The present invention relates to optical character recognition using image-processing techniques, and more particularly to methods for template matching and symbol interpretation.
Generally speaking, optical character recognition (OCR) attempts to decode symbols using image-processing techniques. Typically, such an approach is time-consuming, as it involves moving outline templates around, and performing calculations for each position. A high-speed method capable of efficient optical character recognition is needed.
Several attempts have been made to improve optical character recognition. For example, U.S. Pat. No. 5,317,652 by Chatterjee discloses a character recognition system implementing concurrent processing and vector correlation. Specifically, a character image in a buffer is vector-correlated with character templates represented as discrete character skeletons comprised of dots. Although the reference discloses comparison of dots around a centerline template, it does not mention assigning template scores based on the number of dots inside or outside the printed character. U.S. Pat. No. 7,724,958 by Walch discloses a biometric handwriting identification system for converting characters and a writing sample into mathematical graphs, followed by using optical character recognition to identify features in the handwriting sample. The reference mentions using OCR to compare centerlines of stored and current images. However, to score a character match the template is superimposed over the actual image, and pixels of the actual image are then analyzed. The method does not use an analysis of a limited set of points to score a character match. U.S. Pat. No. 6,628,808 by Bach et al. discloses a method of verifying a scanned image using a topological analysis. To score a character match at a given candidate location, a template is superimposed over an actual image, and pixels on the actual image falling beneath the centerline pixels on the template are analyzed. Similar to U.S. Pat. No. 7,724,958, the method relies on pixel analysis, and does not mention centerline analysis conducted with a limited set of points, and may therefore be rather time-consuming.
Therefore, a need exists for a quick and efficient template-matching method having OCR decoding time comparable to barcode scanning time.
Accordingly, the present invention embraces methods for template matching and symbol interpretation.
In an exemplary embodiment, a method for character interpretation includes iteratively selecting a centerline template to cast over a character; determining positions of each member of the centerline template with respect to a principal tracing path of the character; assessing score of the projected template; selecting a centerline template having highest score, and interpreting the character using the selected template.
In another exemplary embodiment, a method for template matching includes iteratively selecting a template set of points to project over a centerline of a candidate character; conducting a template matching analysis, and assigning a score to each template; and selecting a template set with a highest assigned score.
In yet another exemplary embodiment, the present invention embraces a method for symbol recognition. The method includes selecting a point array, and projecting it onto an image of a symbol; determining a rank of the array based on a primary analysis of positions of array points with respect to a printing of the symbol; repeating the process to assign a rank to each point array of a set of point arrays; selecting one or more point arrays having a top rank to conduct a secondary analysis of proximity of the array points to a boundary of the printing of the symbol; and using results of the secondary analysis to select a point array for symbol recognition.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces methods for optical character recognition (OCR) using image-processing techniques.
OCR decoding described in the prior art often comprises a template-match algorithm where an outline of each character is moved around a candidate character until a best fit is obtained. The fit may then be scored as to how much of the character is inside the outline. The template with the best score is considered the decode of the text character.
On the contrary, the present invention, while still using the template method, focuses on the character centerline, thus noticeably reducing the required number of points. Additionally, if a depleted centerline is used, the number of points can be as low as about 20.
In the template outline methods that include character scores, printed matter outside the template may lead to lower scores. While the centerline method of the present invention can have this feature also, it is possible for part of the centerline template to be “just barely” in a character and still score well in that part, when in fact, the template is not an optimal match.
For example, to further improve the match while taking only a small amount of processing power, the method can include adding a parameter to the centerline score describing how close to a character boundary the centerline is. For instance, the top of the “B” is very close to a character boundary, whereas the bottom straight line formed by the points of the template is approximately equidistant from two character boundaries.
Additionally, for character centerline templates with a reasonably good score, a secondary calculation can be performed. For example, the “B” has a moderate score with the “2”, and would likely also have a moderate score with an “8” and an “E”. Therefore, after the primary centerline template processing is complete (which may be quite fast), the top few match candidates can be submitted for the secondary check of boundary proximity. Such an approach may produce results comparable to those acquired with an outline template match, while only needing to perform the calculations on a small number of candidate characters.
Additionally, the method can include generating a circle of diameter of the approximate stroke width around the few candidate characters. The result may be similar to that of performing a complete template outline test on the reduced point count centerline. The method can include keeping track of the local slope of the centerline and generating a vector perpendicular to each point in the centerline and measuring how far the character boundary is at that point. The slope method may be even faster than the circle method. Additionally or alternatively, other methods of determining the quality of a test point within an unknown character can be utilized.
In addition to OCRB font, the method described herein can be applied to other fonts as well. The invention can be used with human-readable digits below an EAN/UPC symbols as well as with OCR reading applications, such as passport and license plate reading.
In an embodiment, assessing score at 108 can include calculating proximity of the centerline template members to a center of the principal tracing path. Additionally or alternatively, assessing score at 108 can include calculating proximity of the centerline template members to one or more boundaries of the character. Additionally or alternatively, assessing score at 108 can include determining a distance to one or more boundaries of the character with respect to series of rays emanating outwards from one or more points.
In an embodiment, conducting a template matching analysis at 204 can include counting a number of points overlapping with a printing of the candidate character, and/or calculating proximity of the overlapping points to a boundary of the printing.
In an embodiment, projecting a template set of points can include projecting a template set having a point spacing of about one-sixth of a height of the candidate character. Other point densities can be used as well, depending on an embodiment. Projecting a template set of points can include projecting a template set having uniform point spacing throughout the character as shown in
In an embodiment, the method 200 can further include selecting one or more template sets having highest assigned scores to analyze proximity of one or more template set points to a boundary of the printing of the candidate character.
In an embodiment, determining a rank at 306 can include determining a number of the array points overlapping with the printing of the symbol. Additionally, the method 300 can further include determining the rank based on proximity of one or more array points to the boundary of the printing of the symbol.
In an embodiment, conducting a secondary analysis at 310 can include projecting a circle having a diameter of an approximate stroke width of the symbol around one or more points. Additionally or alternatively, conducting a secondary analysis at 310 can include generating a vector perpendicular to one or more points of the point array and measuring proximity of such points to the boundary of the printing of the symbol.
In an embodiment, the method 300 can further include applying the point array with a top rank for monospace font character recognition. For example, the method can further include applying the point array with a top rank for OCRB font character recognition.
