Many different kinds of food articles or food products, such as food slabs, food bellies, or food loaves are produced in a wide variety of shapes and sizes. There are meat loaves made from various meats, including ham, pork, beef, lamb, turkey, and fish. The meat in the food loaf may be in large pieces or may be thoroughly comminuted. These meat loaves come in different shapes (round, square, rectangular, oval, etc.) and in different lengths up to six feet (183 cm) or even longer. The cross-sectional sizes of the loaves are quite different; the maximum transverse dimension may be as small as 1.5 inches (4 cm) or as large as ten inches (25.4 cm). Loaves of cheese or other foods come in the same great ranges as to composition, shape, length, and transverse size.
Typically the food loaves are sliced, the slices are grouped in accordance with a particular weight requirement, and the groups of slices are packaged and sold at retail. The number of slices in a group may vary, depending on the size and consistency of the food article and the desire of the producer, the wholesaler, or the retailer. For some products, neatly aligned stacked slice groups are preferred. For others, the slices are shingled or folded so that a purchaser can see a part of every slice through a transparent package.
Food articles can be sliced on high speed slicing machines such as disclosed in Published Patent Document WO 2010/011237 A1 or U.S. Pat. No. 5,628,237 or 5,974,925; or as commercially available as the Power Max 4000™ and FX180® slicers available from Formax, Inc. of Mokena, Ill., USA.
The FX180® machine can be configured as an automatically loaded, continuous feed machine, or an automatically loaded, back-clamp or gripper type machine.
For an automatically loaded, continuous feed machine, side-by-side upper and lower conveyor pairs drive food articles into the cutting plane. A gate is located in front of the conveyors. The initial food articles are loaded with leading ends abutting the gate. The gate is lowered and the food articles proceed into the conveyors. When the initial food articles are sliced to the extent that the trailing ends of the food articles clear the gate, the gate is raised and new food articles are loaded in the feed paths, held back by the gate. Shortly thereafter the gate is lowered and new food articles slide down to where lead ends of the new food articles abut trailing ends of the initial food articles being sliced. The new food articles are driven into the cutting plane trailing the initial food articles. Food articles are sequentially and continuously loaded in this manner, lead end-to-trailing end, in abutting contact with the preceding food articles.
U.S. Pat. No. 5,628,237 and European patent EP 0 713 753 describe a back-clamp or gripper type slicing machine. According to this type of slicing machine, food articles are loaded onto a lift tray and the lift tray is raised to a ready-to-sweep position. Loaf grippers are retracted after the previous food articles are sliced. During retraction of the loaf grippers, loaf-to-slicing blade gate doors are closed and ends of the previous food articles are dropped through a loaf end door. After the grippers have reached the retracted position or “home position” remote from the slicing blade, a loaf sweep mechanism is activated, moving the food articles laterally together into the slicing position. A spacing mechanism moves down and spaces the food articles apart. The grippers then advance after it has been determined that the loaf sweep mechanism has moved the food articles to the slicing position. The grippers have onboard sensing mechanisms that are triggered by contact with the food articles. After sensing and gripping the food articles, the food articles are retracted slightly, and the loaf-to-slicing blade gate doors are opened and the food articles are advanced to the slicing plane of the slicing blade. The loaf sweep mechanism retracts and the loaf lift tray lowers, ready for the next reload cycle. According to this design, in practice, the reload cycle is accomplished in about eight seconds. In a high volume slicing operation, reload cycle time can be a significant limitation to optimum production efficiency.
The machine disclosed in WO 2010/011237 A1 provides an automated, food article tray loading method and apparatus wherein food articles can be loaded into the lift tray into designated and separated lanes which automatically assume a preload condition, and after the food articles are loaded, food article separation is maintained on the lift tray. A food article transfer receives the food articles on the lift tray in their separated positions and transfers the food articles into the slicing feed paths while maintaining the separated positions. A food article end disposal system utilizes a transport that laterally moves end portions outside of the feed path and ejects the end portions as the transport is moved back into the feed path to receive the subsequent end portions. The machine utilizes food article grippers that are fixed onto conveyor belts which support and drive the food articles in the feed paths.
The present inventors have recognized that it would be desirable to slice plural food articles with independent feeding and weighing capabilities, with hygienic and operational enhancements.
The invention provides a mechanism and method for slicing multiple food articles with independency of feed rate and the ability to weigh each product group from each food article respectively to achieve optimal weight control and yield of each food article.
The present invention provides a high speed slicing apparatus and a weighing and classifying conveyor combination that provides plural advantages in machine cost, productivity, food hygiene, and operation.
The invention provides a lift tray that is located in line with the food article feed paths and is lowered to receive food articles and raised into the feed paths. There is no need for lateral shifting of food articles into the feed paths. Food article grippers are driven along the feed paths by an overhead conveyor. A laser food article end detection system is employed in each feed path to detect the terminal end of the food article to control the positioning of the gripper for that path.
The invention provides the use of an automatic debris or scrap removal conveyor that also provides for end portion removal.
