The present invention relates to the field of data processing platforms for financial market data.
Speed of information delivery is a valuable dimension to the financial instrument trading and brokerage industry. The ability of a trader to obtain pricing information on financial instruments such as stocks, bonds and particularly options as quickly as possible cannot be understated; improvements in information delivery delay on the order of fractions of a second can provide important value to traders.
For example, suppose there is an outstanding “bid” on stock X that is a firm quote to buy 100 shares of Stock X for $21.50 per share. Also suppose there are two traders, A and B, each trying to sell 100 shares of stock X, but would prefer not to sell at a price of $21.50. Next, suppose another party suddenly indicates a willingness to buy 100 shares of Stock X for a price of $21.60. A new quote for that amount is then submitted, which sets the “best bid” for Stock X to $21.60, up 10 cents from its previous value of $21.50. The first trader, A or B, to see the new best bid price for Stock X and issue a counter-party order to sell Stock X will “hit the bid”, and sell his/her Stock X for $21.60 per share. The other trader will either have to settle for selling his/her shares of Stock X for the lower $21.50 price or will have to decide not to sell at all at that lower price. Thus, it can be seen that speed of information delivery can often translate into actual dollars and cents for traders, which in large volume situations, can translate to significant sums of money.
In an attempt to promptly deliver financial information to interested parties such as traders, a variety of market data platforms have been developed for the purpose of ostensible “real time” delivery of streaming bid, offer, and trade information for financial instruments to traders.
Because of the massive computations required to support such a platform, current implementations known to the inventors herein typically deploy these functions across a number of individual computer systems that are networked together, to thereby achieve the appropriate processing scale for information delivery to traders with an acceptable degree of latency. This distribution process involves partitioning a given function into multiple logical units and implementing each logical unit in software on its own computer system/server. The particular partitioning scheme that is used is dependent on the particular function and the nature of the data with which that function works. The inventors believe that a number of different partitioning schemes for market data platforms have been developed over the years. For large market data platforms, the scale of deployment across multiple computer systems and servers can be physically massive, often filling entire rooms with computer systems and servers, thereby contributing to expensive and complex purchasing, maintenance, and service issues.
This partitioning approach is shown by
Despite the improvements to the industry that these systems have provided, the inventors herein believe that significant further improvements can be made. In doing so, the inventors herein disclose that the underlying technology disclosed in the related patents and patent applications listed and incorporated herein above to fundamentally change the system architecture in which market data platforms are deployed.
In above-referenced related patent application Ser. No. 10/153,151, it was first disclosed that reconfigurable logic, such as Field Programmable Gate Arrays (FPGAs), can be deployed to process streaming financial information at hardware speeds. As examples, the Ser. No. 10/153,151 application disclosed the use of FPGAs to perform data reduction operations on streaming financial information, with specific examples of such data reduction operations being a minimum price function, a maximum price function, and a latest price function. (See also the above-referenced and incorporated Ser. No. 11/561,615 patent application).
Since that time, the inventors herein have greatly expanded the scope of functionality for processing streams of financial information with reconfigurable logic. With the invention described herein, vast amounts of streaming financial information can be processed with varying degrees of complexity at hardware speeds via reconfigurable logic deployed in hardware appliances that greatly consolidate the distributed GPP architecture shown in
As used herein, the term “general-purpose processor” (or GPP) refers to a hardware device that fetches instructions and executes those instructions (for example, an Intel Xeon processor or an AMD Opteron processor). The term “reconfigurable logic” refers to any logic technology whose form and function can be significantly altered (i.e., reconfigured) in the field post-manufacture. This is to be contrasted with a GPP, whose function can change post-manufacture, but whose form is fixed at manufacture. The term “software” will refer to data processing functionality that is deployed on a GPP. The term “firmware” will refer to data processing functionality that is deployed on reconfigurable logic.
Thus, as embodiments of the present invention, the inventors herein disclose a variety of data processing pipelines implemented in firmware deployed on reconfigurable logic, wherein a stream of financial data can be processed through these pipelines at hardware speeds.
Also disclosed as an embodiment of the invention is a ticker plant that is configured to process financial market data with a combination of software logic and firmware logic. Through firmware pipelines deployed on the ticker plant and efficient software control and management over data flows to and from the firmware pipelines, the inventors herein believe that the ticker plant of the preferred embodiment is capable of greatly accelerating the speed with which financial market data is processed. In a preferred embodiment, financial market data is first processed within the ticker plant by software logic. The software logic controls and manages the flow of received financial market data into and out of the firmware logic deployed on the reconfigurable logic device(s), preferably in a manner such that each financial market data message travels only once from the software logic to the firmware logic and only once from the firmware logic back to the software logic. As used herein, the term “ticker plant” refers to a plurality of functional units, such as functional units 102 depicted in
These and other features and advantages of the present invention will be understood by those having ordinary skill in the art upon review of the description and figures hereinafter.
The data store can be any data storage device/system, but is preferably some form of a mass storage medium. For example, the data store 204 can be a magnetic storage device such as an array of Seagate disks. However, it should be noted that other types of storage media are suitable for use in the practice of the invention. For example, the data store could also be one or more remote data storage devices that are accessed over a network such as the Internet or some local area network (LAN). Another source/destination for data streaming to or from the reconfigurable logic device 202, is network 242 by way of network interface 240, as described above. In the financial industry, a network data source (e.g., the exchanges themselves, a third party provider, etc.) can provide the financial data stream 106 described above in connection with
The computer system defined by main processor 208 and RAM 210 is preferably any commodity computer system as would be understood by those having ordinary skill in the art. For example, the computer system may be an Intel Xeon system or an AMD Opteron system.
The reconfigurable logic device 202 has firmware modules deployed thereon that define its functionality. The firmware socket module 220 handles the data movement requirements (both command data and target data) into and out of the reconfigurable logic device, thereby providing a consistent application interface to the firmware application module (FAM) chain 230 that is also deployed on the reconfigurable logic device. The FAMs 230i of the FAM chain 230 are configured to perform specified data processing operations on any data that streams through the chain 230 from the firmware socket module 220. Preferred examples of FAMs that can be deployed on reconfigurable logic in accordance with a preferred embodiment of the present invention are described below.
The specific data processing operation that is performed by a FAM is controlled/parameterized by the command data that FAM receives from the firmware socket module 220. This command data can be FAM-specific, and upon receipt of the command, the FAM will arrange itself to carry out the data processing operation controlled by the received command. For example, within a FAM that is configured to compute an index value (such as the Dow Jones Industrial Average), the FAM's index computation operation can be parameterized to define which stocks will be used for the computation and to define the appropriate weighting that will be applied to the value of each stock to compute the index value. In this way, a FAM that is configured to compute an index value can be readily re-arranged to compute a different index value by simply loading new parameters for the different index value in that FAM.
Once a FAM has been arranged to perform the data processing operation specified by a received command, that FAM is ready to carry out its specified data processing operation on the data stream that it receives from the firmware socket module. Thus, a FAM can be arranged through an appropriate command to process a specified stream of data in a specified manner. Once the FAM has completed its data processing operation, another command can be sent to that FAM that will cause the FAM to re-arrange itself to alter the nature of the data processing operation performed thereby. Not only will the FAM operate at hardware speeds (thereby providing a high throughput of target data through the FAM), but the FAMs can also be flexibly reprogrammed to change the parameters of their data processing operations.
The FAM chain 230 preferably comprises a plurality of firmware application modules (FAMs) 230a, 230b, . . . that are arranged in a pipelined sequence. As used herein, “pipeline”, “pipelined sequence”, or “chain” refers to an arrangement of FAMs wherein the output of one FAM is connected to the input of the next FAM in the sequence. This pipelining arrangement allows each FAM to independently operate on any data it receives during a given clock cycle and then pass its output to the next downstream FAM in the sequence during another clock cycle.
A communication path 232 connects the firmware socket module 220 with the input of the first one of the pipelined FAMs 230a. The input of the first FAM 230a serves as the entry point into the FAM chain 230. A communication path 234 connects the output of the final one of the pipelined FAMs 230m with the firmware socket module 220. The output of the final FAM 230m serves as the exit point from the FAM chain 230. Both communication path 232 and communication path 234 are preferably multi-bit paths.
The application software layer 300 corresponds to high level functionality such as the type of functionality wherein one or more users interact with the application to define which data processing operations are to be performed by the FAMs and to define what data those data processing operations are to be performed upon.
The next layer is the module application programming interface (API) layer 302 which comprises a high level module API 302a and a low level module API 302b. The high level module API 302a can provide generic services to application level software (for example, managing callbacks). The low level module API 302b manages the operation of the operating system (OS) level/device driver software 304. A software library interface 310 interfaces the high level module API 302a with the low level module API 302b. Additional details about this software library interface can be found in the above-referenced patent application Ser. No. 11/339,892.
The interface between the device driver software 304 and the firmware socket module 220 serves as the hardware/software interface 312 for the system 200. The details of this interface 312 are described in greater detail in the above-referenced patent application Ser. No. 11/339,892.
The interface between the firmware socket module 220 and the FAM chain 230 is the firmware module interface 314. The details of this interface are described in greater detail in the above-referenced patent application Ser. No. 11/339,892.
It is worth noting that in either the configuration of
As shown in
In an effort to improve upon conventional market data platforms, the inventors herein disclose a new market data platform architecture, an embodiment of which is shown in
For example, with the architecture of
Preferably, the feed compressor device 602 is deployed in a physical location as close to the feed source 106 as possible, to thereby reduce communication costs and latency. For example, it would be advantageous to deploy the feed compressor device 602 in a data center of an extranet provider (e.g., Savvis, BT Radianz, etc.) due to the data center's geographic proximity to the source of the financial market data 106. Because the compression reduces message sizes within the feed stream 106, it will be advantageous to perform the compression prior to the stream reaching wide area network (WAN) 620a; thereby improving communication latency through the network because of the smaller message sizes.
WAN 620 preferably comprises an extranet infrastructure or private communication lines for connection, on the inbound side, to the feed handlers deployed in device 604. On the outbound side, WAN 620 preferably connects with device 606, as explained below. It should be noted that WAN 620 can comprise a single network or multiple networks 620a and 620b segmented by their inbound/outbound role in relation to platform 600. It is also worth noting that a news feed with real-time news wire reports can also be fed into WAN 620a for delivery to device 604.
Device 604 can be deployed in an appliance such as system 200 shown in
Feed handlers, which can also be referred to as feed producers, receive the real-time data stream, either compressed from the feed compressor 602 as shown in
LVCs maintain a database of financial instrument records whose functionality can be implemented in a FAM pipeline. Each record represents the current state of that financial instrument in the market place. These records are updated in real-time via a stream of update messages received from the feed handlers. The LVC is configured to respond to requests from other devices for an up-to-the-instant record image for a set of financial instruments and redistribute a selective stream of update messages pertaining to those requested records, thereby providing real-time snapshots of financial instrument status. From these snapshots, information such as the “latest price” for a financial instrument can be determined, as described in the above-referenced Ser. No. 10/153,151 application.
Rule-based calculation engines are engines that allow a user to create his/her own synthetic records whose field values are derived from calculations performed against information obtained from the LVC, information extracted from a stream of update messages generated from the LVC, or from alternate sources. These rule-based calculation engines are amenable to implementation in a FAM pipeline. It should also be noted that the rule-based calculation engine can be configured to create new synthetic fields that are included in existing records maintained by the LVC. The new values computed by the engine are computed by following a set of rules or formulas that have been specified for each synthetic field. For example, a rule-based calculation engine can be configured to compute a financial instrument's Volume Weighted Average Price (VWAP) via a FAM pipeline that computes the VWAP as the sum of P×S for every trade meeting criteria X, wherein P equals the trade price and wherein S equals the trade size. Criteria X can be parameterized into a FAM filter that filters trades based on size, types, market conditions, etc. Additional examples of rule-based calculations that can be performed by the rule-based calculation engine include, but are not limited to, a minimum price calculation for a financial instrument, a maximum price calculation for a financial instrument, a Top 10 list for a financial instrument or set of financial instruments, etc.
An alert generation engine can also be deployed in a FAM pipeline. Alert generation engines are similar to a rule-based calculation engine in that they monitor the current state of a financial instrument record (or set of financial instrument records), and the alert generation engine will trigger an alert when any of a set of specified conditions is met. An indication is then delivered via a variety of means to consuming applications or end users that wish to be notified upon the occurrence of the alert.
Option pricing is another function that is highly amenable to implementation via a FAM pipeline. An “option” is a derivative financial instrument that is related to an underlying financial instrument, and the option allows a person to buy or sell that underlying financial instrument at a specific price at some specific time in the future. An option pricing engine is configured to perform a number of computations related to these options and their underlying instruments (e.g., the theoretical fair market value of an option or the implied volatility of the underlying instrument based upon the market price of the option). A wide array of computational rules can be used for pricing options, as is known in the art. Most if not all industry-accepted techniques for options pricing are extremely computation intensive which introduces significant latency when the computations are performed in software. However, by implementing option pricing in a FAM pipeline, the market data platform 600 can significantly speed up the computation of option pricing, thereby providing in important edge to traders who use the present invention. An example of options pricing functionality that can be deployed in firmware is described in pending U.S. patent application Ser. No. 11/760,211, filed Jun. 8, 2007, the entire disclosure of which is incorporated herein by reference.
A time series database is a database that maintains a record for each trade or quote event that occurs for a set of financial instruments. This information may be retrieved upon request and returned in an event-by-event view. Alternative views are available wherein events are “rolled up” by time intervals and summarized for each interval. Common intervals include monthly, weekly, daily, and “minute bars” where the interval is specified to be some number of minutes. The time series database also preferably compute a variety of functions against these historic views of data, including such statistical measures as volume weighted average price (VWAP), money flow, or correlations between disparate financial instruments.
A news database maintains a historical archive of news stories that have been received from a news wire feed by way of the feed handler. The news database is preferably configured to allow end users or other applications to retrieve news stories or headlines based upon a variety of query parameters. These query parameters often include news category assignments, source identifiers, or even keywords or keyword phrases. The inventors herein note that this searching functionality can also be enhanced using the search and data matching techniques described in the above-referenced patent and patent applications.
Appropriate FAM modules and corresponding FAM pipelines to implement these various functions for device 604 can be carried out by a person having ordinary skill in the art using the design techniques described in connection with the above-referenced patent and patent applications and basic knowledge in the art concerning each function. As a result, a variety of hardware templates available for loading on reconfigurable logic can be designed and stored in memory (such as on a disk embodied by data store 204 in connection with
Traders at workstations 104 (or application programs 150 running on an entity's own trading platform) can then access the streaming financial data processed by device 604 via a connection to local area network (LAN) 622. Through this LAN connection, workstations 104 (and application program 15) also have access to the data produced by devices 606, 608, 610, 612, 614, and 616. Like devices 602 and 604, devices 606, 608, 610, 612, 614, and 616 can also be deployed in an appliance such as system 200 shown in
Device 606 preferably consolidates the following functionality at least partially into firmware resident on reconfigurable logic: an order book server; an order router; direct market access gateways to exchanges, Electronic Communication Networks (ECNs), and other liquidity pools; trading engines; an auto-quote server; and a compliance journal.
An “order book server” is similar to a LVC in that the order book server maintains a database in memory (e.g., in memory device 404 on board 400) of financial instrument records, and keeps that database up to date in real-time via update messages received from the feed handlers. For each record, the order book server preferably maintains a sorted list of the bids and offers associated with all outstanding orders for that instrument. This list is known as the “book” for that instrument. The order information for each instrument is received from a variety of different trading venues in stream 106 and is aggregated together to form one holistic view of the market for that particular instrument. The order book server is configured to respond to requests from workstation 104 users or application programs 150 to present the book in a number of different ways. There are a variety of different “views”, including but not limited to: a “top slice” of the book that returns orders whose prices are considered to be within a specified number of price points of the best price available in the market (the best price being considered to be the “top” of the book); a price aggregate view where orders at the same price point are aggregated together to create entries that are indicative of the total number of orders available at each price point; and an ordinary view with specific trading venues (which are the source of orders) excluded.