Device and method components are meant to show only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. In various embodiments, the sequence in which the elements of appear in exemplary embodiments disclosed herein may vary. Two or more method steps may be performed simultaneously or in a different order than the sequence in which the elements appear in the exemplary embodiments.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
U.S. Pat. Nos. 6,832,725; 7,128,266;
U.S. Pat. Nos. 7,159,783; 7,413,127;
U.S. Pat. Nos. 7,726,575; 8,294,969;
U.S. Pat. Nos. 8,317,105; 8,322,622;
U.S. Pat. Nos. 8,366,005; 8,371,507;
U.S. Pat. Nos. 8,376,233; 8,381,979;
U.S. Pat. Nos. 8,390,909; 8,408,464;
U.S. Pat. Nos. 8,408,468; 8,408,469;
U.S. Pat. Nos. 8,424,768; 8,448,863;
U.S. Pat. Nos. 8,457,013; 8,459,557;
U.S. Pat. Nos. 8,469,272; 8,474,712;
U.S. Pat. Nos. 8,479,992; 8,490,877;
U.S. Pat. Nos. 8,517,271; 8,523,076;
U.S. Pat. Nos. 8,528,818; 8,544,737;
U.S. Pat. Nos. 8,548,242; 8,548,420;
U.S. Pat. Nos. 8,550,335; 8,550,354;
U.S. Pat. Nos. 8,550,357; 8,556,174;
U.S. Pat. Nos. 8,556,176; 8,556,177;
U.S. Pat. Nos. 8,559,767; 8,599,957;
U.S. Pat. Nos. 8,561,895; 8,561,903;
U.S. Pat. Nos. 8,561,905; 8,565,107;
U.S. Pat. Nos. 8,571,307; 8,579,200;
U.S. Pat. Nos. 8,583,924; 8,584,945;
U.S. Pat. Nos. 8,587,595; 8,587,697;
U.S. Pat. Nos. 8,588,869; 8,590,789;
U.S. Pat. Nos. 8,596,539; 8,596,542;
U.S. Pat. Nos. 8,596,543; 8,599,271;
U.S. Pat. Nos. 8,599,957; 8,600,158;
U.S. Pat. Nos. 8,600,167; 8,602,309;
U.S. Pat. Nos. 8,608,053; 8,608,071;
U.S. Pat. Nos. 8,611,309; 8,615,487;
U.S. Pat. Nos. 8,616,454; 8,621,123;
U.S. Pat. Nos. 8,622,303; 8,628,013;
U.S. Pat. Nos. 8,628,015; 8,628,016;
U.S. Pat. Nos. 8,629,926; 8,630,491;
U.S. Pat. Nos. 8,635,309; 8,636,200;
U.S. Pat. Nos. 8,636,212; 8,636,215;
U.S. Pat. Nos. 8,636,224; 8,638,806;
U.S. Pat. Nos. 8,640,958; 8,640,960;
U.S. Pat. Nos. 8,643,717; 8,646,692;
U.S. Pat. Nos. 8,646,694; 8,657,200;
U.S. Pat. Nos. 8,659,397; 8,668,149;
U.S. Pat. Nos. 8,678,285; 8,678,286;
U.S. Pat. Nos. 8,682,077; 8,687,282;
U.S. Pat. Nos. 8,692,927; 8,695,880;
U.S. Pat. Nos. 8,698,949; 8,717,494;
U.S. Pat. Nos. 8,717,494; 8,720,783;
U.S. Pat. Nos. 8,723,804; 8,723,904;
U.S. Pat. Nos. 8,727,223; D702,237;
U.S. Pat. Nos. 8,740,082; 8,740,085;
U.S. Pat. Nos. 8,746,563; 8,750,445;
U.S. Pat. Nos. 8,752,766; 8,756,059;
U.S. Pat. Nos. 8,757,495; 8,760,563;
U.S. Pat. Nos. 8,763,909; 8,777,108;
U.S. Pat. Nos. 8,777,109; 8,779,898;
U.S. Pat. Nos. 8,781,520; 8,783,573;
U.S. Pat. Nos. 8,789,757; 8,789,758;
U.S. Pat. Nos. 8,789,759; 8,794,520;
U.S. Pat. Nos. 8,794,522; 8,794,525;
U.S. Pat. Nos. 8,794,526; 8,798,367;
U.S. Pat. Nos. 8,807,431; 8,807,432;
U.S. Pat. Nos. 8,820,630; 8,822,848;
U.S. Pat. Nos. 8,824,692; 8,824,696;
U.S. Pat. Nos. 8,842,849; 8,844,822;
U.S. Pat. Nos. 8,844,823; 8,849,019;
U.S. Pat. Nos. 8,851,383; 8,854,633;
U.S. Pat. Nos. 8,866,963; 8,868,421;
U.S. Pat. Nos. 8,868,519; 8,868,802;
U.S. Pat. Nos. 8,868,803; 8,870,074;
U.S. Pat. Nos. 8,879,639; 8,880,426;
U.S. Pat. Nos. 8,881,983; 8,881,987;
U.S. Pat. Nos. 8,903,172; 8,908,995;
U.S. Pat. Nos. 8,910,870; 8,910,875;
U.S. Pat. Nos. 8,914,290; 8,914,788;
U.S. Pat. Nos. 8,915,439; 8,915,444;
U.S. Pat. Nos. 8,916,789; 8,918,250;
U.S. Pat. Nos. 8,918,564; 8,925,818;
U.S. Pat. Nos. 8,939,374; 8,942,480;
U.S. Pat. Nos. 8,944,313; 8,944,327;
U.S. Pat. Nos. 8,944,332; 8,950,678;
U.S. Pat. Nos. 8,967,468; 8,971,346;
U.S. Pat. Nos. 8,976,030; 8,976,368;
U.S. Pat. Nos. 8,978,981; 8,978,983;
U.S. Pat. Nos. 8,978,984; 8,985,456;
U.S. Pat. Nos. 8,985,457; 8,985,459;
U.S. Pat. Nos. 8,985,461; 8,988,578;
U.S. Pat. Nos. 8,988,590; 8,991,704;
U.S. Pat. Nos. 8,996,194; 8,996,384;
U.S. Pat. Nos. 9,002,641; 9,007,368;
U.S. Pat. Nos. 9,010,641; 9,015,513;
U.S. Pat. Nos. 9,016,576; 9,022,288;
U.S. Pat. Nos. 9,030,964; 9,033,240;
U.S. Pat. Nos. 9,033,242; 9,036,054;
U.S. Pat. Nos. 9,037,344; 9,038,911;
U.S. Pat. Nos. 9,038,915; 9,047,098;
U.S. Pat. Nos. 9,047,359; 9,047,420;
U.S. Pat. Nos. 9,047,525; 9,047,531;
U.S. Pat. Nos. 9,053,055; 9,053,378;
U.S. Pat. Nos. 9,053,380; 9,058,526;
U.S. Pat. Nos. 9,064,165; 9,064,167;
U.S. Pat. Nos. 9,064,168; 9,064,254;
U.S. Pat. Nos. 9,066,032; 9,070,032;
U.S. Design Pat. No. D716,285;
U.S. Design Pat. No. D723,560;
U.S. Design Pat. No. D730,357;
U.S. Design Pat. No. D730,901;
U.S. Design Pat. No. D730,902;
U.S. Design Pat. No. D733,112;
U.S. Design Pat. No. D734,339;
International Publication No. 2013/163789;
International Publication No. 2013/173985;
International Publication No. 2014/019130;
International Publication No. 2014/110495;
U.S. Patent Application Publication No. 2008/0185432;
U.S. Patent Application Publication No. 2009/0134221;
U.S. Patent Application Publication No. 2010/0177080;
U.S. Patent Application Publication No. 2010/0177076;
U.S. Patent Application Publication No. 2010/0177707;
U.S. Patent Application Publication No. 2010/0177749;
U.S. Patent Application Publication No. 2010/0265880;
U.S. Patent Application Publication No. 2011/0202554;
U.S. Patent Application Publication No. 2012/0111946;
U.S. Patent Application Publication No. 2012/0168511;
U.S. Patent Application Publication No. 2012/0168512;
U.S. Patent Application Publication No. 2012/0193423;
U.S. Patent Application Publication No. 2012/0203647;
U.S. Patent Application Publication No. 2012/0223141;
U.S. Patent Application Publication No. 2012/0228382;
U.S. Patent Application Publication No. 2012/0248188;