The invention provides an automated cleanup position wherein the elevated food article feed mechanism can be collapsed to a more convenience plane or maintenance position, and the blade cover is automatically pivoted to a cleanup position. The combination provides for enhanced portion control and yield. A food article feed mechanism ensures accurate feeding by the use of servo driven and controlled feed belts and grippers. The slicing mechanism includes three independent drives for slicing multiple food articles simultaneously.
An improved food article stop gate is provided that also serves as a door for the removal of food article end portions.
A horizontally radiating laser intrusion detector is used to shut down systems when an unwanted intrusion by an operator is detected.
An automated, food article tray loading method and apparatus is provided wherein food articles can be loaded into the lift tray into designated and separated lanes which automatically assume a preload condition, and after the food articles are loaded, food article separation is maintained on the lift tray.
Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, and from the accompanying drawings.
While this invention is susceptible of embodiment in many different forms, there are shown in the drawings, and will be described herein in detail, specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.
Published Patent Application No. WO 2010/011237 and U.S. Pat. No. 5,628,237 are herein incorporated by reference.
The base section 104 includes a compartment 136 having side walls 138a, 138b, a bottom wall 140, and an inclined top wall 142. The apparatus 100 is supported on four adjustable feet 144. The compartment 136 has a tapered side profile from back to front wherein the top wall 142 slants down from back to front. The slanted orientation of the top wall 142 ensures water drainage off the top of the compartment 136. The compartment is supported on adjustable feet 144.
The compartment 136 includes a near side door 152, a far side door 156 (
The base section 104 supports the collapsible frame 105 as shown in
The foldable support mechanism 174 includes a servomotor 175 that drives a gear reducer 176 having a drive shaft 178 that extends out of far side of the compartment 136 (
For cleaning and maintenance purposes, the collapsible frame 105 is collapsed down by actuating the servomotor 175 and gear reducer 176 to rotate the levers 180a, 180b, which draws down the column 182 as shown in
The slicing head 124 is covered by a guard 119 that is attached to the frame 190 such that when the frame is pivoted down as shown in
Additionally, the elevation of the food article feed apparatus can be adjusted by using the servomotor to selectively pivot the columns 180a, 180b and lower the rear of the frame 190. At a front, the frame 190 is supported on a cross shaft 193 that is eccentrically fixed at each end to a round cam 194 (
An upper conveyor assembly 530 of the food article feed apparatus 120 is shown in
The belt 802 is wrapped around a toothed front drive roller or pulley 812 and a back idler roller or pulley 816. The belt 802 preferably has teeth that engage teeth of the two rollers 812, 816. Each drive roller 812 includes a toothed outer diameter 812a and a toothed, recessed diameter 812b.
An endless drive belt 820 wraps around the recessed diameter 812b. The drive belt 820 also wraps around a drive roller 824 that is fixed to a drive shaft 828. The drive shaft 828 extends transversely to the belt 802 and is journaled for rotation within a bearing 830 mounted to a near side frame member 836.
The drive shaft 828 penetrates a far side frame member 838 and extends to a bearing 843, coupled to a gear reducer 842 mounted to a support frame 854. The gear reducer 842 is coupled to a servomotor 850 that is mounted to the support frame 854.
The servomotor 850 drives the drive shaft 828 which turns the roller 824 which circulates the belt 820 which rotates the roller 812 which circulates the belt 802.
Three servomotors 850 are mounted to the support frame 854 and all are located within an upper compartment 855 that is supported by the frame 190.
The idler rollers 816 are provided with a pair of mirror image identical adjustable cam belt tension adjustment mechanisms 882a, 882b. As shown in
The block 900 includes guides 906, 907 that contain slide bearings 906a, 907a composed of friction reducing material. The slide bearings 906a, 907a partly surround longitudinal rails 912, 913 that are in parallel with, and straddle the belt 802. The rails 912, 913 support the gripper along its working path from a retracted position to a fully forward position nearto the slicing plane.
For each gripper there are two rails 912, 913 to support and guide that gripper. Thus, there are two rails that straddle the belt 804 and two rails that straddle the belt 806.
The gripper 894 is connected to the fixture 901 by a front plate 920 having a predominant lateral face and a rear plate 922 having a predominant longitudinal face. Each gripper 894 is provided with two air lines 930, 932 for two way pneumatic gripper open-and-close operability.
The air lines 930, 932 are guided through lower rings 940 and upper rings 942 to an air tube storage area 950 above the food article feed apparatus 120 (
The gripper 894 travels from the retracted home position shown in
The grippers 894 are as described in Published Patent Application No. WO 2010/011237, herein incorporated by reference.
As illustrated in
The conveyor 994 includes a drive roller 1038 having a central hub 1042 with a bore 1044. The drive roller 1038 has tubular stub axles 1046 and 1048 extending from opposite ends of the central hub 1042. The tubular stub axles 1046, 1040 are journaled by bearings 1050, 1052 respectively that are attached to carrier blocks 1023b.