An order router is a function that can take a buy or sell order for a specified financial instrument, and based upon a variety of criteria associated with the order itself or the end user or application submitting the order, route the order (in whole or in part) to the most appropriate trading venue, such as an exchange, an Alternate Trading System (ATS), or an ECN.
The direct market access gateway functionality operates to relay orders to a trading venue (such as an exchange, ECN, ATS, etc.) via WAN 620b. Before sending an order out however, the gateway preferably transforms the order message to a format appropriate for the trading venue.
The trading engine functionality can also be deployed on reconfigurable logic. An algorithmic trading engine operates to apply a quantitative model to trade orders of a defined quantity to thereby automatically subdivide that trade order into smaller orders whose timing and size are guided by the goals of the quantitative model so as to reduce the impact that the original trade order may have on the current market price. Also, a black box trading engine operates to automatically generate trades by following a mathematical model that specifies relationships or conditional parameters for an instrument or set of instruments. To aid this processing, the black box trading engine is fed with real-time market data.
An auto-quote server is similar to a black box trading engine. The auto-quote server operates to automatically generate firm quotes to buy or sell a particular financial instrument at the behest of a “market maker”; wherein a “market maker” is a person or entity which quotes a buy and/or sell price in a financial instrument hoping to make a profit on the “turn” or the bid/offer spread.
A feed/compliance journal can also be implemented in a FAM pipeline. The feed/compliance journal functions to store information (in persistent storage 632) related to the current state of the entire market with regard to a particular financial instrument at the time a firm quote or trade order is submitted to a single particular marketplace. The feed/compliance journal can also provide a means for searching storage 632 to provide detailed audit information on the state of the market when a particular firm quote or trade order was submitted. The inventors herein note that this searching functionality can also be enhanced using the search and data matching techniques described in the above-referenced patent and patent applications.
As mentioned above in connection with device 604, appropriate FAM modules and corresponding FAM pipelines to implement these various functions for device 606 can be carried out by a person having ordinary skill in the art using the design techniques described in connection with the above-referenced patent and patent applications and basic knowledge in the art concerning each function. As a result, a variety of hardware templates available for loading on reconfigurable logic can be designed and stored for use by the market data platform 600 to implement a desired data processing function. Persistent data storage unit 632, which can be embodied by data store 204, can be accessible to device 606 as device 606 processes the feed stream in accordance with the functionality described above.
Device 608 preferably implements an internal matching system/engine in firmware resident on reconfigurable logic. An internal matching system/engine operates to match a buyer's bid with a seller's offer to sell for a particular financial instrument, to thereby execute a deal or trade. An indication of a completed trade is then submitted to the appropriate reporting and settlement systems. The internal matching system/engine may create bids or offers as would a market maker in order to provide an orderly market and a minimum amount of liquidity by following a set of programmatically-defined rules.
Device 610 preferably implements an order management system (OMS) in firmware resident on reconfigurable logic. An OMS operates to facilitate the management of a group of trading accounts, typically on behalf of a broker. The OMS will monitor buy and sell orders to ensure that they are appropriate for the account owner in question based upon his/her account status, credit and risk profiles. The OMS typically incorporates a database via persistent storage 638 (which may be embodied by data store 204) used to hold account information as well as an archive of orders and other activity for each account.
Device 612 preferably implements entitlements and reporting functionality. A market data platform such as system 600 is a mechanism for distributing data content to a variety of end users. Many content providers charge on a per user basis for access to their data content. Such content providers thus prefer a market data platform to have a mechanism to prohibit (or entitle) access to specific content on an individual user basis. Entitlement systems may also supply a variety of reports that detail the usage of different content sets. To achieve this functionality, device 612, in conjunction with database 634, preferably operates to maintain a database of users, including authentication credentials and entitlement information which can be used by devices 604, 606, 608, 610 and 616 for entitlement filtering operations in conjunction with the data processing operations performed thereby.
Device 614 preferably implements management and monitoring for the market data platform 600. Management and monitoring functionality provides a means for users to operate the applications running within the platform 600 and monitor the operational state and health of individual components thereon. Preferably, the management and monitoring functionality also provides facilities for reconfiguring the components as well as means for performing any other appropriate manual chores associated with running the platform.
Device 616 preferably implements publishing and contribution server functionality. Contribution servers (also known as publishing servers) allow users to convert information obtained from an end-user application (or some other source within his/her enterprise) into a suitable form, and to have it distributed by the market data platform 600.
As mentioned above in connection with devices 604 and 606, appropriate FAM modules and corresponding FAM pipelines to implement these various functions for devices 608, 610, 612, 614, and 616 can be carried out by a person having ordinary skill in the art using the design techniques described in connection with the above-referenced patent and patent applications and basic knowledge in the art concerning each function. As a result, a variety of hardware templates available for loading on reconfigurable logic can be designed and stored for use by the market data platform 600 to implement a desired data processing function. Persistent data storage units 634 and 636 can be accessible to devices 612 and 614 respectively as those devices process the data in accordance with the functionality described above.
In deploying this functionality, at least in part, upon reconfigurable logic, the following modules/submodules of the functions described above are particularly amenable to implementation on an FPGA: fixed record format message parsing, fixed record format message generation, FIX message parsing, FIX message generation, FIX/FAST message parsing, FIX/FAST message generation, message compression, message decompression, interest and entitlement filtering, financial instrument symbol mapping, record ID mapping, price summary LVC update/retrieve/normalize (LVC), order book cache update/retrieve/normalize (OBC), generic LVC (GVC), minute bar generation, programmatic field generation (with LVC, OBC, etc.), historic record search and filter, book-based algorithmic order routing, trade order generation, basket calculation (including ETF, index, and portfolio valuation), and autoquote generation. It should be understood by those having ordinary skill in the art that this list is exemplary only and not exhaustive; additional modules for financial data processing can also be employed in a FAM or FAM pipeline in the practice of the present invention.
With fixed record format message parsing, a fixed format message is decomposed into its constituent fields as defined by a programmable “data dictionary”. Entries within the data dictionary describe the fields within each type of message, their positions and sizes within those messages, and other metadata about the field (such as data type, field identifiers, etc.). Preferably, the data dictionary is stored in persistent storage such as data store 204 of the system 200. Upon initialization of the FAM pipeline on board 400, the data dictionary is then preferably loaded into memory 404 for usage by the FAM pipeline during data processing operations.
With fixed record format message generation, a fixed format message is generated by concatenating the appropriate data representing fields into a message record. The message structure and format is described by a programmable data dictionary as described above.
With FIX message parsing, a FIX-formatted message is decomposed into its constituent fields as defined by a programmable data dictionary as described above; FIX being a well-known industry standard for encoding financial message transactions.
With FIX message generation, a FIX-formatted message is generated by concatenating the appropriate data representing the fields into a FIX message record. Once again, the message structure and format is described by a programmable data dictionary as described above.
With FIX/FAST message parsing, a FIX and/or FAST message (FAST being a well known variation of FIX) is decomposed into its constituent fields as defined by a programmable data dictionary as described above.
With FIX/FAST message generation, a FIX-formatted and/or FAST-formatted message is generated by concatenating the appropriate data representing fields into a FIX/FAST message record. The message structure and format is defined by a programmable data dictionary as described above.
With message compression, a message record is compressed so as to require less space when contained in a memory device and to require less communication bandwidth when delivered to other systems. The compression technique employed is preferably sufficient to allow for reconstruction of the original message when the compressed message is processed by a corresponding message decompression module.
With interest and entitlement filtering, a stream of messages coming from a module such as one of the caching modules described below (e.g., price summary LVC, order book OBC, or generic GVC) is filtered based upon a set of entitlement data and interest data that is stored for each record in the cache. This entitlement and interest data defines a set of users (or applications) that are both entitled to receive the messages associated with the record and have expressed an interest in receiving them. This data can be loaded into memory from storage 634 during initialization of the board 400, or from Application Software 300 during normal operation of the board 400. An exemplary embodiment of a FAM configured to perform interest and entitlement filtering is described hereinafter with respect to
With financial instrument symbol mapping, a common identifying string for a financial instrument (typically referred to as the “symbol”) is mapped into a direct record key number that can be used by modules such as caching modules (LVC, OBC, GVC) to directly address the cache record associated with that financial instrument. The record key number may also be used by software to directly address a separate record corresponding to that instrument that is kept in a storage, preferably separate from board 400. An exemplary embodiment of a FAM configured to perform symbol mapping is described hereinafter with respect to
With record ID mapping, a generic identifying string for a record is mapped into a direct record key number that can be used by a caching module (e.g., LVC, OBC, GVC) or software to directly address the record in a storage medium.
The price summary Last Value Cache update/retrieve/normalize (LVC) operation operates to maintain a cache of financial instrument records whose fields are updated in real-time with information contained in streaming messages received from a message parsing module, and to enhance or filter the messages received from a message parsing module before passing them on to subsequent processing modules. The type of update performed for an individual field in a record will be defined by a programmable data dictionary as described above, and may consist of moving the data field from the message to the record, updating the record field by accumulating the data field over a series of messages defined within a time-bounded window, updating the record field only if certain conditions as defined by a set of programmable rules are true, or computing a new value based upon message and/or record field values as guided by a programmable formula. The type of enhancement or filtering applied to an individual message may consist of replacing a message field with one created by accumulating the data over a series of messages defined within a time-bounded window, flagging a field whose value falls outside of a programmatically defined range of values, or suppressing the message in its entirety if the value of a field or set of fields fails to change with respect to the corresponding values contained within the cache record. An exemplary embodiment of a FAM configured to perform LVC updating is described hereinafter with respect to
The order book cache update, retrieve and normalize (OBC) operation operates to maintain a cache of financial instrument records where each record consists of an array of sub-records that define individual price or order entries for that financial instrument. A sort order is maintained for the sub-records by the price associated with each sub-record. The fields of the sub-records are updated in real-time with information contained in streaming messages received from a message parsing module. Sub-records associated with a record are created and removed in real-time according to information extracted from the message stream, and the sort order of sub-records associated with a given record is continuously maintained in real-time. The type of update performed for an individual field in a sub-record will be defined by a programmable data dictionary, and may consist of moving the data field from the message to the sub-record, updating the sub-record field by accumulating the data field over a series of messages defined within a time-bounded window, updating the sub-record field only if certain conditions as defined by a set of programmable rules are true, or computing a new value based upon message and/or record or sub-record fields as guided by a programmable formula. The OBC includes the ability to generate various views of the book for a financial instrument including but not limited to a price-aggregated view and a composite view. A composite view is a sort order of the price or order entries for a financial instrument across multiple exchanges. The OBC also includes the ability to synthesize a top-of-book quote stream. When an update operation causes the best bid or offer entry in a given record to change, the OBC may be configured to generate a top-of-book quote reporting the current best bid and offer information for the financial instrument. A synthesized top-of-book quote stream has the ability to report best bid and offer information with less latency than an exchange-generated quote stream. This may be used to accelerate a variety of latency sensitive applications.
The Generic Last Value Cache (GVC) operation operates to maintain a cache of records whose fields are updated in real-time with information contained in streaming messages received from a message parsing module. The structure of a record and the fields contained within it are defined by a programmable data dictionary, as described above. The type of update performed for an individual field in a record will be defined by a programmable data dictionary, and may consist of moving the data field from the message to the record, updating the record field by accumulating the data field over a series of messages defined within a time-bounded window, updating the record field only if certain conditions as defined by a set of programmable rules are true, or computing a new value based upon message and/or record field values as guided by a programmable formula.
A minute bar generation operation operates to monitor real-time messages from a message parsing module or last value cache module for trade events containing trade price information, or for quote events containing quote price information, and create “minute bar” events that summarize the range of trade and/or quote prices that have occurred over the previous time interval. The time interval is a programmable parameter, as is the list of records for which minute bars should be generated, and the fields to include in the generated events.
A Top 10 list generation operation operates to monitor real-time messages from a message parsing module or last value cache module for trade events containing price information and create lists of instruments that indicate overall activity in the market. Such lists may include (where ‘N’ is programmatically defined): top N stocks with the highest traded volume on the day; top N stocks with the greatest positive price change on the day; top N stocks with the largest percentage price change on the day; top N stocks with the greatest negative price change on the day; top N stocks with the greatest number of trade events recorded on the day; top N stocks with the greatest number of “large block” trades on the day, where the threshold that indicates whether a trade is a large block trade is defined programmatically.
A programmatic field generation (via LVC, OBV, GVC, etc.) operation operates to augment messages received from a message parsing module with additional fields whose values are defined by a mathematical formula that is supplied programmatically. The formula may reference any field within the stream of messages received from a message parsing module, any field contained within a scratchpad memory associated with this module, or any field contained within any record held within any the record caches described herein.
A programmatic record generation (with LVC, OBC, GVC, etc.) operation operates to generate records that represent synthetic financial instruments or other arbitrary entities, and a series of event messages that signal a change in state of each record when the record is updated. The structure of the records and the event messages are programmatically defined by a data dictionary. The field values contained with the record and the event messages are defined by mathematical formulas that are supplied programmatically. The formulas may reference any field within the stream of messages received from a message parsing module, any field contained within a scratchpad memory associated with this module, or any field contained within any record held within any the record caches described herein. Updates to field values may be generated upon receipt of a message received from another module, or on a time interval basis where the interval is defined programmatically. A basket calculation engine is one example of programmatic record generation. A synthetic instrument may be defined to represent a given portfolio of financial instruments, constituent instruments in an Exchange Traded Fund (ETF), or market index. The record for that synthetic instrument may include fields such as the Net Asset Value (NAV) and total change.
A historic record search and filter operation operates to filter messages received from a message parsing module that represent a time series of events to partition the events into various sets, where each set is defined by a collection of criteria applied to event attributes. The event message structure, criteria and attributes are all programmatically defined. Event attributes include, but are not limited to: financial instrument symbol, class of symbol, time and date of event, type of event, or various indicator fields contained within the event. Multiple events within a set may be aggregated into a single event record according to a collection of aggregation rules that are programmatically defined and applied to attributes of the individual events. Aggregation rules may include, but are not limited to, aggregating hourly events into a single daily event, aggregating daily events into a single weekly event, or aggregating multiple financial instruments into a single composite instrument.
These functions (as well as other suitable financial data processing operations) as embodied in FAMs can then be combined to form FAM pipelines that are configured to produce useful data for a market data platform. For example, a feed compressor FAM pipeline can employ FAMs configured with the following functions: fixed record format message parsing, fixed record format message generation, FIX message parsing, FIX message generation, FIX/FAST message parsing, FIX/FAST message generation, message compression, and message decompression.
The output of FAM 910 is then passed to FAM 912, which is configured as a rule-based calculation engine, as described above. FAM 912 also receives data from a real time field value cache 926 to obtain LVC data, as does the top 10 list FAM 908. Cache 926 is preferably embodied by memory 404 of board 400. The output from the rule-based calculation engine FAM 912 is then passed to parallel FAMs 914, 916, and 918. FAM 914 serves as a message multiplexer, and receives messages from the outputs of FAMs 906, 908 and 912. FAM 920 receives the messages multiplexed by FAM 914, and serves to encode those messages to a desired format. FAM 916 serves as an alert engine, whose function is explained above, and whose output exits the pipeline. FAM 918 serves as a value cache update engine to ensuring that cache 926 stays current.
FAM 1004 operates to map the known symbol for a financial instrument (or set of financial instruments) as defined in the parsed message to a symbology that is internal to the platform (e.g., mapping the symbol for IBM stock to an internal symbol “12345”). FAM 1006 receives the output from FAM 1004 and serves to update the LVC cache via memory 1024. The output of FAM 1006 is then provided in parallel to FAMs 1008, 1010, 1012, and 1014.