U.S. Patent Application Publication No. 2013/0043312;
U.S. Patent Application Publication No. 2013/0082104;
U.S. Patent Application Publication No. 2013/0175341;
U.S. Patent Application Publication No. 2013/0175343;
U.S. Patent Application Publication No. 2013/0257744;
U.S. Patent Application Publication No. 2013/0257759;
U.S. Patent Application Publication No. 2013/0270346;
U.S. Patent Application Publication No. 2013/0287258;
U.S. Patent Application Publication No. 2013/0292475;
U.S. Patent Application Publication No. 2013/0292477;
U.S. Patent Application Publication No. 2013/0293539;
U.S. Patent Application Publication No. 2013/0293540;
U.S. Patent Application Publication No. 2013/0306728;
U.S. Patent Application Publication No. 2013/0306731;
U.S. Patent Application Publication No. 2013/0307964;
U.S. Patent Application Publication No. 2013/0308625;
U.S. Patent Application Publication No. 2013/0313324;
U.S. Patent Application Publication No. 2013/0313325;
U.S. Patent Application Publication No. 2013/0342717;
U.S. Patent Application Publication No. 2014/0001267;
U.S. Patent Application Publication No. 2014/0008439;
U.S. Patent Application Publication No. 2014/0025584;
U.S. Patent Application Publication No. 2014/0034734;
U.S. Patent Application Publication No. 2014/0036848;
U.S. Patent Application Publication No. 2014/0039693;
U.S. Patent Application Publication No. 2014/0042814;
U.S. Patent Application Publication No. 2014/0049120;
U.S. Patent Application Publication No. 2014/0049635;
U.S. Patent Application Publication No. 2014/0061306;
U.S. Patent Application Publication No. 2014/0063289;
U.S. Patent Application Publication No. 2014/0066136;
U.S. Patent Application Publication No. 2014/0067692;
U.S. Patent Application Publication No. 2014/0070005;
U.S. Patent Application Publication No. 2014/0071840;
U.S. Patent Application Publication No. 2014/0074746;
U.S. Patent Application Publication No. 2014/0076974;
U.S. Patent Application Publication No. 2014/0078341;
U.S. Patent Application Publication No. 2014/0078345;
U.S. Patent Application Publication No. 2014/0097249;
U.S. Patent Application Publication No. 2014/0098792;
U.S. Patent Application Publication No. 2014/0100813;
U.S. Patent Application Publication No. 2014/0103115;
U.S. Patent Application Publication No. 2014/0104413;
U.S. Patent Application Publication No. 2014/0104414;
U.S. Patent Application Publication No. 2014/0104416;
U.S. Patent Application Publication No. 2014/0104451;
U.S. Patent Application Publication No. 2014/0106594;
U.S. Patent Application Publication No. 2014/0106725;
U.S. Patent Application Publication No. 2014/0108010;
U.S. Patent Application Publication No. 2014/0108402;
U.S. Patent Application Publication No. 2014/0110485;
U.S. Patent Application Publication No. 2014/0114530;
U.S. Patent Application Publication No. 2014/0124577;
U.S. Patent Application Publication No. 2014/0124579;
U.S. Patent Application Publication No. 2014/0125842;
U.S. Patent Application Publication No. 2014/0125853;
U.S. Patent Application Publication No. 2014/0125999;
U.S. Patent Application Publication No. 2014/0129378;
U.S. Patent Application Publication No. 2014/0131438;
U.S. Patent Application Publication No. 2014/0131441;
U.S. Patent Application Publication No. 2014/0131443;
U.S. Patent Application Publication No. 2014/0131444;
U.S. Patent Application Publication No. 2014/0131445;
U.S. Patent Application Publication No. 2014/0131448;
U.S. Patent Application Publication No. 2014/0133379;
U.S. Patent Application Publication No. 2014/0136208;
U.S. Patent Application Publication No. 2014/0140585;
U.S. Patent Application Publication No. 2014/0151453;
U.S. Patent Application Publication No. 2014/0152882;
U.S. Patent Application Publication No. 2014/0158770;
U.S. Patent Application Publication No. 2014/0159869;
U.S. Patent Application Publication No. 2014/0166755;
U.S. Patent Application Publication No. 2014/0166759;
U.S. Patent Application Publication No. 2014/0168787;
U.S. Patent Application Publication No. 2014/0175165;
U.S. Patent Application Publication No. 2014/0175172;
U.S. Patent Application Publication No. 2014/0191644;
U.S. Patent Application Publication No. 2014/0191913;
U.S. Patent Application Publication No. 2014/0197238;
U.S. Patent Application Publication No. 2014/0197239;
U.S. Patent Application Publication No. 2014/0197304;
U.S. Patent Application Publication No. 2014/0214631;
U.S. Patent Application Publication No. 2014/0217166;
U.S. Patent Application Publication No. 2014/0217180;
U.S. Patent Application Publication No. 2014/0231500;
U.S. Patent Application Publication No. 2014/0232930;
U.S. Patent Application Publication No. 2014/0247315;
U.S. Patent Application Publication No. 2014/0263493;
U.S. Patent Application Publication No. 2014/0263645;
U.S. Patent Application Publication No. 2014/0267609;
U.S. Patent Application Publication No. 2014/0270196;
U.S. Patent Application Publication No. 2014/0270229;
U.S. Patent Application Publication No. 2014/0278387;
U.S. Patent Application Publication No. 2014/0278391;
U.S. Patent Application Publication No. 2014/0282210;
U.S. Patent Application Publication No. 2014/0284384;
U.S. Patent Application Publication No. 2014/0288933;
U.S. Patent Application Publication No. 2014/0297058;
U.S. Patent Application Publication No. 2014/0299665;
U.S. Patent Application Publication No. 2014/0312121;
U.S. Patent Application Publication No. 2014/0319220;
