-to-rear direction and oppositely protruding below the contact modules 400, which helps to fix the contact modules 400 and provide a press force when the modular jack 100 is mounted onto the PCB 120.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
201010200905.5 | Jun 2010 | CN | national |