The present invention relates generally to the field of corrosion and systems and methods for controlling corrosion, and more particularly to an electronic controller system and method for providing cathodic protection.
Corrosion is a naturally occurring phenomenon commonly defined as the deterioration of a substance (usually a metal) or its properties because of a reaction with its environment. Metallic surfaces exposed to an electrolyte have a multitude of microscopic anodic and cathodic sites. Where anodes are more electronegative than cathodes, a potential difference is created between them. Corrosion occurs as a result of an electrochemical reaction driven by the potential difference between the anode and the cathode.
Cathodic protection is used to control corrosion of metal objects by reducing the potential difference between anodes and cathodes to a negligible value. Cathodic protection can be accomplished by sending a current into the metal structure to be protected from an external electrode and polarizing the cathodic sites in an electronegative direction. This makes the metal structure work as the cathode of an electrochemical cell or electronic system. Cathodic protection is most commonly used to protect metal objects buried in the ground or water, such as fuel pipelines and storage tanks, steel pier piles, ship hulls, offshore oil platforms, and on shore well casings.
When metal objects to be protected from corrosion are closely spaced together, this creates a challenge for applying cathodic protection. For example, well casings that are closely spaced tend to have increased resistance as electrical current increases, resulting in mutual interference. This is commonly known as the “crowding effect”. This mutual interference can cause incomplete protection of well casings, or it can damage a casing.
It is to the provision of a cathodic protection system for eliminating or reducing the crowding effect that the present invention is primarily directed.
In example embodiments, the present invention relates to high speed sequential cathodic protection systems and methods for delivering electrical current to individual metal structures, such as well casings, at high speeds for short periods of time, in a sequential manner.
In an example form, the present invention relates to high speed cathodic protection system for delivering electrical current to a well casing group having a plurality of individual well casings. The system includes a power supply, a plurality of relays, and a microcontroller. In example forms, the plurality of relays are adapted to allow electrical current to flow from the power supply to subsets of the group of metal structures. The microcontroller is configured to control the relays to allow delivery of the electrical current at high speeds for short periods of time from the power supply to subsets of the group of metal structures in a sequential manner.
In an example form, the microcontroller is configured for a single well operation mode, such that the electrical current only passes to one of the plurality of individual well casings at a time. In another form, the microcontroller is configured for a double well operation mode, such that the electrical current can pass to two non-adjacent well casings of the plurality of individual well casings at a time. Optionally, the microcontroller is configured for an all on operation mode, such that the electrical current passes to each of the plurality of individual well casings and is divided equally among each of the well casings.
These and other aspects, features and advantages of the invention will be understood with reference to the drawing figures and detailed description herein, and will be realized by means of the various elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following brief description of the drawings and detailed description of the invention are exemplary and explanatory of preferred embodiments of the invention, and are not restrictive of the invention, as claimed.
The present invention may be understood more readily by reference to the following detailed description of the invention taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention. Any and all patents and other publications identified in this specification are incorporated by reference as though fully set forth herein.
Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.
With reference now to the drawing figures, wherein like reference numbers represent corresponding parts throughout the several views,
In one example form, the sequential cathodic protection system 10 includes a relay controller 20, which may comprise an 8 bit microcontroller that operates multiple solid-state high current relays X1-X10. In one example, the relays may be normally open (NO), as indicated inn
The sequential cathodic protection system also includes a cathodic protection (CP) controller 30 that is connected to each well casing and to a ground bed which may include one or more buried anodes to force the electrical current to flow through the well casings 50. The well casings 50 are depicted in detail
Referring again to
The power supply to which the controllers 20 and 30 are connected includes at least one power supply, for example, a 36 volt source from a solar panel and/or a 12 volt (AC or DC) source 40. Optionally, an array of one or more solar panels may charge a bank of one or more batteries for storing electrical energy to be used in delivering electrical current for cathodic protection in the system.
Generally, each solid-state high current relay is associated with an individual well casing of the plurality of well casings W1-W10 such that, in a closed state, an individual relay allows current to flow through an associated well casing. For example, as can be understood with reference to
According to example embodiments of the present invention, by sequencing the protection to the well casings W1-W10, the crowding effect is eliminated due to only one well casing receiving electrical current at a time. In example forms, each well casing is provided with protective electrical current for a few milliseconds at a time. According to one form, the relay controller 20 controls the relays X1-X10 to cause the relays to close and open to switch the electrical current supplied by the CP controller 30 from one adjacent well casing to the other. For example, the relay controller causes the relay X1 to close, while the relays X2-X10 are open, causing electrical current to flow through the well casing W1. Then, the relay controller 20 causes the relay X1 to open and the relay X2 to close, causing electrical current to flow through the well casing W2. Next, the relay controller causes the relay X2 to open and the relay X3 to close, causing the electrical current to flow through the well casing W3. This closing and opening of relays continues until each well casing has received a short span of electrical current. The relay controller 20 then recycles and starts back with closing the relay X1 to cause current to flow through the well casing W1 and repeats.
In example forms, the amount of time the electrical current is applied to the individual well casings W1-W10 can be variable, for example, between about 1-200,000 microseconds. According to an illustrative embodiment, the variable time will allow a user or operator of the system 10 to adjust the relay controller 20 to provide the greatest protection to the well casings.
Optionally, the system 10 may have various modes of operation other than the single well mode described above. For example, the system 10 may have, in addition or instead of a single well mode, a double (or triple, etc.) well mode, and/or an all on well mode. The single well operation mode allows current to pass to only one well casing at a time, for example, as described above. The double well operation mode allows current to pass to two or more non-adjacent well casings at the same time, for example, W1 and W3, W1 and W7, W6 and W10, or any two or more well casings that are not adjacent to one another. The all on operation mode enables the individual relays to allow current to be divided equally among the well casings. In example forms, the all on operation mode can be used to set the total cathodic protection current.
In additional example embodiments, the well casings can comprise more or less than ten well casings as depicted. Thus, the number of relays is generally about the same as the number of well casings.
Although the method depicted in
Although the description above is directed to cathodic protection of well casings, it should be appreciated that the invention is not limited to this application. The principles described above may be applied to cathodic protection of any underground metal structure including, e.g., pipelines.
While the invention has been described with reference to preferred and example embodiments, it will be understood by those skilled in the art that a variety of modifications, additions and deletions are within the scope of the invention, as defined by the following claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/082,248, filed Nov. 20, 2014, the entirety of which is hereby incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62082248 | Nov 2014 | US |