U.S. Patent Application Publication No. 2014/0319221;
U.S. Patent Application Publication No. 2014/0326787;
U.S. Patent Application Publication No. 2014/0332590;
U.S. Patent Application Publication No. 2014/0344943;
U.S. Patent Application Publication No. 2014/0346233;
U.S. Patent Application Publication No. 2014/0351317;
U.S. Patent Application Publication No. 2014/0353373;
U.S. Patent Application Publication No. 2014/0361073;
U.S. Patent Application Publication No. 2014/0361082;
U.S. Patent Application Publication No. 2014/0362184;
U.S. Patent Application Publication No. 2014/0363015;
U.S. Patent Application Publication No. 2014/0369511;
U.S. Patent Application Publication No. 2014/0374483;
U.S. Patent Application Publication No. 2014/0374485;
U.S. Patent Application Publication No. 2015/0001301;
U.S. Patent Application Publication No. 2015/0001304;
U.S. Patent Application Publication No. 2015/0003673;
U.S. Patent Application Publication No. 2015/0009338;
U.S. Patent Application Publication No. 2015/0009610;
U.S. Patent Application Publication No. 2015/0014416;
U.S. Patent Application Publication No. 2015/0021397;
U.S. Patent Application Publication No. 2015/0028102;
U.S. Patent Application Publication No. 2015/0028103;
U.S. Patent Application Publication No. 2015/0028104;
U.S. Patent Application Publication No. 2015/0029002;
U.S. Patent Application Publication No. 2015/0032709;
U.S. Patent Application Publication No. 2015/0039309;
U.S. Patent Application Publication No. 2015/0039878;
U.S. Patent Application Publication No. 2015/0040378;
U.S. Patent Application Publication No. 2015/0048168;
U.S. Patent Application Publication No. 2015/0049347;
U.S. Patent Application Publication No. 2015/0051992;
U.S. Patent Application Publication No. 2015/0053766;
U.S. Patent Application Publication No. 2015/0053768;
U.S. Patent Application Publication No. 2015/0053769;
U.S. Patent Application Publication No. 2015/0060544;
U.S. Patent Application Publication No. 2015/0062366;
U.S. Patent Application Publication No. 2015/0063215;
U.S. Patent Application Publication No. 2015/0063676;
U.S. Patent Application Publication No. 2015/0069130;
U.S. Patent Application Publication No. 2015/0071819;
U.S. Patent Application Publication No. 2015/0083800;
U.S. Patent Application Publication No. 2015/0086114;
U.S. Patent Application Publication No. 2015/0088522;
U.S. Patent Application Publication No. 2015/0096872;
U.S. Patent Application Publication No. 2015/0099557;
U.S. Patent Application Publication No. 2015/0100196;
U.S. Patent Application Publication No. 2015/0102109;
U.S. Patent Application Publication No. 2015/0115035;
U.S. Patent Application Publication No. 2015/0127791;
U.S. Patent Application Publication No. 2015/0128116;
U.S. Patent Application Publication No. 2015/0129659;
U.S. Patent Application Publication No. 2015/0133047;
U.S. Patent Application Publication No. 2015/0134470;
U.S. Patent Application Publication No. 2015/0136851;
U.S. Patent Application Publication No. 2015/0136854;
U.S. Patent Application Publication No. 2015/0142492;
U.S. Patent Application Publication No. 2015/0144692;
U.S. Patent Application Publication No. 2015/0144698;
U.S. Patent Application Publication No. 2015/0144701;
U.S. Patent Application Publication No. 2015/0149946;
U.S. Patent Application Publication No. 2015/0161429;
U.S. Patent Application Publication No. 2015/0169925;
U.S. Patent Application Publication No. 2015/0169929;
U.S. Patent Application Publication No. 2015/0178523;
U.S. Patent Application Publication No. 2015/0178534;
U.S. Patent Application Publication No. 2015/0178535;
U.S. Patent Application Publication No. 2015/0178536;
U.S. Patent Application Publication No. 2015/0178537;
U.S. Patent Application Publication No. 2015/0181093;
U.S. Patent Application Publication No. 2015/0181109;
U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);
U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);
U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);
U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);
U.S. patent application Ser. No. 14/150,393 for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);
U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);
U.S. patent application Ser. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);
U.S. patent application Ser, No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.);
U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering);
U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.);
U.S. patent application Ser. No. 14/277,337 for MULTIPURPOSE OPTICAL READER, filed May 14, 2014 (Jovanovski et al.);
U.S. patent application Ser. No. 14/283,282 for TERMINAL HAVING ILLUMINATION AND FOCUS CONTROL filed May 21, 2014 (Liu et al.);
U.S. patent application Ser. No. 14/327,827 for a MOBILE-PHONE ADAPTER FOR ELECTRONIC TRANSACTIONS, filed Jul. 10, 2014 (Hejl);
U.S. patent application Ser. No. 14/334,934 for a SYSTEM AND METHOD FOR INDICIA VERIFICATION, filed Jul. 18, 2014 (Hejl);
U.S. patent application Ser. No. 14/339,708 for LASER SCANNING CODE SYMBOL READING SYSTEM, filed Jul. 24, 2014 (Xian et al.);
U.S. patent application Ser. No. 14/340,627 for an AXIALLY REINFORCED FLEXIBLE SCAN ELEMENT, filed Jul. 25, 2014 (Rueblinger et al.);
U.S. patent application Ser. No. 14/446,391 for MULTIFUNCTION POINT OF SALE APPARATUS WITH OPTICAL SIGNATURE CAPTURE filed Jul. 30, 2014 (Good et al.);
U.S. patent application Ser. No. 14/452,697 for INTERACTIVE INDICIA READER, filed Aug. 6, 2014 (Todeschini);