FAM 1008 operates as a Top 10 list generator, as described above. FAM 1010 operates as a Minute Bar generator, as described above. FAM 1012 operates as an interest/entitlement filter, as described above, and FAM 1014 operates as a programmatic calculation engine, as described above. The outputs from FAMs 1008, 1010, 1012 and 1014 are then provided to a message formatter FAM 1016, which operates as described above to construct a fixed format message of a desired format from the outputs of FAMs 1008, 1010, 1012, 1014 and 1018.
In performing these tasks, FAM 1004 is aided by memory 1020 that stores templates and field maps, as well as memory 1022 that stores a symbol index. FAM 1006 is also aided by memory 1020 as well as memory 1024 which serves as an LVC cache. Memory 1020 is also accessed by FAM 1008, while memory 1024 is also accessed by FAM 1014. FAM 1012 accesses interest entitlement memory 1026, as loaded from storage 634 or provided by Application Software 300 during initialization of the board 400.
Message Parser FAM 1102 ingests a stream of messages, parses each message into its constituent fields, and propagates the fields to downstream FAMs. Message fields required for processing in FAMs 1104, 1106, and 1108 are passed to FAM 1104. Other message fields are passed to Message Synchronization Buffer FAM 1112. Message Parser FAM 1102 may be implemented to support a variety of message formats, including various types of fixed-formats and self-describing formats. A preferable message format provides sufficient flexibility to support the range of possible input events from financial exchanges. In a preferred implementation, the Message Parser FAM 1102 may be configured to support different message formats without altering the firmware. This may be achieved by loading message format templates into Template & Field Map buffer 1120. Message Parser FAM 1102 reads the message format description from buffer 1120 prior to processing input messages to learn how a given message is to be parsed.
Like FAM 1004 in
A preferred embodiment of the Symbol ID Mapping FAM maps each unique symbol character string to a unique binary number of size M bits. In the preferred embodiment, the symbol mapping FAM performs a format-specific compression of the symbol to generate a hash key of size K bits, where K is the size of the entries in the Symbol Index Memory 1122. The symbology ID may be used to lookup a Key Code that identifies the symbol compression technique that should be used for the input symbol. Preferably, the symbol mapping FAM compresses the symbol using format-specific compression engines and selects the correct compressed symbol output using the key code. Preferably, the key code is concatenated with the compressed symbol to form the hash key. In doing so, each compression technique is allocated a subset of the range of possible hash keys. This ensures that hash keys will be unique, regardless of the compression technique used to compress the symbol. An example is shown in
Alternatively, the format-specific compression engines may be implemented in a programmable processor. The key code may then be used to fetch a sequence of instructions that specify how the symbol should be compressed.
Once the hash key is generated, the symbol mapping FAM maps the hash key to a unique address in the Symbol Index Memory in the range 0 to N−1. The Symbol Index Memory may be implemented in a memory “on-chip”(within the reconfigurable logic device) or in “off-chip” high speed memory devices such as SRAM and SDRAM that are accessible to the reconfigurable logic device. Preferably, this mapping is performed by a hash function. A hash function attempts to minimize the number of probes, or table lookups, to find the input hash key. In many applications, additional meta-data is associated with the hash key. In the preferred embodiment, the location of the hash key in the Symbol Index Memory is used as the unique internal Symbol ID for the financial instrument.
H(x)=(h1(x)+(i*h2(x)))mod N
h1(x)=A(x)⊕d(x)
d(x)=T(B(x))
h2(x)=C(x)
The operand x is the hash key generated by the previously described compression stage. The function h1(x) is the primary hash function. The value i is the iteration count. The iteration count i is initialized to zero and incremented for each hash probe that results in a collision. For the first hash probe, hash function H(x)=h1(x), thus the primary hash function determines the first hash probe. The preferred hash function disclosed herein attempts to maximize the probability that the hash key is located on the first hash probe. If the hash probe results in a collision, the hash key stored in the hash slot does not match hash key x, the iteration count is incremented and combined with the secondary hash function h2(x) to generate an offset from the first hash probe location. The modulo N operation ensures that the final result is within the range 0 to N−1, where N is the size of the Symbol Index Memory. The secondary hash function h2(x) is designed so that its outputs are prime relative to N. The process of incrementing i and recomputing H(x) continues until the input hash key is located in the table or an empty table slot is encountered. This technique of resolving collisions is known as open-addressing.
The primary hash function, h1(x), is computed as follows. Compute hash function B(x) where the result is in the range 0 to Q−1. Use the result of the B(x) function to lookup a displacement vector d(x) in table T containing Q displacement vectors. Preferably the size of the displacement vector d(x) in bits is equal to M. Compute hash function A(x) where the result is M bits in size. Compute the bitwise exclusive OR, ⊕, of A(x) and d(x). This is one example of near-perfect hashing where the displacement vector is used to resolve collisions among the set of hash keys that are known prior to the beginning of the query stream. Typically, this fits well with streaming financial data where the majority of the symbols for the instruments trading in a given day is known. Methods for computing displacement table entries are known in the art.
The secondary hash function, h2(x), is computed by computing a single hash function C(x) where the result is always prime relative to N. Hash functions A(x), B(x), and C(x) may be selected from the body of known hash functions with favorable randomization properties. Preferably, hash functions A(x), B(x), and C(x) are efficiently implemented in hardware. The set of H3 hash functions are good candidates. (See Krishnamurthy et al., “Biosequence Similarity Search on the Mercury System”, Proc. of the IEEE 15th Int'l Conf. on Application-Specific Systems, Architectures and Processors, September 2004, pp. 365-375, the entire disclosure of which is incorporated herein by reference).
Once the hash function H(x) produces an address whose entry is equal to the input hash key, the address is passed on as the new Symbol ID to be used internally by the ticker plant to reference the financial instrument. As shown in
Hash keys are inserted in the table when an exchange message contains a symbol that was unknown at system initialization. Hash keys are removed from the table when a financial instrument is no longer traded. Alternatively, the symbol for the financial instrument may be removed from the set of known symbols and the hash table may be cleared, recomputed, and initialized. By doing so, the displacement table used for the near-perfect hash function of the primary hash may be optimized. Typically, financial markets have established trading hours that allow for after-hours or overnight processing. The general procedures for inserting and deleting hash keys from a hash table where open-addressing is used to resolve collisions is well-known in the art.
In a preferred embodiment, the symbol mapping FAM also computes a global exchange identifier (GEID) that maps the exchange code and country code fields in the exchange message to an integer in the range 0 to G−1, as shown in
Symbol mapping FAM 1106 passes input message field values, the symbol ID, and global exchange ID to Last Value Cache (LVC) Update FAM 1106. LVC Update FAM serves to update the LVC cache via memory 1124, as well as message fields that may depend on record field values. One example is the tick direction which indicates if the price in the message is larger or smaller than the previous price captured in the record.
As shown in
Record fields may include but are not limited to: last trade price, last trade size, last trade time, best bid price, best bid size, best bid time, best ask price, best ask size, best ask time, total trade volume, daily change, tick direction, price direction, high trade price, high price time, low trade price, low price time, and close price. In a preferred embodiment, record fields also include derived fields such as: total trade volume at bid, total trade volume at ask, traded value, traded value at bid, traded value at ask, and volume-weighted average price (VWAP).
As reflected in
As shown in
If the valid flag is set, the LVC Memory Manager uses the composite record pointer to retrieve the composite record from the record storage memory. The composite record is passed to the LVC message/record updater where it is stored in a composite record buffer for processing by the update engines. The LVC Memory Manger uses the regional list pointer to retrieve a regional list from the record storage memory. Note that regional list blocks may also be stored in the record management memory or in another independent memory. The regional list block contains pointers to the regional records for the financial instrument identified by the symbol ID. Since each regional record reflects the state of the instrument on a given exchange, a global exchange ID is stored with each regional pointer. The pointer to the regional record associated with the exchange specified in the message is located by matching the global exchange ID computed by the Symbol ID Mapping FAM. The LVC Memory Manger uses the regional pointer associated with the matching global exchange ID to retrieve the regional record from the record storage memory. The regional record is passed to the LVC message/record updater where it is stored in a regional record buffer for processing by the update engines.
If the valid flag in the record management memory entry is not set, then the LVC Memory Manager creates a new composite record, a new regional list block, and a new regional record for the financial instrument. The initial values for record fields may be drawn from Templates and Field Maps 1120. The regional list block will be initialized with at least one entry that contains a pointer to the new regional record and the global exchange ID received from the Symbol ID Mapping FAM. The LVC Memory Manger uses a free space pointer to allocate available memory in the record storage memory. After the memory is allocated, the free space pointer is updated. Freeing unused memory space, defragmenting memory, and adjusting the free space pointer may be performed by the LVC Memory Manager or by control software during market down times. Techniques for freeing memory space and defragmenting are well-known in the art. Once the records are initialized in record storage memory, the LVC Memory Manger writes the pointers into the management memory entry and sets the valid flag.
The LVC Memory Manager may also encounter a case where the valid flag in the memory management entry is set, but a matching global exchange ID is not found in the regional list. This will occur when a known financial instrument begins trading on a new exchange. In this case, the LVC Memory Manager allocates a new regional record and creates a new entry in the regional list block.
Once the record and message fields are loaded into their respective buffers, the update engines perform the field update tasks as specified by the business logic. Upon completion of their update tasks, the update engines signal the LVC Memory Manager. When all processor engines complete, the LVC Memory Manager writes updated records back to record storage memory. Processing can be deployed across the plurality of update engines in any of a number of ways. In one embodiment, a given record and its related message fields are passed through a sequence of update engines arranged in a pipeline. In another embodiment, each record and its related message fields are passed directly to an update engine that is configured to perform processing appropriate for the type of processing that the record and message fields needs. Preferably, the LVC updater is configured to balance the distribution of records and message fields across the plurality of different update engines so that a high throughput is maintained. In an exemplary embodiment, each update engine is configured to be responsible for updating a subset of the record fields (either regional or composite), with multiple engines operating in parallel with each other.
The LVC message/record updater passes updated message fields and interest lists to the Interest Entitlement Filter FAM 1108. An interest list contains a set of unique identifiers for users/applications that registered interest in receiving updates for the financial instrument. In a preferred embodiment, the set of user identifiers is specified using a bit vector where each bit position in the vector corresponds to a user identifier. For example, a 4-bit vector with the value 1010 represents the set of user identifiers {3,1}. The size of the interest list in bits is equal to the total number of user subscriptions allowed by the Ticker Plant. In a preferred embodiment, each record contains an interest list that is updated in response to user subscribe and unsubscribe events. By maintaining an interest list in the composite record, the Ticker Plant allows a subscription to include all transactions for a given financial instrument on every exchange upon which it trades. Preferably, each interest list for a given record is stored with that record in the record storage memory. Control software for the ticker plant, which maintains the set of interest lists for each record in a control memory can be configured to advise the LVC FAM of a new interest list vector for a given record so that the record storage memory can be updated as appropriate. Other types of subscriptions, such as exchange-based subscriptions, may also be enabled by the FAM pipeline.
In a preferred embodiment, the record storage memory and/or the record management memory is an external memory to the reconfigurable logic, such as a Synchronous Random Access Memory (SRAM) or Synchronous Dynamic Random Access Memory (SDRAM) device. Read and write transactions to external memory devices incur processing delays. A common technique for improving processing performance is to mask these delays by performing multiple transactions in a pipelined fashion. The LVC Memory Manger is designed as a pipelined circuit capable of performing the various processing steps in parallel, therefore allowing it to mask memory latencies and process multiple messages in parallel. Doing so enables the LVC Memory Manger to process more messages per unit time, i.e. achieve higher message throughput. By employing a functional pipeline, the LVC Memory Manager preferably recognizes occurrences of the same symbol ID within the pipeline and ensure correctness of records in update engine buffers. One method for doing so is to stall the pipeline until the updated records associated with the previous occurrence of the symbol ID are written back to record storage memory. In a preferred embodiment, the LVC Memory Manager utilizes a caching mechanism to always feed the correct record field values to the update engine buffers. Techniques for a memory cache are well-known in the art. The caching mechanism can be embodied as a memory, preferably a high-speed memory, located either on-chip (within the reconfigurable logic device) or off-chip (e.g., an SRAM or SDRAM device accessible to the reconfigurable logic device). However, it should also be noted that the cache can also be embodied by a full memory hierarchy with a multi-level cache, system memory, and magnetic storage. A record typically stays in the cache memory for the duration of a trading day. Such recently updated records can then be flushed out of the cache during an overnight processing (“roll”) and archived. However, it should be noted that the cache can be configured to maintain records so long as space is available in the cache for storing new records, in which case a FIFO scheme can be used to maintain the cache.
The LVC Update FAM 1106 passes interest lists, the global exchange ID, and updated message fields to the Interest Entitlement FAM 1108. The Interest Entitlement FAM computes a single interest list that is used to distribute the output message to the set of users/applications that have registered interest and are entitled to receive the message. As previously described, interest may be registered by subscribing to updates for the regional or composite interest, as well as subscribing to all updates from a given exchange. Access to real-time financial data is typically a purchased service where the price may vary depending on the scope of data access. In a preferred embodiment, a ticker plant is capable of accepting subscription requests from users/applications with varying levels of data access privileges.
As shown in
As previously described, the Message Formatter FAM 1110 serves to construct an output message from updated fields received from the Interest Entitlement Filter FAM and fields contained in the Message Synch Buffer FAM 1112. In a preferred embodiment, the format of the output message is specified by the Templates and Field Maps 1120. In a preferred embodiment, the output message includes the entitled interest list computed by the Interest Entitlement Filter. A subsequent functional block in the Ticker Plant processes the interest list and transmits copies of the output message to the interested and entitled users/applications.
Financial market data generated by exchanges is increasing at an exponential rate. Individual market events (trades, quotes, etc) are typically bundled together in groups and delivered via an exchange feed. These exchange feeds are overwhelmingly delivered to subscribers using the Internet Protocol over an Ethernet network. Due to constraints on packet size dictated by the network environment, data groups transmitted by the exchange tend to be limited to sizes less than 1500 bytes.
As market data rates increase, the number of data groups that must be processed by a ticker plant increases. In typical ticker plant environments, each network packet received by the ticker plant must be processed by the network protocol stack contained within the Operating System and delivered to a user buffer. This processing includes one or more data copies and an Operating System transition from “kernel” or “supervisor” mode to user for each exchange data packet. An increase in data rates in turn increases the processing burden on the ticker plant system to deliver individual exchange data messages to the user level process.
The device depicted in
The ring buffers employed by the Upject Driver are shared memory ring buffers that are mapped into both kernel and user address spaces supported by the Operating System at 1805. The boundary between kernel mode operations and user mode operations is shown at 1806. Data written to the kernel address space of one of these ring buffers is instantly accessible to the user mode code because both the user mode and kernel mode virtual addresses refer to the same physical memory. Utilizing the shared ring buffer concepts, the preferred embodiment of a Ticker Plant does not have to perform user to kernel mode transitions for each network data packet received and thus achieves a performance boost. Additionally, the Upject Driver can utilize the shared ring buffer library to directly transfer inbound data to other kernel processes, device drivers, or user processes at 1807. This versatile shared ring buffer interconnect enables fast-track routing of network traffic directly to Reconfigurable logic via the Hardware Interface Driver.
General purpose computers as known in the art employ “multi-core” or “multi-processor” technology to increase the available compute resources in a computer system. Such multi-core systems allow the simultaneous execution of two or more instruction streams, commonly referred to as “threads of execution”. To fully utilize the compute power of these multiple processor systems, software must be designed to intelligently manage thread usage, resource contention and interdependencies between processing threads. The data normalization component of the preferred embodiment of a Ticker Plant employs thread groups to efficiently normalize raw exchange data.
Thread groups improve processing efficiency of the preferred embodiment of a Ticker Plant by using the following techniques:
All of the processing for any single thread group is completely independent of the processing for any other thread group. No data locking or resource management is required during the normalization process which eliminates the possibility of thread blocking due to contention for a shared resource. The preferred embodiment of a Ticker Plant supports a variable number of thread groups at 1905. The number of thread groups and the number of exchange feeds processed by each thread group are configurable, enabling the Ticker Plant to efficiently utilize additional compute resources as they become available in future generations of computer systems. The association of inbound data feeds with individual thread groups is defined in a configuration file that is read during initialization processing.
