The invention relates to a high-speed router for transmitting data packets between data networks.
Data networks are used for interchanging data organized in the form of data packets. Identical types of data networks are connected to one another by so-called bridges, while different types of data networks require so-called coupling computers or gateways. In large data networks of the same type coupled to one another, the data paths are stipulated by so-called routers. A router is a linking computer between two data networks. It forms part of the three bottommost layers in the OSI layer model and controls which path a data packet which is to be transmitted will take. Unlike bridges, routers have a dedicated MAC address, so that they behave toward stations as though they themselves are communicating parties. Routers are networked with one another and regularly exchange information about configurations, line items, number of routers in the data path, error rates and bit rate capacity with one another using a routing protocol. The routers exchange this information using particular protocols, with multiprotocol routers being standard today, that is to say routers which are able to process various protocols. The performance coefficient of a router is the throughput of the router, which is indicated either in data packets/second or in bytes/second. In addition, the performance of a router depends on the processing time for a data packet and on the time between the data processing for two data packets. Both add up to form the time spent by a data packet in the router.
Data packets comprise header data or a header, useful data (the so-called payload) and terminal data or a trailer. The header or the header data contains various administration data for the data packet, for example address, data packet number, transmitter identification, data packet status etc. The useful data contain the actual information which is to be transmitted.
A conventional router permits the transmission of data between various fast Internet data networks, such as OC-12 or OC-48 interfaces. OC-12 has a data transmission rate of 622 Mbits/second, and OC-48 has a data transmission rate of 2.5 Gbits/second. For bidirectional connections, an OC-48 interface results in a data throughput of 5.0 Gbits/second. These extremely high data transmission speeds place high demands on the production of the data transmission routers.
The Internet is distinguished by a high level of growth and flexibility. In particular, Internet services like security, quality of service QOS and traffic engineering are subject to various configurations and modifications. Conventional routers, whose processing units are implemented in the form of ASICs, have the disadvantage that they are inflexible for configuration changes, since their hardware is stipulated. Routers have therefore been proposed which are programmable and contain processors. Since the data processing speed of an individual processor cannot keep up with the transmission speed of normal data transmission networks, multiprocessor routers having a plurality of processors and a pipeline architecture have been proposed.
Although such multiprocessor routers result in an increase in the data processing speed, they have the disadvantage that various different processors P1–P4 need to be programmed for the different tasks. Furthermore, testing such conventional multiprocessor routers becomes much more difficult on account of the use of processors programmed in various different ways.
It is therefore the object of the present invention to provide a high-speed router which is easy to program and to test and at the same time permits a very high data transmission speed.
This object is achieved by a high-speed router having the features specified in patent claim 1.
The invention provides a high-speed router for transmitting data packets, containing header and useful data, between data networks, the router having a plurality of data processing processors for parallel data processing of the header data.
The high-speed router preferably has a demultiplexer for separating the data packets which are present into header data and useful data.
Preferably, a distribution processor is provided for distributing the separated header data to the various data processing processors.
The distribution processor distributes the header data preferably on the basis of the priority of the header data and the workload of the data processing processors.
In this context, the header data are distributed to the data processing processors preferably by means of a DMA operation.
In another preferred embodiment, a CAM coprocessor having an associative memory is provided for classifying the data packets.
Preferably, a useful data memory is also provided for buffer-storing the separated useful data.
In this context, the header data and useful data in a data packet preferably contain a respective identifier.
In addition, a first multiplexer is preferably provided for compiling the processed header data and the useful data, the useful data coming from the useful data memory or from a switching mechanism.
In addition, a second multiplexer is preferably provided for compiling the useful data buffer-stored in useful data memory and the processed header data.
In one preferred embodiment of the high-speed router according to the invention, the first multiplexer has a FIFO memory connected downstream of it for outputting the compiled data packets through the router.
The output of the second multiplexer is preferably connected to the switching mechanism.
In one particularly preferred embodiment, the distribution processor, data processing processors and the CAM coprocessor are connected to a common header data bus.
Each data processing processor preferably has a dedicated local memory.