U.S. patent application Ser. No. 14/453,019 for DIMENSIONING SYSTEM WITH GUIDED ALIGNMENT, filed Aug. 6, 2014 (Li et al.);
U.S. patent application Ser. No. 14/462,801 for MOBILE COMPUTING DEVICE WITH DATA COGNITION SOFTWARE, filed on Aug. 19, 2014 (Todeschini et al.);
U.S. patent application Ser. No. 14/483,056 for VARIABLE DEPTH OF FIELD BARCODE SCANNER filed Sep. 10, 2014 (McCloskey et al.);
U.S. patent application Ser. No. 14/513,808 for IDENTIFYING INVENTORY ITEMS IN A STORAGE FACILITY filed Oct. 14, 2014 (Singel et al.);
U.S. patent application Ser. No. 14/519,195 for HANDHELD DIMENSIONING SYSTEM WITH FEEDBACK filed Oct. 21, 2014 (Laffargue et al.);
U.S. patent application Ser. No. 14/519,179 for DIMENSIONING SYSTEM WITH MULTIPATH INTERFERENCE MITIGATION filed Oct. 21, 2014 (Thuries et al.);
U.S. patent application Ser. No. 14/519,211 for SYSTEM AND METHOD FOR DIMENSIONING filed Oct. 21, 2014 (Ackley et al.);
U.S. patent application Ser. No. 14/519,233 for HANDHELD DIMENSIONER WITH DATA-QUALITY INDICATION filed Oct. 21, 2014 (Laffargue et al.);
U.S. patent application Ser. No. 14/519,249 for HANDHELD DIMENSIONING SYSTEM WITH MEASUREMENT-CONFORMANCE FEEDBACK filed Oct. 21, 2014 (Ackley et al.);
U.S. patent application Ser. No. 14/527,191 for METHOD AND SYSTEM FOR RECOGNIZING SPEECH USING WILDCARDS IN AN EXPECTED RESPONSE filed Oct. 29, 2014 (Braho et al.);
U.S. patent application Ser. No. 14/529,563 for ADAPTABLE INTERFACE FOR A MOBILE COMPUTING DEVICE filed Oct. 31, 2014 (Schoon et al.);
U.S. patent application Ser. No. 14/529,857 for BARCODE READER WITH SECURITY FEATURES filed Oct. 31, 2014 (Todeschini et al.);
U.S. patent application Ser. No. 14/398,542 for PORTABLE ELECTRONIC DEVICES HAVING A SEPARATE LOCATION TRIGGER UNIT FOR USE IN CONTROLLING AN APPLICATION UNIT filed Nov. 3, 2014 (Bian et al.);
U.S. patent application Ser. No. 14/531,154 for DIRECTING AN INSPECTOR THROUGH AN INSPECTION filed Nov. 3, 2014 (Miller et al.);
U.S. patent application Ser. No. 14/533,319 for BARCODE SCANNING SYSTEM USING WEARABLE DEVICE WITH EMBEDDED CAMERA filed Nov. 5, 2014 (Todeschini);
U.S. patent application Ser. No. 14/535,764 for CONCATENATED EXPECTED RESPONSES FOR SPEECH RECOGNITION filed Nov. 7, 2014 (Braho et al.);
U.S. patent application Ser. No. 14/568,305 for AUTO-CONTRAST VIEWFINDER FOR AN INDICIA READER filed Dec. 12, 2014 (Todeschini);
U.S. patent application Ser. No. 14/573,022 for DYNAMIC DIAGNOSTIC INDICATOR GENERATION filed Dec. 17, 2014 (Goldsmith);
U.S. patent application Ser. No. 14/578,627 for SAFETY SYSTEM AND METHOD filed Dec. 22, 2014 (Ackley et al.);
U.S. patent application Ser. No. 14/580,262 for MEDIA GATE FOR THERMAL TRANSFER PRINTERS filed Dec. 23, 2014 (Bowles);
U.S. patent application Ser. No. 14/590,024 for SHELVING AND PACKAGE LOCATING SYSTEMS FOR DELIVERY VEHICLES filed Jan. 6, 2015 (Payne);
U.S. patent application Ser. No. 14/596,757 for SYSTEM AND METHOD FOR DETECTING BARCODE PRINTING ERRORS filed Jan. 14, 2015 (Ackley);
U.S. patent application Ser. No. 14/416,147 for OPTICAL READING APPARATUS HAVING VARIABLE SETTINGS filed Jan. 21, 2015 (Chen et al.);
U.S. patent application Ser. No. 14/614,706 for DEVICE FOR SUPPORTING AN ELECTRONIC TOOL ON A USER'S HAND filed Feb. 5, 2015 (Oberpriller et al.);
U.S. patent application Ser. No. 14/614,796 for CARGO APPORTIONMENT TECHNIQUES filed Feb. 5, 2015 (Morton et al.);
U.S. patent application Ser. No. 29/516,892 for TABLE COMPUTER filed Feb. 6, 2015 (Bidwell et al.);
U.S. patent application Ser. No. 14/619,093 for METHODS FOR TRAINING A SPEECH RECOGNITION SYSTEM filed Feb. 11, 2015 (Pecorari);
U.S. patent application Ser. No. 14/628,708 for DEVICE, SYSTEM, AND METHOD FOR DETERMINING THE STATUS OF CHECKOUT LANES filed Feb. 23, 2015 (Todeschini);
U.S. patent application Ser. No. 14/630,841 for TERMINAL INCLUDING IMAGING ASSEMBLY filed Feb. 25, 2015 (Gomez et al.);
U.S. patent application Ser. No. 14/635,346 for SYSTEM AND METHOD FOR RELIABLE STORE-AND-FORWARD DATA HANDLING BY ENCODED INFORMATION READING TERMINALS filed Mar. 2, 2015 (Sevier);
U.S. patent application Ser. No. 29/519,017 for SCANNER filed Mar. 2, 2015 (Zhou et al.);
U.S. patent application Ser. No. 14/405,278 for DESIGN PATTERN FOR SECURE STORE filed Mar. 9, 2015 (Zhu et al.);
U.S. patent application Ser. No. 14/660,970 for DECODABLE INDICIA READING TERMINAL WITH COMBINED ILLUMINATION filed Mar. 18, 2015 (Kearney et al.);
U.S. patent application Ser. No. 14/661,013 for REPROGRAMMING SYSTEM AND METHOD FOR DEVICES INCLUDING PROGRAMMING SYMBOL filed Mar. 18, 2015 (Soule et al.);
U.S. patent application Ser. No. 14/662,922 for MULTIFUNCTION POINT OF SALE SYSTEM filed Mar. 19, 2015 (Van Horn et al.);
U.S. patent application Ser. No. 14/663,638 for VEHICLE MOUNT COMPUTER WITH CONFIGURABLE IGNITION SWITCH BEHAVIOR filed Mar. 20, 2015 (Davis et al.);
U.S. patent application Ser. No. 14/664,063 for METHOD AND APPLICATION FOR SCANNING A BARCODE WITH A SMART DEVICE WHILE CONTINUOUSLY RUNNING AND DISPLAYING AN APPLICATION ON THE SMART DEVICE DISPLAY filed Mar. 20, 2015 (Todeschini);
U.S. patent application Ser. No. 14/669,280 for TRANSFORMING COMPONENTS OF A WEB PAGE TO VOICE PROMPTS filed Mar. 26, 2015 (Funyak et al.);
U.S. patent application Ser. No. 14/674,329 for AIMER FOR BARCODE SCANNING filed Mar. 31, 2015 (Bidwell);
U.S. patent application Ser. No. 14/676,109 for INDICIA READER filed Apr. 1, 2015 (Huck);