The Hardware Interface Driver in the preferred embodiment of a Ticker Plant is optimized to facilitate the efficient movement of large amounts of data between system memory and the reconfigurable logic.
The Hardware Interface Driver is responsible for updating descriptor tables which facilitates the direct memory access (DMA) data transfers to the reconfigurable logic. Normalized market data events are transferred to the reconfigurable logic at 2004. The reconfigurable logic and Firmware Application Module Chain perform the operational functions as noted above. Processed market events are transferred back to the Hardware Interface Driver at 2005 and deposited into a ring buffer at 2006.
A novel feature of the preferred embodiment of a Ticker Plant is the ability to route data to consumers through a “fast track” by bypassing the time consuming data copies and Operating System mode switches. An operating system mode switch occurs whenever software transitions between user mode processing and kernel mode processing. Mode switches are expensive operations which can include one or more of the following operations: software interrupt processing, address validation, memory locking and unlocking, page table modifications, data copies, and process scheduling.
The Hardware Interface Driver calls into the MDC Driver for each event received from the reconfigurable logic at 2104. The MDC Driver is responsible for the fast track data routing of individual enhanced market data events. The routing information associated with each event is interrogated at 2105. This interrogation determines the set of destination points for each event. Each event can be routed to one or more of the following: kernel modules, protocol stacks, device drivers, and/or user processes. Exception events, results from maintenance commands, and events that require additional processing are routed via a slow path to the user mode background and maintenance processing module at 2106. The background and maintenance processing module has the ability do inject events directly into the Hardware Interface Driver at 2107 for delivery to the reconfigurable logic or to the MDC Driver at 2108 for delivery to a connected consumer.
Similar to the Upject Driver, the MDC Driver also maintains a kernel level interface into the Operating System supplied network protocol stack at 2109. This kernel level interface between the MDC Driver and the protocol stack provides a fast path for delivering real-time market events to clients connects via a network at 2110. The event routing logic contained within the MDC Driver interrogates the event routing information contained in each event and passes the appropriate events directly to the network protocol stack.
The MDC driver also has the ability to route market events to other consumers at 2111. These other consumers of real-time market events include, but are not limited to, network drivers for clients connected via a variety of network interconnect methodologies, kernel-mode modules or device drivers, hardware devices including reconfigurable logic, and different user mode processes. The MDC Driver is a flexible data routing component that enables the preferred embodiment of a Ticker Plant to deliver data to clients with the lowest possible latency.
Depending on the nature of the client request, the background and maintenance processing module can either issue commands to the FAMs contained in reconfigurable logic via the Hardware Interface Driver at 2204, or it can respond directly to client request by sending properly formatted responses to the MDC driver at 2205. The MDC Driver uses spinlocks to synchronize responses to client requests with real-time market events at 2206. Responses to client requests and real-time market events are processed in the same manner by the MDC Driver using common event routing logic. Events and responses destined for a remote client are passed via a fast track path to the Operating System supplied network protocol stack at 2207 for delivery to the remote client.
Thus, as shown in
While these figures illustrate several embodiments of FAM pipelines that can be implemented to process real time financial data streams, it should be noted that numerous other FAM pipelines could be readily devised and developed by persons having ordinary skill in the art following the teachings herein.
Further still it should be noted that for redundancy purposes and/or scaling purposes, redundant appliances 604, 606, 608, 610, 612, 614 and 616 can be deployed in a given market data platform 600.
Furthermore, it should also be noted that a practitioner of the present invention may choose to deploy less than all of the functionality described herein in reconfigurable logic. For example, device 604 may be arranged to perform only options pricing in reconfigurable logic, or some other subset of the functions listed in
While the present invention has been described above in relation to its preferred embodiments, various modifications may be made thereto that still fall within the invention's scope as will be recognizable upon review of the teachings herein. As such, the full scope of the present invention is to be defined solely by the appended claims and their legal equivalents.
This patent application is a continuation of U.S. patent application Ser. No. 13/077,036, filed Mar. 31, 2011, entitled “High Speed Processing of Financial Information Using FPGA Devices”, now U.S. Pat. No. 8,478,680, which is a divisional of U.S. patent application Ser. No. 11/765,306, filed Jun. 19, 2007, entitled “High Speed Processing of Financial Information Using FPGA Devices”, and published as U.S. Pat. App. Pub. 2008/0243675, now U.S. Pat. No. 7,921,046, which claims priority to provisional patent application 60/814,796, filed Jun. 19, 2006, and entitled “High Speed Processing of Financial Information Using FPGA Devices”, the entire disclosures of each of, which are incorporated herein by reference. This patent application is related to the following patent applications: U.S. patent application Ser. No. 13/076,968, filed Mar. 31, 2011, and entitled “High Speed Processing of Financial Information Using FPGA Devices”, U.S. patent application Ser. No. 13/077,294, filed Mar. 31, 2011, and entitled “High Speed Processing of Financial Information Using FPGA Devices”, U.S. patent application Ser. No. 13/076,982, filed Mar. 31, 2011, and entitled “High Speed Processing of Financial Information Using FPGA Devices”, U.S. patent application Ser. No. 13/076,951, filed Mar. 31, 2011, and entitled “High Speed Processing of Financial Information Using FPGA Devices”, U.S. patent application Ser. No. 13/077,224, filed Mar. 31, 2011, and entitled “High Speed Processing of Financial Information Using FPGA Devices”, U.S. patent application Ser. No. 13/076,906, filed Mar. 31, 2011, and entitled “High Speed Processing of Financial Information Using FPGA Devices”, and U.S. patent application Ser. No. 13/076,929, filed Mar. 31, 2011, and entitled “High Speed Processing of Financial Information Using FPGA Devices”. This patent application is also related to the following patent applications: U.S. patent application Ser. No. 09/545,472 (filed Apr. 7, 2000, and entitled “Associative Database Scanning and Information Retrieval”, now U.S. Pat. No. 6,711,558), U.S. patent application Ser. No. 10/153,151 (filed May 21, 2002, and entitled “Associative Database Scanning and Information Retrieval using FPGA Devices”, now U.S. Pat. No. 7,139,743), published PCT applications WO 05/048134 and WO 05/026925 (both filed May 21, 2004, and entitled “Intelligent Data Storage and Processing Using FPGA Devices”), published PCT patent application WO 06/096324 (filed Feb. 22, 2006, entitled “Method and Apparatus for Performing Biosequence Similarity Searching”), U.S. patent application Ser. No. 11/293,619 (filed Dec. 2, 2005, entitled “Method and Device for High Performance Regular Expression Pattern Matching”, and published as 2007/0130140), U.S. patent application Ser. No. 11/339,892 (filed Jan. 26, 2006, and entitled “Firmware Socket Module for FPGA-Based Pipeline Processing”), U.S. patent application Ser. No. 11/381,214 (filed May 2, 2006, and entitled “Method and Apparatus for Approximate Pattern Matching”), U.S. patent application Ser. No. 11/561,615 (filed Nov. 20, 2006, entitled “Method and Apparatus for Processing Financial Information at Hardware Speeds Using FPGA Devices”, and published as 2007/0078837), and U.S. patent application Ser. No. 11/760,211 (filed Jun. 8, 2007, and entitled “Method and System for High Speed Options Pricing”), the entire disclosures of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2046381 | Hicks et al. | Jul 1936 | A |
3082402 | Scantlin | Mar 1963 | A |
3296597 | Scantlin et al. | Jan 1967 | A |
3573747 | Adams et al. | Apr 1971 | A |
3581072 | Nymeyer | May 1971 | A |
3601808 | Vlack | Aug 1971 | A |
3611314 | Pritchard, Jr. et al. | Oct 1971 | A |
3729712 | Glassman | Apr 1973 | A |
3824375 | Gross et al. | Jul 1974 | A |
3848235 | Lewis et al. | Nov 1974 | A |
3906455 | Houston et al. | Sep 1975 | A |
4044334 | Bachman et al. | Aug 1977 | A |
4081607 | Vitols et al. | Mar 1978 | A |
4298898 | Cardot | Nov 1981 | A |
4300193 | Bradley et al. | Nov 1981 | A |
4314356 | Scarbrough | Feb 1982 | A |
4385393 | Chaure et al. | May 1983 | A |
4412287 | Braddock, III | Oct 1983 | A |
4464718 | Dixon et al. | Aug 1984 | A |
4550436 | Freeman et al. | Oct 1985 | A |
4674044 | Kalmus et al. | Jun 1987 | A |
4823306 | Barbic et al. | Apr 1989 | A |
4903201 | Wagner | Feb 1990 | A |
4941178 | Chuang | Jul 1990 | A |
5023910 | Thomson | Jun 1991 | A |
5038284 | Kramer | Aug 1991 | A |
5050075 | Herman et al. | Sep 1991 | A |
5063507 | Lindsey et al. | Nov 1991 | A |
5077665 | Silverman et al. | Dec 1991 | A |
5101353 | Lupien et al. | Mar 1992 | A |
5101424 | Clayton et al. | Mar 1992 | A |
5126936 | Champion et al. | Jun 1992 | A |
5140644 | Kawaguchi et al. | Aug 1992 | A |
5140692 | Morita | Aug 1992 | A |
5161103 | Kosaka et al. | Nov 1992 | A |
5163131 | Row et al. | Nov 1992 | A |
5179626 | Thomson | Jan 1993 | A |
5226165 | Martin | Jul 1993 | A |
5243655 | Wang | Sep 1993 | A |
5249292 | Chiappa | Sep 1993 | A |
5255136 | Machado et al. | Oct 1993 | A |
5258908 | Hartheimer et al. | Nov 1993 | A |
5265065 | Turtle | Nov 1993 | A |
5267148 | Kosaka et al. | Nov 1993 | A |
5270922 | Higgins | Dec 1993 | A |
5297032 | Trojan et al. | Mar 1994 | A |
5313560 | Maruoka et al. | May 1994 | A |
5315634 | Tanaka et al. | May 1994 | A |
5319776 | Hile et al. | Jun 1994 | A |
5327521 | Savic et al. | Jul 1994 | A |
5339411 | Heaton, Jr. | Aug 1994 | A |
5371794 | Diffie et al. | Dec 1994 | A |
5375055 | Togher et al. | Dec 1994 | A |
5388259 | Fleischman et al. | Feb 1995 | A |
5396253 | Chia | Mar 1995 | A |
5404488 | Kerrigan et al. | Apr 1995 | A |
5418951 | Damashek | May 1995 | A |
5432822 | Kaewell, Jr. | Jul 1995 | A |
5461712 | Chelstowski et al. | Oct 1995 | A |
5465353 | Hull et al. | Nov 1995 | A |
5481735 | Mortensen et al. | Jan 1996 | A |
5488725 | Turtle et al. | Jan 1996 | A |
5497317 | Hawkins et al. | Mar 1996 | A |
5497488 | Akizawa et al. | Mar 1996 | A |
5500793 | Deming, Jr. et al. | Mar 1996 | A |
5517642 | Bezek et al. | May 1996 | A |
5535384 | Kasahara | Jul 1996 | A |
5544352 | Egger | Aug 1996 | A |
5546578 | Takada et al. | Aug 1996 | A |
5596569 | Madonna et al. | Jan 1997 | A |
5619574 | Johnson et al. | Apr 1997 | A |
5651125 | Witt et al. | Jul 1997 | A |
5684980 | Casselman | Nov 1997 | A |
5701464 | Aucsmith | Dec 1997 | A |
5712942 | Jennings et al. | Jan 1998 | A |
5721898 | Beardsley et al. | Feb 1998 | A |
5740244 | Indeck et al. | Apr 1998 | A |
5740466 | Geldman et al. | Apr 1998 | A |
5774835 | Ozawa et al. | Jun 1998 | A |
5774839 | Shlomot | Jun 1998 | A |
5781772 | Wilkinson, III et al. | Jul 1998 | A |
5781921 | Nichols | Jul 1998 | A |
5802290 | Casselman | Sep 1998 | A |
5805832 | Brown et al. | Sep 1998 | A |
5809483 | Broka et al. | Sep 1998 | A |
5813000 | Furlani | Sep 1998 | A |
5819273 | Vora et al. | Oct 1998 | A |
5819290 | Fujita et al. | Oct 1998 | A |
5826075 | Bealkowski et al. | Oct 1998 | A |
5845266 | Lupien et al. | Dec 1998 | A |
5857176 | Ginsberg | Jan 1999 | A |
5864738 | Kessler et al. | Jan 1999 | A |
5870730 | Furuya et al. | Feb 1999 | A |
5873071 | Ferstenberg et al. | Feb 1999 | A |
5884286 | Daughtery, III | Mar 1999 | A |
5905974 | Fraser et al. | May 1999 | A |
5913211 | Nitta | Jun 1999 | A |
5930753 | Potamianos et al. | Jul 1999 | A |
5943421 | Grabon | Aug 1999 | A |
5943429 | Händel | Aug 1999 | A |
5950006 | Crater et al. | Sep 1999 | A |
5950196 | Pyreddy et al. | Sep 1999 | A |
5963923 | Garber | Oct 1999 | A |
5978801 | Yuasa | Nov 1999 | A |
5987432 | Zusman et al. | Nov 1999 | A |
5991881 | Conklin et al. | Nov 1999 | A |
5995963 | Nanba et al. | Nov 1999 | A |
6006264 | Colby et al. | Dec 1999 | A |
6016483 | Rickard et al. | Jan 2000 | A |
6023755 | Casselman | Feb 2000 | A |
6023760 | Karttunen | Feb 2000 | A |
6028939 | Yin | Feb 2000 | A |