In addition, a common global memory is preferably connected to the header data bus.
In one particularly preferred embodiment, the CAM coprocessor is connected to the header data bus via FIFO buffer memories.
The demultiplexer preferably has an input buffer connected upstream of it.
In this context, the data networks are preferably LAN networks or the Internet.
The distribution processor and the data processing processors are preferably of the same processor type.
A preferred embodiment of the high-speed router according to the invention is described below with reference to the appended figures in order to explain features which are fundamental to the invention.
Connected to the header data bus 7 is a distribution processor 10 having a DMA device 11. The distribution processor 10 is used for distributing the header data present on the header data bus 7 to various data processing processors 12, 13, 14, 15 arranged in parallel. The data processing processors 12, 13, 14, 15 are preferably of the same processor type and each have a dedicated local memory 16, 17, 18, 19. In this case, the local memories are preferably RAM memories. The incoming header data are distributed to the various data processing processors 12, 13, 14, 15 by means of DMA operation. The distribution processor 10 distributes the header data on the basis of the priority of the header data and the workload of the data processing processors 12, 13, 14, 15.
In addition, a common memory 20 which can be accessed by all the data processing processors 12, 13, 14, 15 is provided on the header data bus 7. Furthermore, the router 1 according to the invention contains a CAM coprocessor 21 having an associative memory or a CAM memory. The CAM coprocessor is used for classifying the data packets. In this case, the CAM coprocessor is connected via FIFO memories 22, 23 to the header data bus 7 in order to smooth the flow of data.
In addition, the router 1 according to the invention contains a first multiplexer 24 for compiling the header data present on the header data bus 7 and the associated useful data buffer-stored in the useful data memory 9. To this end, the header data and useful data of an incoming data packet have an identifier or identification ID indicating to which data packet they belong. The first multiplexer 24 is connected to the useful data memory 9 via a line 25 and to the header data bus 7 via a line 26. In addition, the multiplexer is connected to a switching mechanism or switch fabric via a line 27. The output of the first multiplexer 24 is connected via a line 28 to a FIFO output memory 29, which is used for outputting the compiled data packets via a line 30 and an output connection 31 of the router 1.
In addition, the router 1 contains a second multiplexer 32, whose input is connected via lines 25 to the useful data memory 9 and to the header data bus 7. The output of the second multiplexer 32 is connected to the switching mechanism via a line 33.
The inventive high-speed router 1 shown in
One advantage of the router architecture shown in
The router architecture shown in
The parallel arrangement of a plurality of processors on the common header data bus 7 means that the high-speed router 1 according to the invention achieves an extremely high data transmission speed while at the same time being easy to program and test.
Number | Date | Country | Kind |
---|---|---|---|
100 11 667 | Mar 2000 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5278830 | Kudo | Jan 1994 | A |
5513134 | Cooperman et al. | Apr 1996 | A |
5619497 | Gallagher et al. | Apr 1997 | A |
5721833 | Cooperman et al. | Feb 1998 | A |
5974409 | Sanu et al. | Oct 1999 | A |
5978844 | Tsuchiya et al. | Nov 1999 | A |
5991299 | Radogna et al. | Nov 1999 | A |
6032190 | Bremer et al. | Feb 2000 | A |
6160811 | Partridge et al. | Dec 2000 | A |
6252878 | Locklear et al. | Jun 2001 | B1 |
6424659 | Viswanadham et al. | Jul 2002 | B1 |
6480489 | Muller et al. | Nov 2002 | B1 |
6483804 | Muller et al. | Nov 2002 | B1 |
6650640 | Muller et al. | Nov 2003 | B1 |
6700888 | Jonsson et al. | Mar 2004 | B1 |
6711153 | Hebb et al. | Mar 2004 | B1 |
6721309 | Stone et al. | Apr 2004 | B1 |
6747972 | Lenoski et al. | Jun 2004 | B1 |
Number | Date | Country |
---|---|---|
9275413 | Oct 1997 | JP |
WO 9917182 | Apr 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20010030961 A1 | Oct 2001 | US |