U.S. patent application Ser. No. 14/676,327 for DEVICE MANAGEMENT PROXY FOR SECURE DEVICES filed Apr. 1, 2015 (Yeakley et al.);
U.S. patent application Ser. No. 14/676,898 for NAVIGATION SYSTEM CONFIGURED TO INTEGRATE MOTION SENSING DEVICE INPUTS filed Apr. 2, 2015 (Showering);
U.S. patent application Ser. No. 14/679,275 for DIMENSIONING SYSTEM CALIBRATION SYSTEMS AND METHODS filed Apr. 6, 2015 (Laffargue et al.);
U.S. patent application Ser. No. 29/523,098 for HANDLE FOR A TABLET COMPUTER filed Apr. 7, 2015 (Bidwell et al.);
U.S. patent application Ser. No. 14/682,615 for SYSTEM AND METHOD FOR POWER MANAGEMENT OF MOBILE DEVICES filed Apr. 9, 2015 (Murawski et al.);
U.S. patent application Ser. No. 14/686,822 for MULTIPLE PLATFORM SUPPORT SYSTEM AND METHOD filed Apr. 15, 2015 (Qu et al.);
U.S. patent application Ser. No. 14/687,289 for SYSTEM FOR COMMUNICATION VIA A PERIPHERAL HUB filed Apr. 15, 2015 (Kohtz et al.);
U.S. patent application Ser. No. 29/524,186 for SCANNER filed Apr. 17, 2015 (Zhou et al.);
U.S. patent application Ser. No. 14/695,364 for MEDICATION MANAGEMENT SYSTEM filed Apr. 24, 2015 (Sewell et al.);
U.S. patent application Ser. No. 14/695,923 for SECURE UNATTENDED NETWORK AUTHENTICATION filed Apr. 24, 2015 (Kubler et al.);
U.S. patent application Ser. No. 29/525,068 for TABLET COMPUTER WITH REMOVABLE SCANNING DEVICE filed Apr. 27, 2015 (Schulte et al.);
U.S. patent application Ser. No. 14/699,436 for SYMBOL READING SYSTEM HAVING PREDICTIVE DIAGNOSTICS filed Apr. 29, 2015 (Nahill et al.);
U.S. patent application Ser. No. 14/702,110 for SYSTEM AND METHOD FOR REGULATING BARCODE DATA INJECTION INTO A RUNNING APPLICATION ON A SMART DEVICE filed May 1, 2015 (Todeschini et al.);
U.S. patent application Ser. No. 14/702,979 for TRACKING BATTERY CONDITIONS filed May 4, 2015 (Young et al.);
U.S. patent application Ser. No. 14/704,050 for INTERMEDIATE LINEAR POSITIONING filed May 5, 2015 (Charpentier et al.);
U.S. patent application Ser. No. 14/705,012 for HANDS-FREE HUMAN MACHINE INTERFACE RESPONSIVE TO A DRIVER OF A VEHICLE filed May 6, 2015 (Fitch et al.);
U.S. patent application Ser. No. 14/705,407 for METHOD AND SYSTEM TO PROTECT SOFTWARE-BASED NETWORK-CONNECTED DEVICES FROM ADVANCED PERSISTENT THREAT filed May 6, 2015 (Hussey et al.);
U.S. patent application Ser. No. 14/707,037 for SYSTEM AND METHOD FOR DISPLAY OF INFORMATION USING A VEHICLE-MOUNT COMPUTER filed May 8, 2015 (Chamberlin);
U.S. patent application Ser. No. 14/707,123 for APPLICATION INDEPENDENT DEX/UCS INTERFACE filed May 8, 2015 (Pape);
U.S. patent application Ser. No. 14/707,492 for METHOD AND APPARATUS FOR READING OPTICAL INDICIA USING A PLURALITY OF DATA SOURCES filed May 8, 2015 (Smith et al.);
U.S. patent application Ser. No. 14/710,666 for PRE-PAID USAGE SYSTEM FOR ENCODED INFORMATION REDAING TERMINALS filed May 13, 2015 (Smith);
U.S. patent application Ser. No. 29/526,918 for CHARGING BASE filed May 14, 2015 (Fitch et al.);
U.S. patent application Ser. No. 14/715,672 for AUGUMENTED REALITY ENABLED HAZARD DISPLAY filed May 19, 2015 (Venkatesha et al.);
U.S. patent application Ser. No. 14/715,916 for EVALUATING IMAGE VALUES filed May 19, 2015 (Ackley);
U.S. patent application Ser. No. 14/722,608 for INTERACTIVE USER INTERFACE FOR CAPTURING A DOCUMENT IN AN IMAGE SIGNAL filed May 27, 2015 (Showering et al.);
U.S. patent application Ser. No. 29/528,165 for IN-COUNTER BARCODE SCANNER filed May 27, 2015 (Oberpriller et al.);
U.S. patent application Ser. No. 14/724,134 for ELECTRONIC DEVICE WITH WIRELESS PATH SELECTION CAPABILITY filed May 28, 2015 (Wang et al.);
U.S. patent application Ser. No. 14/724,849 for METHOD OF PROGRAMMING THE DEFAULT CABLE INTERFACE SOFTWARE IN AN INDICIA READING DEVICE filed May 29, 2015 (Barten);
U.S. patent application Ser. No. 14/724,908 for IMAGING APPARATUS HAVING IMAGING ASSEMBLY filed May 29, 2015 (Barber et al.);
U.S. patent application Ser. No. 14/725,352 for APPARATUS AND METHODS FOR MONITORING ONE OR MORE PORTABLE DATA TERMINALS (Caballero et al.);
U.S. patent application Ser. No. 29/528,590 for ELECTRONIC DEVICE filed May 29, 2015 (Fitch et al.);
U.S. patent application Ser. No. 29/528,890 for MOBILE COMPUTER HOUSING filed Jun. 2, 2015 (Fitch et al.);
U.S. patent application Ser. No. 14/728,397 for DEVICE MANAGEMENT USING VIRTUAL INTERFACES CROSS-REFERENCE TO RELATED APPLICATIONS filed Jun. 2, 2015 (Caballero);
U.S. patent application Ser. No. 14/732,870 for DATA COLLECTION MODULE AND SYSTEM filed Jun. 8, 2015 (Powilleit);
U.S. patent application Ser. No. 29/529,441 for INDICIA READING DEVICE filed Jun. 8, 2015 (Zhou et al.);
U.S. patent application Ser. No. 14/735,717 for INDICIA-READING SYSTEMS HAVING AN INTERFACE WITH A USER'S NERVOUS SYSTEM filed Jun. 10, 2015 (Todeschini);
U.S. patent application Ser. No. 14/738,038 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES filed Jun. 12, 2015 (Amundsen et al.);
U.S. patent application Ser. No. 14/740,320 for TACTILE SWITCH FOR A MOBILE ELECTRONIC DEVICE filed Jun. 16, 2015 (Bandringa);
U.S. patent application Ser. No. 14/740,373 for CALIBRATING A VOLUME DIMENSIONER filed Jun. 16, 2015 (Ackley et al.);
U.S. patent application Ser. No. 14/742,818 for INDICIA READING SYSTEM EMPLOYING DIGITAL GAIN CONTROL filed Jun. 18, 2015 (Xian et al.);
U.S. patent application Ser. No. 14/743,257 for WIRELESS MESH POINT PORTABLE DATA TERMINAL filed Jun. 18, 2015 (Wang et al.);
