The present disclosure relates to a shaft assembly and methods for manufacturing the same. In particular, the present disclosure relates to a retaining member that secures a retaining ring within a groove of a shaft. The present disclosure also relates to methods for constraining the motion of a retaining ring relative to a shaft.
In one implementation, a method for assembling a shaft assembly having a shaft defining a longitudinal axis and including a groove in an outer circumferential surface includes positioning a hub relative to the shaft and positioning a retaining ring in the groove of the shaft and adjacent to the hub. The retaining ring includes an annular body that has a first end spaced apart from a second end and that defines an opening with an inner diameter. The first end includes a first aperture and the second end includes a second aperture. The method further includes inserting a first portion of a retaining member through the first aperture and a second portion of the retaining member through the second aperture. The first portion is connected to the second portion through an intermediate portion of the retaining member. The method further includes deforming at least one of the first portion or the second portion to secure the retaining member relative to the retaining ring.
In another implementation, a shaft assembly includes a shaft defining a longitudinal axis and having a groove in an outer surface. The assembly also includes a hub positioned on the shaft and a retaining ring positioned in the groove of the shaft and adjacent to the hub. The retaining ring includes an annular body that has a first end spaced apart from a second end and that defines an opening with an inner diameter. The first end includes a first aperture and the second end includes a second aperture. The assembly further includes a retaining member secured to the retaining ring and that has a first portion that extends through the first aperture and a second portion that extends through the second aperture. The first and the second portions are coupled on opposite sides of an intermediate portion and the first and the second portions are deformed as a result of contact with the hub
In another implementation, a method for assembling a shaft assembly having a shaft defining a longitudinal axis and having a groove in an outer circumferential surface includes machining a hub to create a recess in an outer surface thereof, positioning the hub relative to the shaft, and positioning a retaining ring in the groove of the shaft and adjacent to the hub. The retaining ring includes an annular body that has a first end spaced apart from a second end. The method also includes securing a retaining member to the retaining ring to constrain the first end relative to the second end.
In another implementation, a method of assembling a shaft assembly having a shaft defining a longitudinal axis and including a groove in an outer circumferential surface includes positioning a hub relative to the shaft and positioning a retaining ring in the groove of the shaft and adjacent to the hub. The method also includes securing a retaining member to the retaining ring. Securing a retaining member to the retaining ring includes advancing a portion of the retaining member towards the hub and deforming the portion relative to the retaining ring.
In another implementation, a shaft assembly including a shaft defining a longitudinal axis and including a groove in an outer surface, a hub positionable on the shaft, a retaining ring positionable in the groove of the shaft and adjacent to the hub, and a retaining member including a first portion and a second portion. The first portion and the second portion are positionable between the hub and the retaining ring and deformable to secure the retaining member to the retaining ring.
Other aspects of the disclosure will become apparent by consideration of the detailed description and accompanying drawings.
Before any implementations of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of implementation and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of supporting other implementations and of being practiced or of being carried out in various ways.
The first and the second portions 108, 112 are deformable, i.e., portions 108, 112 can deflect about the opposing ends of the intermediate portion 116 and relative to the intermediate portion 116. The retaining member 100 is formed from a high carbon steel, although other materials may be used that permit plastic or elastic deflection as previously described. In one embodiment, the retaining member 100 may be constructed from a carbon steel having a hardness level in the range of 45-52 on the Rockwell scale, i.e., just below the brittle range.
The retaining member 100 is configured to be coupled to the retaining ring 10 and to constrain the first end 18 relative to the second end 22. In particular, the first portion 108 is configured to be inserted into the first aperture 38 of the first end 18 of the retaining ring 10, and the second portion 112 is configured to be inserted into the second aperture 42 of the second end 22 of the retaining ring 10. The first and the second portions 108, 112 have a length greater than the thickness of the first and second ends 18, 22 such that the first and the second portions 108, 112 are extendable completely through the ends 18, 22.
The retaining ring 10 is configured to restrict axial movement of a hub or similar component relative to a rotating shaft. The shaft 60 and hub configurations 150, 152 shown in
Referring to
The machined recesses define one or more contact surfaces 166 at an axial depth 172. For example and with reference to
Alternatively and with reference to
In yet another implementation illustrated in
In other implementations, the recesses 162 may have other suitable configurations with contact surfaces 166 that are positioned differently than illustrated herein. As an example, the arcuate recess 162a may be machined such that the contact surface 166a is convex rather than concave. In other embodiments, the contact surfaces 166 of the one or more recesses 162 may be oriented at any angle relative to the hub axial face 146, or have different axial depths. As examples, the contact surface 166 may be oriented at an angle of between 0 degrees and 90 degrees, at an angle of between 20 degrees and 70 degrees, at an angle of between 30 degrees and 60 degrees, or at an angle of between 35 and 55 degrees relative to the hub axial face 146.
The hub 150 can be modified to hub 152 as a separate component or modified once the shaft assembly 70 is partially assembled. With the shaft assembly 70 assembled such that a grooved shaft 60 extends through the hub aperture 200, the retaining ring 10 is positioned about the groove 50 adjacent to the modified hub 152. In particular, the retaining ring 10 is expanded from the relaxed initial state by conventional means such that the inner diameter 26 is able to receive an outer diameter 220 (
With reference again to
The second configuration of the retaining member 100 is determined by the recess 162 of the modified hub 152. As shown in the implementation of
In other embodiments (not shown), the retaining ring when assembled is not abutting or adjacent to the axial surface of the hub. In such configurations, no relief or recess is necessary in the axial surface, and the first and second portions 108, 112 can be manually deformed or deflected from a first configuration into a second configuration similar to that of
In certain applications the rotational speed of the shaft 60 is sufficient to create enough centripetal force to open a retaining ring. Also, in some cases small rotational movement or vibration while under thrust load can “walk” a retaining ring out of the groove of the shaft. Regardless of the type or direction of deformation, in any of the implementations of
The structural and functional aspects described above are equally applicable to an internal retaining ring, i.e., a retaining ring in which the first and second ends are moved toward each other to collapse or decrease the internal diameter of the retaining ring to remove it from an internal shaft groove of a hollow shaft.
Various features and advantages of the disclosure are set forth in the following claims.
This application is a continuation of U.S. patent application Ser. No. 14/868,028, filed Sep. 28, 2015, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2660913 | Frisby | Dec 1953 | A |
2697622 | Leister | Dec 1954 | A |
2955853 | Bendicsen | Oct 1960 | A |
2985054 | Bramberry et al. | May 1961 | A |
3709574 | Potter | Jan 1973 | A |
4464090 | Duran | Aug 1984 | A |
6773214 | Jakubowski, Jr. | Aug 2004 | B2 |
20040028504 | Jakubowski, Jr. et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
4007941 | Sep 1990 | DE |
1681477 | Jul 2006 | EP |
WO 2015063423 | May 2015 | WO |
2015117997 | Aug 2015 | WO |
Entry |
---|
“Between.” Dictionary.com. [online], [retrieved on Aug. 24, 2018]. Retrieved from the Internet <URL: https://www.google.com/search?q=define%3A+between>. |
Specification Translation of DE 4007941. Boll, Wolf. Sep. 13, 1990. Circlip mounting for component on shaft—incorporates closed retaining ring to prevent centrifugal expansion of circlip. |
Number | Date | Country | |
---|---|---|---|
20170307021 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14868028 | Sep 2015 | US |
Child | 15627930 | US |