6044407 | Jones et al. | Mar 2000 | A |
6058391 | Gardner | May 2000 | A |
6061662 | Makivic | May 2000 | A |
6064739 | Davis | May 2000 | A |
6067569 | Khaki et al. | May 2000 | A |
6070172 | Lowe | May 2000 | A |
6073160 | Grantham et al. | Jun 2000 | A |
6084584 | Nahi et al. | Jul 2000 | A |
6105067 | Batra | Aug 2000 | A |
6134551 | Aucsmith | Oct 2000 | A |
6138176 | McDonald et al. | Oct 2000 | A |
RE36946 | Diffie et al. | Nov 2000 | E |
6147976 | Shand et al. | Nov 2000 | A |
6169969 | Cohen | Jan 2001 | B1 |
6173270 | Cristofich et al. | Jan 2001 | B1 |
6173276 | Kant et al. | Jan 2001 | B1 |
6178494 | Casselman | Jan 2001 | B1 |
6195024 | Fallon | Feb 2001 | B1 |
6226676 | Crump et al. | May 2001 | B1 |
6236980 | Reese | May 2001 | B1 |
6243753 | Machin et al. | Jun 2001 | B1 |
6247060 | Boucher et al. | Jun 2001 | B1 |
6263321 | Daughtery, III | Jul 2001 | B1 |
6272616 | Fernando et al. | Aug 2001 | B1 |
6278982 | Korhammer et al. | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6279140 | Slane | Aug 2001 | B1 |
6289440 | Casselman | Sep 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6304858 | Mosler et al. | Oct 2001 | B1 |
6309424 | Fallon | Oct 2001 | B1 |
6317728 | Kane | Nov 2001 | B1 |
6317795 | Malkin et al. | Nov 2001 | B1 |
6321258 | Stollfus et al. | Nov 2001 | B1 |
6336150 | Ellis et al. | Jan 2002 | B1 |
6339819 | Huppenthal et al. | Jan 2002 | B1 |
6370592 | Kumpf | Apr 2002 | B1 |
6370645 | Lee et al. | Apr 2002 | B1 |
6377942 | Hinsley et al. | Apr 2002 | B1 |
6397259 | Lincke et al. | May 2002 | B1 |
6397335 | Franczek et al. | May 2002 | B1 |
6412000 | Riddle et al. | Jun 2002 | B1 |
6415269 | Dinwoodie | Jul 2002 | B1 |
6418419 | Nieboer et al. | Jul 2002 | B1 |
6430272 | Maruyama et al. | Aug 2002 | B1 |
6456982 | Pilipovic | Sep 2002 | B1 |
6463474 | Fuh et al. | Oct 2002 | B1 |
6499107 | Gleichauf et al. | Dec 2002 | B1 |
6535868 | Galeazzi et al. | Mar 2003 | B1 |
6546375 | Pang et al. | Apr 2003 | B1 |
6578147 | Shanklin et al. | Jun 2003 | B1 |
6581098 | Kumpf | Jun 2003 | B1 |
6591302 | Boucher et al. | Jul 2003 | B2 |
6594643 | Freeny, Jr. | Jul 2003 | B1 |
6597812 | Fallon et al. | Jul 2003 | B1 |
6601094 | Mentze et al. | Jul 2003 | B1 |
6601104 | Fallon | Jul 2003 | B1 |
6604158 | Fallon | Aug 2003 | B1 |
6624761 | Fallon | Sep 2003 | B2 |
6625150 | Yu | Sep 2003 | B1 |
6691301 | Bowen | Feb 2004 | B2 |
6704816 | Burke | Mar 2004 | B1 |
6711558 | Indeck et al. | Mar 2004 | B1 |
6765918 | Dixon et al. | Jul 2004 | B1 |
6766304 | Kemp, II et al. | Jul 2004 | B2 |
6772132 | Kemp, II et al. | Aug 2004 | B1 |
6772136 | Kant et al. | Aug 2004 | B2 |
6772345 | Shetty | Aug 2004 | B1 |
6778968 | Gulati | Aug 2004 | B1 |
6785677 | Fritchman | Aug 2004 | B1 |
6804667 | Martin | Oct 2004 | B1 |
6807156 | Veres et al. | Oct 2004 | B1 |
6820129 | Courey, Jr. | Nov 2004 | B1 |
6839686 | Galant | Jan 2005 | B1 |
6847645 | Potter et al. | Jan 2005 | B1 |
6850906 | Chadha et al. | Feb 2005 | B1 |
6877044 | Lo et al. | Apr 2005 | B2 |
6886103 | Brustoloni et al. | Apr 2005 | B1 |
6901461 | Bennett | May 2005 | B2 |
6931408 | Adams et al. | Aug 2005 | B2 |
6944168 | Paatela et al. | Sep 2005 | B2 |
6978223 | Milliken | Dec 2005 | B2 |
6981054 | Krishna | Dec 2005 | B1 |
7003488 | Dunne et al. | Feb 2006 | B2 |
7024384 | Daughtery, III | Apr 2006 | B2 |
7046848 | Olcott | May 2006 | B1 |
7058735 | Spencer | Jun 2006 | B2 |
7065475 | Brundobler | Jun 2006 | B1 |
7089206 | Martin | Aug 2006 | B2 |
7089326 | Boucher et al. | Aug 2006 | B2 |
7093023 | Lockwood et al. | Aug 2006 | B2 |
7099838 | Gastineau et al. | Aug 2006 | B1 |
7103569 | Groveman et al. | Sep 2006 | B1 |
7117280 | Vasudevan | Oct 2006 | B2 |
7124106 | Stallaert et al. | Oct 2006 | B1 |
7127424 | Kemp, II et al. | Oct 2006 | B2 |
7130913 | Fallon | Oct 2006 | B2 |
7139743 | Indeck et al. | Nov 2006 | B2 |
7149715 | Browne et al. | Dec 2006 | B2 |
7161506 | Fallon | Jan 2007 | B2 |
7167980 | Chiu | Jan 2007 | B2 |
7177833 | Marynowski et al. | Feb 2007 | B1 |
7181437 | Indeck et al. | Feb 2007 | B2 |
7181608 | Fallon et al. | Feb 2007 | B2 |
7212998 | Muller et al. | May 2007 | B1 |
7222114 | Chan et al. | May 2007 | B1 |
7224185 | Campbell et al. | May 2007 | B2 |
7225188 | Gai et al. | May 2007 | B1 |
7228289 | Brumfield et al. | Jun 2007 | B2 |
7249118 | Sandler et al. | Jul 2007 | B2 |
7251629 | Marynowski et al. | Jul 2007 | B1 |
7257842 | Barton et al. | Aug 2007 | B2 |
7277887 | Burrows et al. | Oct 2007 | B1 |
7287037 | An et al. | Oct 2007 | B2 |
7305383 | Kubesh et al. | Dec 2007 | B1 |
7305391 | Wyschogrod et al. | Dec 2007 | B2 |
7321937 | Fallon | Jan 2008 | B2 |
7356498 | Kaminsky et al. | Apr 2008 | B2 |
7363277 | Dutta et al. | Apr 2008 | B1 |
7378992 | Fallon | May 2008 | B2 |
7386046 | Fallon et al. | Jun 2008 | B2 |
7406444 | Eng et al. | Jul 2008 | B2 |
7411957 | Stacy et al. | Aug 2008 | B2 |
7417568 | Fallon et al. | Aug 2008 | B2 |
7454418 | Wang | Nov 2008 | B1 |
7457834 | Jung et al. | Nov 2008 | B2 |
7461064 | Fontoura et al. | Dec 2008 | B2 |
7478431 | Nachenberg | Jan 2009 | B1 |
7487327 | Chang et al. | Feb 2009 | B1 |
7496108 | Biran et al. | Feb 2009 | B2 |
7539845 | Wentzlaff et al. | May 2009 | B1 |
7558753 | Neubert et al. | Jul 2009 | B2 |
7558925 | Bouchard et al. | Jul 2009 | B2 |
7565525 | Vorbach et al. | Jul 2009 | B2 |
7580719 | Karmarkar | Aug 2009 | B2 |
7587476 | Sato | Sep 2009 | B2 |
7587614 | Langhammer | Sep 2009 | B1 |
7598958 | Kelleher | Oct 2009 | B1 |
7603303 | Kraus et al. | Oct 2009 | B1 |
7617291 | Fan et al. | Nov 2009 | B2 |
7636703 | Taylor | Dec 2009 | B2 |
7660761 | Zhou et al. | Feb 2010 | B2 |
7668849 | Narancic et al. | Feb 2010 | B1 |
7685121 | Brown et al. | Mar 2010 | B2 |
7701945 | Roesch et al. | Apr 2010 | B2 |
7714747 | Fallon | May 2010 | B2 |
7761459 | Zhang et al. | Jul 2010 | B1 |
7788293 | Pasztor et al. | Aug 2010 | B2 |
7840482 | Singla et al. | Nov 2010 | B2 |
7856545 | Casselman | Dec 2010 | B2 |
7856546 | Casselman et al. | Dec 2010 | B2 |
7908213 | Monroe et al. | Mar 2011 | B2 |
7908259 | Branscome et al. | Mar 2011 | B2 |
7917299 | Buhler et al. | Mar 2011 | B2 |
7921046 | Parsons et al. | Apr 2011 | B2 |
7945528 | Cytron et al. | May 2011 | B2 |
7949650 | Indeck et al. | May 2011 | B2 |
7953743 | Indeck et al. | May 2011 | B2 |
7954114 | Chamberlain et al. | May 2011 | B2 |
7991667 | Kraus et al. | Aug 2011 | B2 |
8015099 | Reid | Sep 2011 | B2 |
8024253 | Peterify et al. | Sep 2011 | B2 |
8027893 | Burrows et al. | Sep 2011 | B1 |
8032440 | Hait | Oct 2011 | B1 |
8046283 | Burns et al. | Oct 2011 | B2 |
8069102 | Indeck et al. | Nov 2011 | B2 |
8073763 | Merrin et al. | Dec 2011 | B1 |
8095508 | Chamberlain et al. | Jan 2012 | B2 |
8131697 | Indeck et al. | Mar 2012 | B2 |
8140416 | Borkovec et al. | Mar 2012 | B2 |
8156101 | Indeck et al. | Apr 2012 | B2 |
8260764 | Gruber | Sep 2012 | B1 |
8374986 | Indeck et al. | Feb 2013 | B2 |
8407122 | Parsons et al. | Mar 2013 | B2 |
8458081 | Parsons et al. | Jun 2013 | B2 |
8478680 | Parsons et al. | Jul 2013 | B2 |
8515682 | Buhler et al. | Aug 2013 | B2 |
8549024 | Indeck et al. | Oct 2013 | B2 |
8595104 | Parsons et al. | Nov 2013 | B2 |
8600856 | Parsons et al. | Dec 2013 | B2 |
8620881 | Chamberlain et al. | Dec 2013 | B2 |
8626624 | Parsons et al. | Jan 2014 | B2 |
8660925 | Borkovec et al. | Feb 2014 | B2 |
8768805 | Taylor et al. | Jul 2014 | B2 |
8768888 | Chamberlain et al. | Jul 2014 | B2 |
8843408 | Singla et al. | Sep 2014 | B2 |
8880501 | Indeck et al. | Nov 2014 | B2 |
8983063 | Taylor et al. | Mar 2015 | B1 |
9020928 | Indeck et al. | Apr 2015 | B2 |
9047243 | Taylor et al. | Jun 2015 | B2 |
9176775 | Chamberlain et al. | Nov 2015 | B2 |
9396222 | Indeck et al. | Jul 2016 | B2 |
9582831 | Parsons et al. | Feb 2017 | B2 |
9672565 | Parsons et al. | Jun 2017 | B2 |
20010003193 | Woodring et al. | Jun 2001 | A1 |
20010013048 | Imbert de Tremiolles et al. | Aug 2001 | A1 |
20010042040 | Keith | Nov 2001 | A1 |
20010047473 | Fallon | Nov 2001 | A1 |
20010056547 | Dixon | Dec 2001 | A1 |
20020010825 | Wilson | Jan 2002 | A1 |
20020019812 | Board et al. | Feb 2002 | A1 |
20020023010 | Rittmaster et al. | Feb 2002 | A1 |
20020038276 | Buhannic et al. | Mar 2002 | A1 |
20020069375 | Bowen | Jun 2002 | A1 |
20020072893 | Wilson | Jun 2002 | A1 |
20020080871 | Fallon et al. | Jun 2002 | A1 |
20020082967 | Kaminsky et al. | Jun 2002 | A1 |
20020095519 | Philbrick et al. | Jul 2002 | A1 |
20020100029 | Bowen | Jul 2002 | A1 |
20020101425 | Hamid | Aug 2002 | A1 |
20020105911 | Pruthi et al. | Aug 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020138376 | Hinkle | Sep 2002 | A1 |
20020143521 | Call | Oct 2002 | A1 |
20020150248 | Kovacevic | Oct 2002 | A1 |
20020156998 | Casselman | Oct 2002 | A1 |
20020162025 | Sutton et al. | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169873 | Zodnik | Nov 2002 | A1 |
20020180742 | Hamid | Dec 2002 | A1 |
20020198813 | Patterson et al. | Dec 2002 | A1 |
20020199173 | Bowen | Dec 2002 | A1 |
20030009411 | Ram et al. | Jan 2003 | A1 |
20030009693 | Brock et al. | Jan 2003 | A1 |
20030014521 | Elson et al. | Jan 2003 | A1 |
20030014662 | Gupta et al. | Jan 2003 | A1 |
20030018630 | Indeck et al. | Jan 2003 | A1 |
20030023653 | Dunlop et al. | Jan 2003 | A1 |
20030023876 | Bardsley et al. | Jan 2003 | A1 |
20030028408 | RuDusky | Feb 2003 | A1 |
20030028690 | Appleby-Alis et al. | Feb 2003 | A1 |
20030028864 | Bowen | Feb 2003 | A1 |
20030033234 | RuDusky | Feb 2003 | A1 |
20030033240 | Balson et al. | Feb 2003 | A1 |
20030033450 | Appleby-Alis | Feb 2003 | A1 |
20030033514 | Appleby-Allis et al. | Feb 2003 | A1 |
20030033588 | Alexander | Feb 2003 | A1 |
20030033594 | Bowen | Feb 2003 | A1 |
20030035547 | Newton | Feb 2003 | A1 |
20030037037 | Adams et al. | Feb 2003 | A1 |
20030037321 | Bowen | Feb 2003 | A1 |
20030041129 | Applcby-Allis | Feb 2003 | A1 |
20030043805 | Graham et al. | Mar 2003 | A1 |
20030046668 | Bowen | Mar 2003 | A1 |
20030051043 | Wyschogrod et al. | Mar 2003 | A1 |
20030055658 | RuDusky | Mar 2003 | A1 |
20030055769 | RuDusky | Mar 2003 | A1 |
20030055770 | RuDusky | Mar 2003 | A1 |
20030055771 | RuDusky | Mar 2003 | A1 |
20030055777 | Ginsberg | Mar 2003 | A1 |
20030061409 | RuDusky | Mar 2003 | A1 |
20030065607 | Satchwell | Apr 2003 | A1 |
20030065943 | Geis et al. | Apr 2003 | A1 |
20030074177 | Bowen | Apr 2003 | A1 |
20030074582 | Patel et al. | Apr 2003 | A1 |
20030078865 | Lee | Apr 2003 | A1 |
20030079060 | Dunlop | Apr 2003 | A1 |
20030093343 | Huttenlocher et al. | May 2003 | A1 |
20030093347 | Gray | May 2003 | A1 |
20030097481 | Richter | May 2003 | A1 |
20030099254 | Richter | May 2003 | A1 |
20030105620 | Bowen | Jun 2003 | A1 |
20030105721 | Ginter et al. | Jun 2003 | A1 |
20030110229 | Kulig et al. | Jun 2003 | A1 |
20030115485 | Milliken | Jun 2003 | A1 |
20030117971 | Aubury | Jun 2003 | A1 |
20030120460 | Aubury | Jun 2003 | A1 |
20030121010 | Aubury | Jun 2003 | A1 |
20030126065 | Eng et al. | Jul 2003 | A1 |
20030140337 | Aubury | Jul 2003 | A1 |
20030154368 | Stevens et al. | Aug 2003 | A1 |
20030163715 | Wong | Aug 2003 | A1 |
20030177253 | Schuehler et al. | Sep 2003 | A1 |
20030184593 | Dunlop | Oct 2003 | A1 |
20030187662 | Wilson | Oct 2003 | A1 |
20030191876 | Fallon | Oct 2003 | A1 |
20030208430 | Gershon | Nov 2003 | A1 |
20030217306 | Harthcock et al. | Nov 2003 | A1 |
20030221013 | Lockwood et al. | Nov 2003 | A1 |
20030233302 | Weber et al. | Dec 2003 | A1 |
20040000928 | Cheng et al. | Jan 2004 | A1 |
20040015502 | Alexander et al. | Jan 2004 | A1 |
20040015633 | Smith | Jan 2004 | A1 |
20040019703 | Burton | Jan 2004 | A1 |
20040028047 | Hou et al. | Feb 2004 | A1 |
20040034587 | Amberson et al. | Feb 2004 | A1 |
20040049596 | Schuehler et al. | Mar 2004 | A1 |
20040059666 | Waelbroeck et al. | Mar 2004 | A1 |
20040062245 | Sharp et al. | Apr 2004 | A1 |
20040064737 | Milliken et al. | Apr 2004 | A1 |
20040073703 | Boucher et al. | Apr 2004 | A1 |
20040111632 | Halperin | Jun 2004 | A1 |
20040162826 | Wyschogrod et al. | Aug 2004 | A1 |
20040170070 | Rapp et al. | Sep 2004 | A1 |
20040177340 | Hsu et al. | Sep 2004 | A1 |
20040186804 | Chakraborty et al. | Sep 2004 | A1 |
20040186814 | Chalermkraivuth et al. | Sep 2004 | A1 |
20040199448 | Chalermkraivuth et al. | Oct 2004 | A1 |
20040199452 | Johnston et al. | Oct 2004 | A1 |
20040205149 | Dillon et al. | Oct 2004 | A1 |
20050005145 | Teixeira | Jan 2005 | A1 |
20050027634 | Gershon | Feb 2005 | A1 |
20050033672 | Lasry et al. | Feb 2005 | A1 |
20050044344 | Stevens | Feb 2005 | A1 |
20050080649 | Alvarez et al. | Apr 2005 | A1 |
20050086520 | Dharmapurikar et al. | Apr 2005 | A1 |
20050091142 | Renton et al. | Apr 2005 | A1 |
20050097027 | Kavanaugh | May 2005 | A1 |
20050131790 | Benzschawel et al. | Jun 2005 | A1 |
20050135608 | Zheng | Jun 2005 | A1 |
20050171943 | Ichino et al. | Aug 2005 | A1 |
20050187844 | Chalermkraivuth et al. | Aug 2005 | A1 |
20050187845 | Eklund et al. | Aug 2005 | A1 |
20050187846 | Subbu et al. | Aug 2005 | A1 |
20050187847 | Bonissone et al. | Aug 2005 | A1 |