U.S. patent application Ser. No. 29/530,600 for CYCLONE filed Jun. 18, 2015 (Vargo et al);
U.S. patent application Ser. No. 14/744,633 for IMAGING APPARATUS COMPRISING IMAGE SENSOR ARRAY HAVING SHARED GLOBAL SHUTTER CIRCUITRY filed Jun. 19, 2015 (Wang);
U.S. patent application Ser. No. 14/744,836 for CLOUD-BASED SYSTEM FOR READING OF DECODABLE INDICIA filed Jun. 19, 2015 (Todeschini et al.);
U.S. patent application Ser. No. 14/745,006 for SELECTIVE OUTPUT OF DECODED MESSAGE DATA filed Jun. 19, 2015 (Todeschini et al.);
U.S. patent application Ser. No. 14/747,197 for OPTICAL PATTERN PROJECTOR filed Jun. 23, 2015 (Thuries et al.);
U.S. patent application Ser. No. 14/747,490 for DUAL-PROJECTOR THREE-DIMENSIONAL SCANNER filed Jun. 23, 2015 (Jovanovski et al.); and
U.S. patent application Ser. No. 14/748,446 for CORDLESS INDICIA READER WITH A MULTIFUNCTION COIL FOR WIRELESS CHARGING AND EAS DEACTIVATION, filed Jun. 24, 2015 (Xie et al.).
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
This application is a divisional of U.S. patent application Ser. No. 15/599,600, filed May 19, 2017, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4308523 | Schapira | Dec 1981 | A |
4573196 | Crane et al. | Feb 1986 | A |
4628533 | Hongo | Dec 1986 | A |
4872024 | Nagai | Oct 1989 | A |
5220621 | Saitoh | Jun 1993 | A |
5267332 | Walch | Nov 1993 | A |
5317652 | Chatterjee | May 1994 | A |
5341438 | Clifford | Aug 1994 | A |
5504822 | Holt | Apr 1996 | A |
5610996 | Eller | Mar 1997 | A |
5696838 | Chiu | Dec 1997 | A |
5745599 | Uchiyama et al. | Apr 1998 | A |
5787196 | Yair | Jul 1998 | A |
5956419 | Kopec et al. | Sep 1999 | A |
6081621 | Ackner | Jun 2000 | A |
6240209 | Wilcke | May 2001 | B1 |
6628808 | Bach | Sep 2003 | B1 |
6654487 | Downs, Jr. | Nov 2003 | B1 |
6665441 | Nishio | Dec 2003 | B1 |
6731803 | Aharonson et al. | May 2004 | B1 |
6832725 | Gardiner et al. | Dec 2004 | B2 |
7039240 | Greene | May 2006 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7227995 | Reihani | Jun 2007 | B1 |
7251365 | Fux et al. | Jul 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7724956 | Walch | May 2010 | B2 |
7724958 | Walch | May 2010 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
7889926 | Kimura et al. | Feb 2011 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8306328 | Jakubiak et al. | Nov 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8401298 | Suwa | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Van et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8494272 | Sekino | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein, Jr. | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre, Jr. | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz, Sr. | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van et al. | Aug 2014 | B2 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue et al. | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein, Jr. | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | El et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8995770 | Kennard et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
D733112 | Chaney et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber et al. | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9082023 | Feng et al. | Jul 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224027 | Van et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9250712 | Todeschini | Feb 2016 | B1 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342724 | McCloskey et al. | May 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
D760719 | Zhou et al. | Jul 2016 | S |
9390596 | Todeschini | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
D762647 | Fitch et al. | Aug 2016 | S |
9412242 | Van et al. | Aug 2016 | B2 |
D766244 | Zhou et al. | Sep 2016 | S |
9443123 | Hejl | Sep 2016 | B2 |
9443222 | Singel et al. | Sep 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
D771631 | Fitch et al. | Nov 2016 | S |
9507974 | Todeschini | Nov 2016 | B1 |
D777166 | Bidwell et al. | Jan 2017 | S |
D783601 | Schulte et al. | Apr 2017 | S |
D785617 | Bidwell et al. | May 2017 | S |
D785636 | Oberpriller et al. | May 2017 | S |
D790505 | Vargo et al. | Jun 2017 | S |
D790546 | Zhou et al. | Jun 2017 | S |
D790553 | Fitch et al. | Jun 2017 | S |
9857167 | Jovanovski et al. | Jan 2018 | B2 |
9891612 | Charpentier et al. | Feb 2018 | B2 |
9892876 | Bandringa | Feb 2018 | B2 |
9978088 | Pape | May 2018 | B2 |
10007112 | Fitch et al. | Jun 2018 | B2 |
10066982 | Ackley et al. | Sep 2018 | B2 |
10360728 | Venkatesha et al. | Jul 2019 | B2 |
10401436 | Young et al. | Sep 2019 | B2 |
10438098 | Hatton et al. | Oct 2019 | B2 |
20030190074 | Loudon | Oct 2003 | A1 |
20050152601 | Chen | Jul 2005 | A1 |
20050163377 | Walch | Jul 2005 | A1 |
20060193519 | Sternby | Aug 2006 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20070172108 | Adelberg et al. | Jul 2007 | A1 |
20080253659 | Walch | Oct 2008 | A1 |
20090016608 | Fujimoto et al. | Jan 2009 | A1 |
20090017765 | Lev | Jan 2009 | A1 |
20090110264 | Hayashi | Apr 2009 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20090316990 | Nakamura et al. | Dec 2009 | A1 |
20100054602 | Kaehler | Mar 2010 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100189362 | Jakubiak | Jul 2010 | A1 |
20100296734 | Doll | Nov 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20110235906 | Hashimoto | Sep 2011 | A1 |