A motor housing 1054, including a baseplate 1054b and a cover 1054a, is mounted to an end of an upper conveyor support bar 1056. The base plate 1054b of each side of the machine is fastened to a linear actuator, such as a pneumatic cylinder 1055a and 1055b respectively. The cylinders 1055a, 1055b are connected together by the support bar 1056. Each cylinder slides on a fixed vertical rod 1057a, 1057b respectively. Thus, controlled air to the cylinders 1055a, 1055b can be used to uniformly raise or lower the near side housing 1054 and the far side housing 1054 uniformly.
A spindle 1060 extends through the motor housing 1054, through a sleeve 1064, through a coupling 1065, through the tubular stub axle 1016, through the central bore 1014, through the tubular stub axle 1018, through the tubular stub axle 1046, and partly into the bore 1044. The spindle 1060 has a hexagonal cross-section base region 1070, a round cross-section intermediate region 1072, and a hexagonal cross-section distal region 1074. The hexagonal cross-section base region 1070 is locked for rotation with a surrounding sleeve 1071 to rotate therewith.
The intermediate region 1072 is sized to pass through the sleeve 1064, through the tubular stub axle 1016, through the central bore 1014, and through the tubular stub axle 1018 to be freely rotatable therein. The distal region 1074 is configured to closely fit into a hexagonal shaped central channel 1078 of the tubular stub axle 1046 to be rotationally fixed with the tubular stub axle 1046 and the drive roller 1038.
The sleeve 1064 includes a hexagonal perimeter end 1064a that engages a hexagonal opening 1065a of the coupling 1065. The coupling 1065 includes an opposite hexagonal opening 1065a that engages a hexagonal perimeter end 1016a of the tubular stub axle 1016. The coupling 1065 couples the sleeve 1064 and the stub axle 1016 for mutual rotation such that the sleeve 1064 and the drive roller 1010 are locked for rotation together, i.e., turning of the sleeve 1064 turns the drive roller 1010.
Within the motor housing 1054 are two servomotors 1090, 1092 mounted to the housing by fasteners. As shown in
Adjacent to the servomotor 1090 is the servomotor 1092. The servomotor 1092 is configured substantially identically with the servomotor 1090 except the worm gear 1098, as shown in schematic form in
The sleeves 1071 and 1064 are journaled for rotation by bearings. The drive gears 1100, 1100 are fastened to the respective sleeve 1071, 1064 using fasteners 1116.
Each conveyor belt 1002, 1004, 1008 is wrapped around the respective drive roller and a front idle rollers 1134, 1135, 1136 that is supported by respective side frames 1131, 1132.
Also, as shown in
The drive roller 1010a can be driven by a hexagonal shaft 1011 connected to a motor (not shown in
Side frames 1131, 1132 comprises an opening 1021 in the shape of an arc, which accommodates the cross-sectional dimensions of a support or alignment bar 1019, which can extend across the span of lower conveyors and intersect the side frames of each lower conveyor. The angular angle of the arc corresponds to the degree of angular movement of the lower conveyor.
The illustrated apparatus provides three feed paths, although any number of paths are encompassed by the invention. The near side feed path is defined by the gripper 394 driven by the belt 802 which feeds the near side food article into the space between the conveyor belt 998 and presser 107. The middle feed path is defined by the gripper 394 driven by the belt 804 which feeds the middle food article into the space between the conveyor 994 and the presser 105. the far side fed path is defined by the gripper 394 driven by the belt 806 which feeds the far side food article into the space between the conveyor 992 and the presser 103.
As illustrated in
As illustrated in
The mechanism 228 includes a pneumatic or hydraulic, extendable cylinder 350 that has a rod 352 pivotally connected to the lever 336 or the frame 290 at a connection 353, and a cylinder body 354 pivotally connected to the floor 140 at a connection 356. Extension or retraction of the rod 352 pivots the lever 336 and frame 290 about the connection 342.
As shown in
As illustrated in
The scrap conveyor 122 can be continuously circulated by use of a drum motor on one of the rollers. The conveyor delivers scrap to a discharge chute 2030 (
The gate 2020 can be operated to be positioned according to
A separate food article end detector is used for each of the three illustrated food paths. Preferably, the detectors are laser distance sensors 2002, 2004, 2006. Once the food articles are pivoted by the apparatus 228 to the staging position below the feed paths, the sensors 2002, 2004, 2006 sense the ends of each food article in the three lanes on the tray 302, and communicate that information to the machine control. The machine control uses this information to control the servomotors 850 to control the positioning of the grippers to the ends of each food article and also controls the actuation of each gripper. By knowing the exact end of the food article the grippers know when to be activated to seize the food article.
The slicing head section is as described in WO 2010/011237, herein incorporated by reference.
The slicing block with orifices is also as described in WO 2010/011237, herein incorporated by reference.
The jump conveyor can also be configured as described in U.S. Ser. No. 11/449,574 filed Jun. 8, 2006 or WO 2010/011237, herein incorporated by reference.
The laser safety guard system 123 is illustrated in
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred.
This application claims the benefit of U.S. Provisional Application No. 61/343,551, filed May 1, 2010.
Number | Date | Country | |
---|---|---|---|
61343551 | May 2010 | US |