20050187848 | Bonissone et al. | Aug 2005 | A1 |
20050187849 | Bollapragada et al. | Aug 2005 | A1 |
20050190787 | Kuik et al. | Sep 2005 | A1 |
20050195832 | Dharmapurikar et al. | Sep 2005 | A1 |
20050197938 | Davie et al. | Sep 2005 | A1 |
20050197939 | Davie et al. | Sep 2005 | A1 |
20050197948 | Davie et al. | Sep 2005 | A1 |
20050216384 | Partlow et al. | Sep 2005 | A1 |
20050228735 | Duquette | Oct 2005 | A1 |
20050229254 | Singh et al. | Oct 2005 | A1 |
20050240510 | Schweickert et al. | Oct 2005 | A1 |
20050243824 | Abbazia et al. | Nov 2005 | A1 |
20050267836 | Crosthwaite et al. | Dec 2005 | A1 |
20050283423 | Moser et al. | Dec 2005 | A1 |
20050283743 | Mulholland et al. | Dec 2005 | A1 |
20060020536 | Renton et al. | Jan 2006 | A1 |
20060020715 | Jungck | Jan 2006 | A1 |
20060026090 | Balabon | Feb 2006 | A1 |
20060031154 | Noviello et al. | Feb 2006 | A1 |
20060031156 | Noviello et al. | Feb 2006 | A1 |
20060047636 | Mohania et al. | Mar 2006 | A1 |
20060053295 | Madhusudan et al. | Mar 2006 | A1 |
20060059064 | Glinberg et al. | Mar 2006 | A1 |
20060059065 | Glinberg et al. | Mar 2006 | A1 |
20060059066 | Glinberg et al. | Mar 2006 | A1 |
20060059067 | Glinberg et al. | Mar 2006 | A1 |
20060059068 | Glinberg et al. | Mar 2006 | A1 |
20060059069 | Glinberg et al. | Mar 2006 | A1 |
20060059083 | Friesen et al. | Mar 2006 | A1 |
20060075404 | Rosu et al. | Apr 2006 | A1 |
20060129745 | Thiel et al. | Jun 2006 | A1 |
20060143099 | Partlow et al. | Jun 2006 | A1 |
20060242123 | Williams, Jr. | Oct 2006 | A1 |
20060259407 | Rosenthal et al. | Nov 2006 | A1 |
20060259417 | Marynowski et al. | Nov 2006 | A1 |
20060269148 | Farber et al. | Nov 2006 | A1 |
20060282281 | Egetoft | Dec 2006 | A1 |
20060282369 | White | Dec 2006 | A1 |
20060294059 | Chamberlain et al. | Dec 2006 | A1 |
20070011183 | Langseth et al. | Jan 2007 | A1 |
20070011687 | Ilik et al. | Jan 2007 | A1 |
20070025351 | Cohen | Feb 2007 | A1 |
20070061231 | Kim-E | Mar 2007 | A1 |
20070061241 | Jovanovic et al. | Mar 2007 | A1 |
20070067108 | Buhler et al. | Mar 2007 | A1 |
20070067481 | Sharma et al. | Mar 2007 | A1 |
20070078837 | Indeck et al. | Apr 2007 | A1 |
20070089063 | Breyer | Apr 2007 | A1 |
20070094199 | Deshpande et al. | Apr 2007 | A1 |
20070112837 | Houh et al. | May 2007 | A1 |
20070118457 | Peterffy et al. | May 2007 | A1 |
20070118500 | Indeck et al. | May 2007 | A1 |
20070130140 | Cytron et al. | Jun 2007 | A1 |
20070156574 | Marynowski et al. | Jul 2007 | A1 |
20070174841 | Chamberlain et al. | Jul 2007 | A1 |
20070179935 | Lee et al. | Aug 2007 | A1 |
20070209068 | Ansari et al. | Sep 2007 | A1 |
20070237327 | Taylor et al. | Oct 2007 | A1 |
20070244859 | Trippe et al. | Oct 2007 | A1 |
20070260602 | Taylor | Nov 2007 | A1 |
20070277036 | Chamberlain et al. | Nov 2007 | A1 |
20070294157 | Singla et al. | Dec 2007 | A1 |
20070294162 | Borkovec | Dec 2007 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080082502 | Gupta | Apr 2008 | A1 |
20080084573 | Horowitz et al. | Apr 2008 | A1 |
20080086274 | Chamberlain et al. | Apr 2008 | A1 |
20080097893 | Walsky et al. | Apr 2008 | A1 |
20080104542 | Cohen et al. | May 2008 | A1 |
20080109413 | Indeck et al. | May 2008 | A1 |
20080114724 | Indeck et al. | May 2008 | A1 |
20080114725 | Indeck et al. | May 2008 | A1 |
20080114760 | Indeck et al. | May 2008 | A1 |
20080126320 | Indeck et al. | May 2008 | A1 |
20080133453 | Indeck et al. | Jun 2008 | A1 |
20080133519 | Indeck et al. | Jun 2008 | A1 |
20080162378 | Levine et al. | Jul 2008 | A1 |
20080189251 | Branscome et al. | Aug 2008 | A1 |
20080275805 | Hecht | Nov 2008 | A1 |
20090182683 | Taylor et al. | Jul 2009 | A1 |
20090262741 | Jungck et al. | Oct 2009 | A1 |
20090287628 | Indeck et al. | Nov 2009 | A1 |
20100005036 | Kraus et al. | Jan 2010 | A1 |
20110066832 | Casselman et al. | Mar 2011 | A1 |
20110125960 | Casselman | May 2011 | A1 |
20110178911 | Parsons et al. | Jul 2011 | A1 |
20110178912 | Parsons et al. | Jul 2011 | A1 |
20110178917 | Parsons et al. | Jul 2011 | A1 |
20110178918 | Parsons et al. | Jul 2011 | A1 |
20110178919 | Parsons et al. | Jul 2011 | A1 |
20110178957 | Parsons et al. | Jul 2011 | A1 |
20110179050 | Parsons et al. | Jul 2011 | A1 |
20110184844 | Parsons et al. | Jul 2011 | A1 |
20110199243 | Fallon et al. | Aug 2011 | A1 |
20110231446 | Buhler et al. | Sep 2011 | A1 |
20110246353 | Kraus et al. | Oct 2011 | A1 |
20110252008 | Chamberlain et al. | Oct 2011 | A1 |
20110295967 | Wang et al. | Dec 2011 | A1 |
20120089496 | Taylor et al. | Apr 2012 | A1 |
20120089497 | Taylor et al. | Apr 2012 | A1 |
20120095893 | Taylor et al. | Apr 2012 | A1 |
20120109849 | Chamberlain et al. | May 2012 | A1 |
20120110316 | Chamberlain et al. | May 2012 | A1 |
20120116998 | Indeck et al. | May 2012 | A1 |
20120130922 | Indeck et al. | May 2012 | A1 |
20120179590 | Borkovec et al. | Jul 2012 | A1 |
20120215801 | Indeck et al. | Aug 2012 | A1 |
20120246052 | Taylor et al. | Sep 2012 | A1 |
20130151458 | Indeck et al. | Jun 2013 | A1 |
20140180903 | Parsons et al. | Jun 2014 | A1 |
20140180904 | Parsons et al. | Jun 2014 | A1 |
20140180905 | Parsons et al. | Jun 2014 | A1 |
20140181133 | Parsons et al. | Jun 2014 | A1 |
20140310148 | Taylor et al. | Oct 2014 | A1 |
20140310717 | Chamberlain et al. | Oct 2014 | A1 |
20150052148 | Indeck et al. | Feb 2015 | A1 |
20150055776 | Taylor et al. | Feb 2015 | A1 |
20170102950 | Chamberlain et al. | Apr 2017 | A1 |
20170124255 | Buhler et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
0573991 | Dec 1993 | EP |
0880088 | Nov 1996 | EP |
0851358 | Jul 1998 | EP |
0887723 | Dec 1998 | EP |
0911738 | Apr 1999 | EP |
09145544 | Jun 1997 | JP |
11-259559 | Sep 1999 | JP |
11316765 | Nov 1999 | JP |
2000286715 | Oct 2000 | JP |
2001268071 | Sep 2001 | JP |
2001283000 | Oct 2001 | JP |
2002101089 | Apr 2002 | JP |
2002117232 | Apr 2002 | JP |
2002269343 | Sep 2002 | JP |
2003-036360 | Feb 2003 | JP |
2003256660 | Sep 2003 | JP |
4180644 | Nov 2008 | JP |
199010910 | Sep 1990 | WO |
199409443 | Apr 1994 | WO |
199737735 | Oct 1997 | WO |
2000041136 | Jul 2000 | WO |
2001022425 | Mar 2001 | WO |
0135216 | May 2001 | WO |
200172106 | Oct 2001 | WO |
2001080082 | Oct 2001 | WO |
2001080558 | Oct 2001 | WO |
0190890 | Nov 2001 | WO |
2002061525 | Aug 2002 | WO |
2003100650 | Apr 2003 | WO |
2003036845 | May 2003 | WO |
2003100662 | Dec 2003 | WO |
2004017604 | Feb 2004 | WO |
2004042560 | May 2004 | WO |
2004042561 | May 2004 | WO |
2004042562 | May 2004 | WO |
2004042574 | May 2004 | WO |
2005017708 | Feb 2005 | WO |
2005026925 | Mar 2005 | WO |
2005048134 | May 2005 | WO |
2006023948 | Mar 2006 | WO |
2006059312 | Jun 2006 | WO |
2006096324 | Sep 2006 | WO |
2007016078 | Feb 2007 | WO |
2007064685 | Jun 2007 | WO |
2007074903 | Jul 2007 | WO |
2007087507 | Aug 2007 | WO |
2007127336 | Nov 2007 | WO |
2007149378 | Dec 2007 | WO |
2008022036 | Feb 2008 | WO |
2008036197 | Mar 2008 | WO |
2009089467 | Jul 2009 | WO |
2009140363 | Nov 2009 | WO |
2010077829 | Jul 2010 | WO |
Entry |
---|
Gokhale, Maya B. & Graham, Paul S. Reconfigurable Computing. Springer. 2005. pp. 1-12. |
Gokhale, Maya B; Graham, Paul S. Reconfigurable Computing. Springer. 2005. pp. 24-25, 40 and 44. |
Corbet, Jonathan; Rubini, Alessandro; Kroah-Hartman, Greg; Linux Device Drivers. O'Reily. 2005. pp. 19-20, 412-414 and 441. |
Ebeling et al., “RaPiD—Reconfigurable Pipelined Datapath”, University of Washington, Dept. of Computer Science and Engineering, Sep. 23, 1996, Seattle, WA. |
English Translation of Office Action for JP Application 2004-508044 dated Feb. 9, 2010. |
Exegy Inc., “Exegy and HyperFeed to Unveil Exelerate TP at SIA Conference”, Release Date: Jun. 20, 2006, downloaded from http://news.thomasnet.com/companystory/488004 on Jun. 19, 2007, 4 pages. |
Exegy Inc., “First Exegy Ticker Plant Deployed”, Release Date: Oct. 17, 2006, downloaded from http://news.thomasnet.com/companystory/496530 on Jun. 19, 2007, 5 pages. |
Feldman, “High Frequency Traders Get Boost From FPGA Acceleration”, Jun. 8, 2007, downloaded from http://www.hpcwire.com/hpc.1600113.html on Jun. 19, 2007, 4 pages. |
Franklin et al., “An Architecture for Fast Processing of Large Unstructured Data Sets.” Proc. of 22nd Int'l Conf. on Computer Design, Oct. 2004, pp. 280-287. |
Franklin et al, “Assisting Network Intrusion Detection with Reconfigurable Hardware”, Symposium on Field-Programmable Custom Computing Machines (FCCM 2002), Apr. 2002, Napa, California. |
Fu et al., “The FPX KCPSM Module: An Embedded, Reconfigurable Active Processing Module for the Field Programmable Port Extender (FPX)”, Washington University, Department of Computer Science, Technical Report WUCS-01-14, Jul. 2001. |
Gavrila et al., “Multi-feature Hierarchical Template Matching Using Distance Transforms”, IEEE, Aug. 16-20, 1998, vol. 1, pp. 439-444. |
Gokhale et al., “Reconfigurable Computing”, 2005, pp. 3, 7, 11-15 and 92-93, Springer. |
Gokhale et al., “Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays”, Springer, 2005, pp. 1-36. |
Google Search Results Page for “field programmable gate array financial calculation stock market” over dates of Jan. 1, 1990-May 21, 2002, 1 page. |
Gunther et al., “Assessing Document Relevance with Run-Time Reconfigurable Machines”, IEEE Symposium on FPGAs for Custom Computing Machines, 1996, pp. 10-17, Proceedings, Napa Valley, CA. |
Gyang, “NCBI Blastn Stage 1 in Reconfigurable Hardware,” Technical Report WUCSE-2005-30, Aug. 2004, Department of Computer Science and Engineering, Washington University, St. Louis, MO. |
Halaas et al., “A Recursive MISD Architecture for Pattern Matching”, IEEE Transactions on Very Large Scale Integration, vol. 12, No. 7, pp. 727-734, Jul. 2004. |
Harris, “Pete's Blog: Can FPGAs Overcome the FUD?”, Low-Latency.com, May 14, 2007, URL: http://www.a-teamgroup.com/article/pete-blog-can-fpgas-overcome-the-fud/. |
Hauck et al., “Software Technologies for Reconfigurable Systems”, Northwestern University, Dept. of ECE, Technical Report, 1996. |
Hayes, “Computer Architecture and Organization”, Second Edition, 1988, pp. 448-459, McGraw-Hill, Inc. |
Hezel et al., “FPGA-Based Template Matching Using Distance Transforms”, Proceedings of the 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, Apr. 22, 2002, pp. 89-97, IEEE Computer Society, USA. |
Hirsch, “Tech Predictions for 2008”, Reconfigurable Computing, Jan. 16, 2008, URL: http://fpgacomputing.blogspot.com/2008_01_01_archive.html. |
Hoinville, et al. “Spatial Noise Phenomena of Longitudinal Magnetic Recording Media”, IEEE Transactions on Magnetics, vol. 28, No. 6, Nov. 1992. |
Hollaar, “Hardware Systems for Text Information Retrieval”, Proceedings of the Sixth Annual International ACM Sigir Conference on Research and Development in Information Retrieval, Jun. 6-8, 1983, pp. 3-9, Baltimore, Maryland, USA. |
Hutchings et al., “Assisting Network Intrusion Detection with Reconfigurable Hardware”, FCCM 2002: 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2002. |
Ibrahim et al., “Lecture Notes in Computer Science: Database and Expert Systems Applications”, 2000, p. 769, vol. 1873, Springer. |
International Preliminary Report on Patentability (Chapter I) for PCT/US2008/066929 dated Jan. 7, 2010. |
International Preliminary Report on Patentability (Chapter I) for PCT/US2009/067935 dated Jun. 30, 2011. |
International Search Report and Written Opinion for PCT/US2009/030623 dated May 5, 2009. |
International Search Report and Written Opinion for PCT/US2009/067935 dated Apr. 30, 2010. |
International Search Report for PCT/US2001/011255 dated Jul. 10, 2003. |
International Search Report for PCT/US2002/033286 dated Jan. 22, 2003. |
International Search Report for PCT/US2003/015638 dated May 6, 2004. |
International Search Report for PCT/US2004/016021 dated Aug. 18, 2005. |
International Search Report for PCT/US2004/016398 dated Apr. 12, 2005. |
International Search Report for PCT/US2005/030046; dated Sep. 25, 2006. |
International Search Report for PCT/US2006/006105 dated Oct. 31, 2006. |
International Search Report for PCT/US2006/045653 dated Jul. 8, 2008. |
International Search Report for PCT/US2007/060835 dated Jul. 9, 2007. |
International Search Report for PCT/US2007/084466 dated Jul. 23, 2008. |
International Search Report for PCT/US2008/065955 dated Aug. 22, 2008. |
International Search Report for PCT/US2008/066929 dated Aug. 29, 2008. |
Invitation to Pay Additional Fees and Annex to Form PCT/ISA/206 Communication Relating to the Results of the Partial International Search for International Application PCT/US2003/015638 dated Feb. 3, 2004. |
Jacobson et al., “RFC 1072: TCP Extensions for Long-Delay Paths”, Oct. 1988. |
Jacobson et al., “tcpdump—dump traffic on a network”, Jun. 30, 1997, online at www.cse.cuhk.edu.hk/˜cslui/CEG4430/tcpdump.ps.gz. |
Jones et al., “A Probabilistic Model of Information Retrieval: Development and Status”, Information Processing and Management, Aug. 1998, 76 pages. |
Koloniari et al., “Content-Based Routing of Path Queries in Peer-to-Peer Systems”, pp. 1-19, E. Bertino et al. (Eds.): EDBT 2004, LNCS 2992, pp. 29-47, 2004, copyright by Springer-Verlag, Germany. |