20120051645 | Sun | Mar 2012 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedrao | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140034734 | Sauerwein, Jr. | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein, Jr. | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131438 | Kearney | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140131445 | Ding et al. | May 2014 | A1 |
20140131448 | Xian et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140166759 | Liu et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140175172 | Jovanovski et al. | Jun 2014 | A1 |
20140191644 | Chaney | Jul 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140197238 | Liu et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140203087 | Smith et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140232930 | Anderson | Aug 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140278387 | Digregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140283282 | Dye et al. | Sep 2014 | A1 |
20140284384 | Lu et al. | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140312121 | Lu et al. | Oct 2014 | A1 |
20140319220 | Coyle | Oct 2014 | A1 |
20140319221 | Oberpriller et al. | Oct 2014 | A1 |
20140326787 | Barten | Nov 2014 | A1 |
20140332590 | Wang et al. | Nov 2014 | A1 |
20140344943 | Todeschini et al. | Nov 2014 | A1 |
20140346233 | Liu et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140353373 | Van et al. | Dec 2014 | A1 |
20140361073 | Qu et al. | Dec 2014 | A1 |
20140361082 | Xian et al. | Dec 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150001304 | Todeschini | Jan 2015 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150009610 | London et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028102 | Ren et al. | Jan 2015 | A1 |
20150028103 | Jiang | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150048168 | Fritz et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053766 | Havens et al. | Feb 2015 | A1 |
20150053768 | Wang et al. | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150063676 | Lloyd et al. | Mar 2015 | A1 |
20150069130 | Gannon | Mar 2015 | A1 |
20150071819 | Todeschini | Mar 2015 | A1 |
20150083800 | Li et al. | Mar 2015 | A1 |
20150086114 | Todeschini | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150099557 | Pettinelli et al. | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150102109 | Huck | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150129659 | Feng et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150136854 | Lu et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150144701 | Xian et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150169925 | Chen et al. | Jun 2015 | A1 |
20150169929 | Williams et al. | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150193644 | Kearney et al. | Jul 2015 | A1 |
20150193645 | Colavito et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150204671 | Showering | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20150371100 | Wshah et al. | Dec 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue et al. | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160125873 | Braho et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20160323310 | Todeschini et al. | Nov 2016 | A1 |
20160330218 | Hussey et al. | Nov 2016 | A1 |
20160343176 | Ackley | Nov 2016 | A1 |
20160377414 | Thuries et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
2013163789 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2014019130 | Feb 2014 | WO |
2014110495 | Jul 2014 | WO |
Entry |
---|
Communication pursuant to Rules 70(2) and 70a(2) for European Application No. 18171723.2 dated Nov. 26, 2018 2 pages. |
Li Ning: “An Implementation of OCR System Based on Skeleton Matching”, Jan. 1, 1993 (Jan. 1, 1993), XP055508716, Retrieved from the Internet: URL:https://kar.kent.ac.uk/21129/1/0CRNing.pdf [retrieved on Sep. 21, 2018]. |
N. Arica et al: “Optical character recognition for cursive handwriting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, No. 6, Aug. 7, 2002 (Aug. 7, 2002), pp. 801-813. |
Non-Final Rejection dated Apr. 1, 2019 for U.S. Appl. No. 15/599,600. |
Notice of Allowance and Fees Due (PTOL-85) dated May 30, 2019 for U.S. Appl. No. 15/599,600. |
Requirement for Restriction/Election dated Jan. 17, 2019 for U.S. Appl. No. 15/599,600. |
Search Report in related European Application No. 18171723.2 dated Oct. 4, 2018, pp. 1-9. |
Trahanias P E et al: “Morphological Hand-Printed Character Recognition by a Skeleton-Matching Algorithm”, Journal of Electronic Imaging, S P I E—International Society for Optical Engineering, US, vol. 2, No. 2, Apr. 1, 1993 (Apr. 1, 1993), pp. 114-125, XP000369377, ISSN: 1017-9909, DOI: 10.1117/12.143731. |
U.S. Patent Application for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.), U.S. Appl. No. 13/367,978. |
U.S. Patent Application for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.), U.S. Appl. No. 14/446,391. |
U.S. Patent Application for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned., U.S. Appl. No. 14/277,337. |
Annex to the communication dated Aug. 27, 2020 for EP Application No. 18171723. |
Communication from the Examining Division dated Aug. 27, 2020 for EP Application No. 18171723. |
U.S. Appl. No. 15/599,600, filed Aug. 30, 2019, U.S. Pat. No. 10,438,098, Patented. |
Number | Date | Country | |
---|---|---|---|
20190385027 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15599600 | May 2017 | US |
Child | 16557373 | US |