Office Action Response for U.S. Appl. No. 11/561,615 dated Mar. 26, 2010. |
Pramanik et al., “A Hardware Pattern Matching Algorithm on a Dataflow”; Computer Journal; Jul. 1, 1985; pp. 264-269; vol. 28, No. 3; Oxford University Press, Surrey, Great Britain. |
Ramakrishna et al., “A Performance Study of Hashing Functions for Hardware Applications”, Int. Conf. on Computing and Information, May 1994, pp. 1621-1636, vol. 1, No. 1. |
Ramakrishna et al., “Efficient Hardware Hashing Functions for High Performance Computers”, IEEE Transactions on Computers, Dec. 1997, vol. 46, No. 12. |
Ratha et al., “Convolution on Splash 2”, Proceedings of IEEE Symposium on FPGAS for Custom Computing Machines, Apr. 19, 1995, pp. 204-213, Los Alamitos, California. |
Roberts, “Internet Still Growing Dramatically Says Internet Founder”, Press Release, Caspian Networks, Inc.—Virtual Pressroom. |
Roesch, “Snort—Lightweight Intrusion Detection for Networks”, Proceedings of LISA '99: 13th Systems Administration Conference; Nov. 7-12, 1999; pp. 229-238; USENIX Association, Seattle, WA USA. |
Sachin Tandon, “A Programmable Architecture for Real-Time Derivative Trading”, Master's Thesis, University of Edinburgh, 2003. |
Schmerken, “With Hyperfeed Litigation Pending, Exegy Launches Low-Latency Ticker Plant”, in Wall Street & Technology Blog, Mar. 20, 2007, pp. 1-2. |
Schmit, “Incremental Reconfiguration for Pipelined Applications”, FPGAs for Custom Computing Machines, Proceedings, The 5th Annual IEEE Symposium, Dept. of ECE, Carnegie Mellon University, Apr. 16-18, 1997, pp. 47-55, Pittsburgh, PA. |
Schuehler et al., “Architecture for a Hardware Based, TCP/IP Content Scanning System”, IEEE Micro, 24(1):62-69, Jan.-Feb. 2004, USA. |
Schuehler et al., “TCP-Splitter: A TCP/IP Flow Monitor in Reconfigurable Hardware”, Hot Interconnects 10 (HotI-10), Stanford, CA, Aug. 21-23, 2002, pp. 127-131. |
Seki et al., “High Speed Computation of Shogi With FPGA”, Proceedings of 58th Convention Architecture, Software Science, Engineering, Mar. 9, 1999, pp. 1-133-1-134. |
Shah, “Understanding Network Processors”, Version 1.0, University of California-Berkeley, Sep. 4, 2001. |
Shalunov et al., “Bulk TCP Use and Performance on Internet 2”, ACM SIGCOMM Internet Measurement Workshop, 2001. |
Shasha et al., “Database Tuning”, 2003, pp. 280-284, Morgan Kaufmann Publishers. |
Shirazi et al., “Quantitative Analysis of FPGA-based Database Searching”, Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, May 2001, pp. 85-96, vol. 28, No. 1/2, Kluwer Academic Publishers, Dordrecht, NL. |
Sidhu et al., “Fast Regular Expression Matching Using FPGAs”, IEEE Symposium on Field Programmable Custom Computing Machines (FCCM 2001), Apr. 2001. |
Sidhu et al., “String Matching on Multicontext FPGAs Using Self-Reconfiguration”, FPGA '99: Proceedings of the 1999 ACM/SIGDA 7th International Symposium on Field Programmable Gate Arrays, Feb. 1999, pp. 217-226. |
Singh et al., “The EarlyBird System for Real-Time Detection on Unknown Worms”, Technical report CS2003-0761, Aug. 2003. |
Skiena et al., “Programming Challenges: The Programming Contest Training Manual”, 2003, pp. 30-31, Springer. |
Sourdis and Pnevmatikatos, “Fast, Large-Scale String Match for a 10Gbps FPGA-based Network Intrusion Detection System”, 13th International Conference on Field Programmable Logic and Applications, 2003. |
Steinbach et al., “A Comparison of Document Clustering Techniques”, KDD Workshop on Text Mining, 2000. |
Summons to Attend Oral Proceedings for EP Application 03729000.4 dated Mar. 17, 2010. |
Tan et al., “A High Throughput String Matching Architecture for Intrusion Detection and Prevention”, ISCA 2005: 32nd Annual International Symposium on Computer Architecture, pp. 112-122, 2005. |
Taylor et al., “Dynamic Hardware Plugins (DHP): Exploiting Reconfigurable Hardware for High-Performance Programmable Routers”, Computer Networks, 38(3): 295-310 (16), Feb. 21, 2002, and online at http://www.cc.gatech.edu/classes/AY2007/cs8803hpc_fall/papers/phplugins.pdf. |
Taylor et al., “Generalized RAD Module Interface Specification of the Field Programmable Port Extender (FPX) Version 2”, Washington University, Department of Computer Science, Technical Report, Jul. 5, 2001, pp. 1-10. |
Taylor et al., “Modular Design Techniques for the FPX”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Taylor et al., “Scalable Packet Classification using Distributed Crossproducting of Field Labels”, Proceedings of IEEE Infocom, Mar. 2005, pp. 1-12, vol. 20, No. 1. |
Taylor, “Models, Algorithms, and Architectures for Scalable Packet Classification”, doctoral thesis, Department of Computer Science and Engineering, Washington University, St. Louis, MO, Aug. 2004, pp. 1-201. |
Thomson Reuters, “Mellanox InfiniBand Accelerates the Exegy Ticker Plant at Major Exchanges”, Jul. 22, 2008, URL: http://www.reuters.com/article/pressRelease/idUS125385+22-Jul-2008+BW20080722. |
Uluski et al., “Characterizing Antivirus Workload Execution”, SIGARCH Comput. Archit. News, vol. 33, No. 1, pp. 90-98, Mar. 2005. |
Villasenor et al., “Configurable Computing Solutions for Automatic Target Recognition”, FPGAS for Custom Computing Machines, 1996, Proceedings, IEEE Symposium on Napa Valley, CA, Apr. 17-19, 1996, pp. 70-79, 1996 IEEE, Napa Valley, CA, Los Alamitos, CA, USA. |
Waldvogel et al., “Scalable High-Speed Prefix Matching”, ACM Transactions on Computer Systems, Nov. 2001, pp. 440-482, vol. 19, No. 4. |
Ward et al., “Dynamically Reconfigurable Computing: A Novel Computation Technology with Potential to Improve National Security Capabilities”, May 15, 2003, A White Paper Prepared by Star Bridge Systems, Inc. [retrieved Dec. 12, 2006]. Retrieved from the Internet: <URL: http://www.starbridgesystems.com/resources/whitepapers/Dynamically%20Reconfigurable%20Computing.pdf. |
Weaver et al., “Very Fast Containment of Scanning Worms”, Proc. USENIX Security Symposium 2004, San Diego, CA, Aug. 2004, located at http://www.icsi.berkely.edu/˜nweaver/containment/containment.pdf. |
West et al., “An FPGA-Based Search Engine for Unstructured Database”, Proc. of 2nd Workshop on Application Specific Processors, Dec. 2003, San Diego, CA. |
Wooster et al., “HTTPDUMP Network HTTP Packet Snooper”, Apr. 25, 1996. |
Worboys, “GIS: A Computing Perspective”, 1995, pp. 245-247, 287, Taylor & Francis Ltd. |
Written Submissions to EPO for EP Application 03729000.4 dated May 10, 2010. |
Yamaguchi et al., “High Speed Homology Search with FPGAs”, Proceedings Pacific Symposium on Biocomputing, Jan. 3-7, 2002, pp. 271-282, vol. 7, Online, Lihue, Hawaii, USA. |
Yan et al., “Enhancing Collaborative Spam Detection with Bloom Filters”, 2006, IEEE, pp. 414-425. |
Yoshitani et al., “Performance Evaluation of Parallel Volume Rendering Machine Re Volver/C40”, Study Report of Information Processing Society, Mar. 5, 1999, pp. 79-84, vol. 99, No. 21. |
Ziv et al., “A Universal Algorithm for Sequential Data Compression”, IEEE Trans. Inform. Theory, IT-23(3): 337-343 (1997). |
Dehon, “DPGA-coupled microprocessors: commodity ICs for the early 21st Century”, FPGAS for Custom Computing Machines, 1994, Proceedings. IEEE Workshop on Napa Valley, CA, pp. 31-39, Los Alamitos, CA. |
U.S. Appl. No. 61/570,670, filed Dec. 14, 2011 (Taylor et al.). |
Adachi, “Yoku Wakaru Kinyu Sakimono Torihiki” (guidance for financial futures trading), Nippon Jitsugyo Publishing, Aug. 30, 1997, pp. 113-115 and pp. 221-227. |
Baker et al., “Time and Area Efficient Pattern Matching on FPGAs”, ACM, Feb 22-24, 2004, pp. 223-232. |
Batory, “Modeling the Storage Architectures of Commercial Database Systems”, ACM Transactions on Database Systems, Dec. 1985, pp. 463-528, vol. 10, issue 4. |
Bianchi et al., “Improved Queueing Analysis of Shared Buffer Switching Networks”, ACM, Aug. 1993, pp. 482-490. |
Brodie et al., “Dynamic Reconfigurable Computing”, in Proc. of 9th Military and Aerospace Programmable Logic Devices International Conference, Sep. 2006. |
Compton et al., “Reconfigurable Computing: A Survey of Systems and Software”, University of Washington, ACM Computing Surveys, Jun. 2, 2002, pp. 171-210, vol. 34 No. 2, <http://www.idi.ntnu.no/emner/tdt22/2011/reconfig.pdf>. |
Dehon, “DPGA-coupled Microprocessors Commodity ICs for the Early 21st Century”, Institute of Electrical and Electronics Engineers, 1994, pp. 31-39. |
Extended European Search Report for EP Application 08771027.3 dated Mar. 23, 2011. |
Gokhale et al., “Reconfigurable Computing: Accelerating Computation With Field-Programmable Gate Arrays”, 2005, pp. 1-3, 7, 11-15, 39, 92-93, Springer. |
Gokhale et al., “Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays”, Springer, 2005, pp. 1-54, 92-96. |
Gupta et al, “High-Speed Implementations of Rule-Based Systems,” ACM Transactions on Computer Systems, May 1989, pp. 119-146, vol. 7, Issue 2. |
Gupta et al, “PMM: A Parallel Architecture for Production Systems,” Proceedings of the IEEE, Apr. 1992, pp. 693-696, vol. 2. |
Howe, Data Analysis for Database Design Third Edition, 2001, 335 pages, Butterworth-Heinemann. |
Minutes of the Oral Proceedings for EP Patent Application No. 03729000.4 dated Jul. 12, 2010. |
NVidia Developer Zone, “GPU Gems 2—Chapter 45, Options Pricing on the GPU”; Mar. 7-11, 2005, 20 pages. |
Tau et al., “A First Generation DPGA Implementation”, Third Canadian Workshop of Field-Programmable Devices, May 1995, pp. 138-143. |
Office Action for U.S. Appl. No. 13/077,294 dated Dec. 26, 2012. |
Prosecution History for U.S. Appl. No. 11/765,306, now U.S. Pat. No. 7,921,046, filed Jun. 19, 2007 (Parsons et al.). |
Prosecution History for U.S. Appl. No. 13/076,968, filed Mar. 31, 2011 (Parsons et al.). |
Prosecution History for U.S. Appl. No. 13/077,036, now U.S. Pat. No. 8,478,680, filed Mar. 31, 2011 (Parsons et al.). |
Prosecution History for U.S. Appl. No. 13/132,408, filed Dec. 21, 2011 (Taylor et al.). |
Prosecution History for U.S. Appl. No. 13/154,804, now U.S. Pat. No. 8,768,805, filed Jun. 7, 2011 (Taylor et al.). |
Prosecution History for U.S. Appl. No. 13/154,824, now U.S. Pat. No. 8,762,249, filed Jun. 7, 2011 (Taylor et al.). |
Response to Office Action for EP08771027.3 dated Apr. 11, 2011. |
Russ et al., Non-Intrusive Built-In Self-Test for FPGA and MCM Applications, Aug. 8-10, 1995, IEEE, 480-485. |
Sugawara et al., “Over 10Gbps String Matching Mechanism for Multi-Stream Packet Scanning Systems”, Field Programmable Logic and Application Lecture Notes in Computer Science, 2004, pp. 484-493, vol. 3203. |
Krishnamurthy et al., “Biosequence Similarity Search on the Mercury System”, Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP04), Sep. 2004, pp. 365-375. |
Lancaster et al., “Acceleration of Ungapped Extension in Mercury BLAST”, Seventh (7th) Workshop on Media and Streaming Processors, Nov. 12, 2005, Thirty-Eighth (38th) International Symposium on Microarchitecture (MICRO-38), Barcelona, Spain. |
Li et al., “Large-Scale IP Traceback in High-Speed Internet: Practical Techniques and Theoretical Foundation”, Proceedings of the 2004 IEEE Symposium on Security and Privacy, 2004, pp. 1-15. |
Lin et al., “Real-Time Image Template Matching Based on Systolic Array Processor”, International Journal of Electronics; Dec. 1, 1992; pp. 1165-1176; vol. 73, No. 6; London, Great Britain. |
Lockwood et al., “Field Programmable Port Extender (FPX) for Distributed Routing and Queuing”, ACM International Symposium on Field Programmable Gate Arrays (FPGA 2000), Monterey, CA, Feb. 2000, pp. 137-144. |
Lockwood et al., “Hello, World: A Simple Application for the Field Programmable Port Extender (FPX)”, Washington University, Department of Computer Science, Technical Report WUCS-00-12, Jul. 11, 2000. |
Lockwood et al., “Parallel FPGA Programming over Backplane Chassis”, Washington University, Department of Computer Science, Technical Report WUCS-00-11, Jun. 12, 2000. |
Lockwood et al., “Reprogrammable Network Packet Processing on the Field Programmable Port Extender (FPX)”, ACM International Symposium on Field Programmable Gate Arrays (FPGA 2001), Monterey, CA, Feb. 2001, pp. 87-93. |
Lockwood, “An Open Platform for Development of Network Processing Modules in Reprogrammable Hardware”, IEC DesignCon 2001, Santa Clara, CA, Jan. 2001, Paper WB-19. |
Lockwood, “Building Networks with Reprogrammable Hardware”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Evolvable Internet Hardware Platforms”, NASA/DoD Workshop on Evolvable Hardware (EHW'01), Long Beach, CA, Jul. 12-14, 2001, pp. 271-279. |
Lockwood, “Hardware Laboratory Configuration”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Introduction”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Platform and Methodology for Teaching Design of Hardware Modules in Internet Routers and Firewalls”, IEEE Computer Society International Conference on Microelectronic Systems Education (MSE'2001), Las Vegas, NV, Jun. 17-18, 2001, pp. 56-57. |
Lockwood, “Protocol Processing on the FPX”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Simulation and Synthesis”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Simulation of the Hello World Application for the Field-Programmable Port Extender (FPX)”, Washington University, Applied Research Lab, Spring 2001 Gigabits Kits Workshop. |
Madhusudan, “Design of a System for Real-Time Worm Detection”, Hot Interconnects, pp. 77-83, Stanford, CA, Aug. 2004, found at http://www.hoti.org/hoti12/program/papers/2004/paper4.2.pdf. |
Madhusudan, “Design of a System for Real-Time Worm Detection”, Power Point Presentation in Support of Master's Thesis, Washington Univ., Dept. of Computer Science and Engineering, St. Louis, MO, Aug. 2004. |
Mao et al., “Cluster-based Online Monitoring System of Web Traffic”, Dept. of Computer Science and Technology, Tsinghua Univ., Bejing, 100084 P.R. China. |
Mosanya et al., “A FPGA-Based Hardware Implementation of Generalized Profile Search Using Online Arithmetic”, ACM/Sigda International Symposium on Field Programmable Gate Arrays (FPGA '99), Feb. 21-23, 1999, pp. 101-111, Monterey, CA, USA. |
Moscola et al., “FPGrep and FPSed: Regular Expression Search and Substitution for Packet Streaming in Field Programmable Hardware”, Dept. of Computer Science, Applied Research Lab, Washington University, Jan. 8, 2002, unpublished, pp. 1-19, St. Louis, MO. |
Moscola et al., “FPSed: A Streaming Content Search-and-Replace Module for an Internet Firewall”, Proc. of Hot Interconnects, 11th Symposium on High Performance Interconnects, pp. 122-129, Aug. 20, 2003. |
Moscola, “FPGrep and FPSed: Packet Payload Processors for Managing the Flow of Digital Content on Local Area Networks and the Internet”, Master's Thesis, Sever Institute of Technology, Washington University, St. Louis, MO, Aug. 2003. |
Motwani et al., “Randomized Algorithms”, 1995, pp. 215-216, Cambridge University Press. |
Mueller, “Upgrading and Repairing PCs, 15th Anniversary Edition”, 2004, pp. 63-66, 188, Que. |
Navarro, “A Guided Tour to Approximate String Matching”, ACM Computing Surveys, vol. 33, No. 1, Mar. 2001, pp. 31-88. |
Notice of Allowance for U.S. Appl. No. 11/339,892 dated Jan. 20, 2011. |
Notice of Allowance for U.S. Appl. No. 11/932,391 dated Jan. 19, 2011. |
Notice of Allowance for U.S. Appl. No. 11/932,652 dated Jan. 19, 2011. |
Nunez et al., “The X-MatchLITE FPGA-Based Data Compressor”, Euromicro Conference 1999, Proceedings, Italy, Sep. 8-10, 1999, pp. 126-132, Los Alamitos, CA. |
Nwodoh et al., “A Processing System for Real-Time Holographic Video Computation”, Reconfigurable Technology: FPGAs for Computing and Application, Proceedings for the SPIE, Sep. 1999, Boston, pp. 129-140, vol. 3844. |
Office Action for EP Application 08756734.3 dated Jun. 4, 2012. |
Office Action for EP Application 08771027.3 dated Feb. 6, 2012. |
Office Action for U.S. Appl. No. 10/550,323 dated Jan. 3, 2011. |
Office Action for U.S. Appl. No. 11/561,615 dated Jun. 17, 2010. |
Office Action for U.S. Appl. No. 11/561,615 dated Sep. 28, 2009. |
Office Action for U.S. Appl. No. 11/760,211 dated Nov. 2, 2009. |
Office Action for U.S. Appl. No. 12/013,302 dated Jul. 20, 2012. |
Office Action for U.S. Appl. No. 13/076,906 dated Mar. 5, 2012. |
Office Action for U.S. Appl. No. 13/076,929 dated Mar. 2, 2012. |
Office Action for U.S. Appl. No. 13/076,951 dated Feb. 29, 2012. |
Office Action for U.S. Appl. No. 13/076,982 dated Nov. 8, 2012. |
Office Action for U.S. Appl. No. 13/077,224 dated May 9, 2012. |
Office Action for U.S. Appl. No. 13/154,804 dated Aug. 15, 2012. |
Office Action for U.S. Appl. No. 13/301,340 dated May 9, 2012. |
Office Action for U.S. Appl. No. 13/301,387 dated Jun. 6, 2012. |
Office Action for U.S. Appl. No. 13/345,011 dated Aug. 28, 2012. |
“A Reconfigurable Computing Model for Biological Research Application of Smith-Waterman Analysis to Bacterial Genomes” A White Paper Prepared by Star Bridge Systems, Inc. [retrieved Dec. 12, 2006]. Retrieved from the Internet: <URL: http://www.starbridgesystems.com/resources/whitepapers/Smith%20Waterman%20Whitepaper.pdf. |
“ACTIV Financial Announces Hardware Based Market Data Feed Processing Strategy”, For Release on Apr. 2, 2007, 2 pages. |
“ACTIV Financial Delivers Accelerated Market Data Feed”, Apr. 6, 2007, byline of Apr. 2, 2007, downloaded from http://hpcwire.com/hpc.1346816.html on Jun. 19, 2007, 3 pages. |
“DRC, Exegy Announce Joint Development Agreement”, Jun. 8, 2007, byline of Jun. 4, 2007; downloaded from http://www.hpcwire.com/hpc/1595644.html on Jun. 19, 2007, 3 pages. |
“Lucent Technologies Delivers “PayloadPlus” Network Processors for Programmable, MultiProtocol, OC-48c Processing”, Lucent Technologies Press Release, downloaded from http://www.lucent.com/press/1000/0010320.meb.html on Mar. 21, 2002. |
“Overview, Field Programmable Port Extender”, Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002, pp. 1-4. |
“Payload Plus™ Agere System Interface”, Agere Systems Product Brief, Jun. 2001, downloaded from Internet, Jan. 2002, pp. 1-6. |
“RFC793: Transmission Control Protocol, Darpa Internet Program, Protocol Specification”, Sep. 1981. |
“Technology Overview”, Data Search Systems Incorporated, downloaded from the http://www.datasearchsystems.com/tech.htm on Apr. 19, 2004. |
“The Field-Programmable Port Extender (FPX)”, downloaded from http://www.arl.wustl.edu/arl/ in Mar. 2002. |
Aldwairi et al., “Configurable String Matching Hardware for Speeding up Intrusion Detection”, SIRARCH Comput. Archit. News, vol. 33, No. 1, pp. 99-107, Mar. 2005. |
Amanuma et al., “A FPGA Architecture for High Speed Computation”, Proceedings of 60th Convention Architecture, Software Science, Engineering, Mar. 14, 2000, pp. 1-163-1-164, Information Processing Society, Japan. |
Anerousis et al., “Using the AT&T Labs PacketScope for Internet Measurement, Design, and Performance Analysis”, Network and Distributed Systems Research Laboratory, AT&T Labs-Research, Florham, Park, NJ, Oct. 1997. |
Anonymous, “Method for Allocating Computer Disk Space to a File of Known Size”, IBM Technical Disclosure Bulletin, vol. 27, No. 10B, Mar. 1, 1985, New York. |
Arnold et al., “The Splash 2 Processor and Applications”, Proceedings 1993 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD '93), Oct. 3, 1993, pp. 482-485, IEEE Computer Society, Cambridge, MA USA. |
Artan et al., “Multi-packet Signature Detection using Prefix Bloom Filters”, 2005, IEEE, pp. 1811-1816. |
Asami et al., “Improvement of DES Key Search on FPGA-Based Parallel Machine “Rash””, Proceedings of Information Processing Society, Aug. 15, 2000, pp. 50-57, vol. 41, No. SIG5 (HPS1), Japan. |
Baboescu et al., “Scalable Packet Classification,” SIGCOMM'01, Aug. 27-31, 2001, pp. 199-210, San Diego, California, USA; http://www.ecse.rpi.edu/homepages/shivkuma/teaching/sp2001/readings/baboescu-pkt-classification.pdf. |
Baer, “Computer Systems Architecture”, 1980, pp. 262-265; Computer Science Press, Potomac, Maryland. |
Baeza-Yates et al., “New and Faster Filters for Multiple Approximate String Matching”, Random Structures and Algorithms (RSA), Jan. 2002, pp. 23-49, vol. 20, No. 1. |
Baker et al., “High-throughput Linked-Pattern Matching for Intrusion Detection Systems”, ANCS 2005: Proceedings of the 2005 Symposium on Architecture for Networking and Communications Systems, pp. 193-202, ACM Press, 2005. |
Barone-Adesi et al., “Efficient Analytic Approximation of American Option Values”, Journal of Finance, vol. 42, No. 2 (Jun. 1987), pp. 301-320. |
Behrens et al., “BLASTN Redundancy Filter in Reprogrammable Hardware,” Final Project Submission, Fall 2003, Department of Computer Science and Engineering, Washington University. |
Berk, “JLex: A lexical analyzer generator for Java™”, downloaded from http://www.cs.princeton.edu/˜appel/modern/java/Jlex/ in Jan. 2002, pp. 1-18. |
Bloom, “Space/Time Trade-offs in Hash Coding With Allowable Errors”, Communications of the ACM, Jul. 1970, pp. 422-426, vol. 13, No. 7, Computer Usage Company, Newton Upper Falls, Massachusetts, USA. |
Braun et al., “Layered Protocol Wrappers for Internet Packet Processing in Reconfigurable Hardware”, Proceedings of Hot Interconnects 9 (HotI-9) Stanford, CA, Aug. 22-24, 2001, pp. 93-98. |
Braun et al., “Protocol Wrappers for Layered Network Packet Processing in Reconfigurable Hardware”, IEEE Micro, Jan.-Feb. 2002, pp. 66-74. |
Cavnar et al., “N-Gram-Based Text Categorization”, Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, pp. 161-175, 1994. |
Celko, “Joe Celko's Data & Databases: Concepts in Practice”, 1999, pp. 72-74, Morgan Kaufmann Publishers. |
Chamberlain et al., “Achieving Real Data Throughput for an FPGA Co-Processor on Commodity Server Platforms”, Proc. of 1st Workshop on Building Block Engine Architectures for Computers and Networks, Oct. 2004, Boston, MA. |
Chamberlain et al., “The Mercury System: Embedding Computation Into Disk Drives”, 7th High Performance Embedded Computing Workshop, Sep. 2003, Boston, MA. |
Chamberlain et al., “The Mercury System: Exploiting Truly Fast Hardware for Data Search”, Proc. of Workshop on Storage Network Architecture and Parallel I/Os, Sep. 2003, New Orleans, LA. |
Cho et al., “Deep Packet Filter with Dedicated Logic and Read Only Memories”, 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, Apr. 2004. |
Choi et al., “Design of a Flexible Open Platform for High Performance Active Networks”, Allerton Conference, 1999, Champaign, IL. |
Cholleti, “Storage Allocation in Bounded Time”, MS Thesis, Dept. of Computer Science and Engineering, Washington Univeristy, St. Louis, MO (Dec. 2002). Available as Washington University Technical Report WUCSE-2003-2. |
Clark et al., “Scalable Pattern Matching for High Speed Networks”, Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2004; FCCM 2004, Apr. 20-23, 2004; pp. 249-257; IEEE Computer Society; Cambridge, MA USA. |
Cloutier et al., “VIP: An FPGA-Based Processor for Image Processing and Neural Networks”, Proceedings of Fifth International Conference on Microelectronics for Neural Networks, Feb. 12, 1996, pp. 330-336, Los Alamitos, California. |
Compton et al., “Configurable Computing: A Survey of Systems and Software”, Technical Report, Northwestern University, Dept. of ECE, 1999. |
Compton et al., “Reconfigurable Computing: A Survey of Systems and Software”, Technical Report, Northwestern University, Dept. of ECE, 1999, presented by Yi-Gang Tai. |
Cong et al., “An Optional Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs”, IEEE, 1992, pp. 48-53. |
Crosman, “Who Will Cure Your Data Latency?”, Storage & Servers, Jun. 20, 2007, URL: http://www.networkcomputing.com/article/printFullArticleSrc.jhtml?article ID=199905630. |
Cuppu and Jacob, “Organizational Design Trade-Offs at the DRAM, Memory Bus and Memory Controller Level: Initial Results,” Technical Report UMB-SCA-1999-2, Univ. of Maryland Systems & Computer Architecture Group, Nov. 1999, pp. 1-10. |
Denoyer et al., “HMM-based Passage Models for Document Classification and Ranking”, Proceedings of ECIR-01, 23rd European Colloquim Information Retrieval Research, Darmstatd, DE, pp. 126-135, 2001. |
Dharmapurikar et al., “Deep Packet Inspection Using Parallel Bloom Filters,” IEEE Micro, Jan.-Feb. 2004, vol. 24, Issue: 1, pp. 52-61. |
Dharmapurikar et al., “Deep Packet Inspection Using Parallel Bloom Filters,” Symposium on High Performance Interconnects (HotI), Stanford, California, 2003, pp. 44-51. |
Dharmapurikar et al., “Design and Implementation of a String Matching System for Network Intrusion Detection using FPGA-based Bloom Filters”, Proc. of 12th Annual IEEE Symposium on Field Programmable Custom Computing Machines, 2004, pp. 1-10. |
Dharmapurikar et al., “Longest Prefix Matching Using Bloom Filters,” SIGCOMM, 2003, pp. 201-212. |
Dharmapurikar et al., “Robust TCP Stream Reassembly in the Presence of Adversaries”, Proc. of the 14th Conference on USENIX Security Symposium—vol. 14, 16 pages, Baltimore, MD, 2005; http://www.icir.org/vern/papers/TcpReassembly/TCPReassembly.pdf. |
Dharmapurikar, “Fast and Scalable Pattern Matching for Content Filtering”, ACM, ANCS 05, 2005, pp. 183-192. |
Office Action for U.S. Appl. No. 13/076,968 dated Feb. 2, 2016. |
Office Action for U.S. Appl. No. 14/049,591 dated Dec. 3, 2015. |
Currid, “TCP Offload to the Rescue”, Networks, Jun. 14, 2004, 16 pages, vol. 2, No. 3. |
Office Action for U.S. Appl. No. 13/132,408 dated Jun. 26, 2017. |
Office Action for U.S. Appl. No. 14/049,591 dated Mar. 30, 2017. |
Office Action for U.S. Appl. No. 14/181,949 dated Feb. 24, 2017. |
Chuanxiong et al., “Analysis and Evaluation of the TCP/IP Protocol Stack of LINUX*”, 2000 International Conference on Communication Technology Proceedings, Aug. 21-25, 2000, pp. 444-453, vol. 1, Beijing, China. |
Extended European Search Report for EP Application 16151222.3 dated Aug. 24, 2016. |
Number | Date | Country | |
---|---|---|---|
20130290163 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
60814796 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11765306 | Jun 2007 | US |
Child | 13077036 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13077036 | Mar 2011 | US |
Child | 13932274 | US |