The present invention relates generally to a high-speed solenoid. More particularly, the present invention relates to a high-speed solenoid, which allows rectilinear motion of a predetermined stroke to be performed by using a permanent magnet.
In a solenoid, a mover performs rectilinear motion due to a current flowing through a coil so as to convert magnetic energy into kinetic energy. Such a solenoid is used in various fields such as power equipment, automobiles, and hydraulic systems.
Generally, the solenoid has a movable iron core arranged in the center thereof, and allows the movable iron core to perform rectilinear motion while magnetic fields generated by electric currents applied to coils form magnetic paths along inner iron cores.
Here, to increase the reaction speed of the movable iron core, the weight of the movable iron core, which is a moving part, is required to be light. However, in the related art, the movable iron core cannot have good reactiveness although the movable iron core has a relatively low weight, so there is limitation in increasing the operation speed of the solenoid.
An objective of the present invention is to solve the above problems occurring in the related art, and to propose a solenoid that operates at high speed by using a permanent magnet.
Another objective of the present invention is to minimize the weight of a mover.
Still another objective of the present invention is to prevent the generation of withstand voltage in a bobbin and a coil.
According to the characteristics of the present invention in order to accomplish the above objectives, the present invention provides a high-speed solenoid including: a casing having predetermined space provided therein and functioning to form a magnetic path; at least two pairs of first permanent magnet and second permanent magnet securely provided inside the casing; and a mover having a bobbin provided with a coil and made of a synthetic resin material, the coil corresponding to each of the pairs of first permanent magnet and second permanent magnet being provided in the same number as the number thereof, and forming multiple magnetic paths through electromagnetic interaction with the pairs of first permanent magnet and second permanent magnet.
A guide having a guide through-hole may be provided in the casing to guide movement of the mover, and a movable pin provided in a center of the bobbin may be positioned in the guide through-hole.
Polarities of the first permanent magnet and the second permanent magnet and a winding direction of the coil may be set such that adjacent magnetic paths in the magnetic paths formed between each of the pairs of first permanent magnet and second permanent magnet and the coil are formed in directions opposite to each other.
A dividing plate may be positioned between each of the pairs of first permanent magnet and second permanent magnet, and may provide space dividing the magnetic paths formed in each of the pairs of first permanent magnet and second permanent magnet adjacent to each other.
The casing and the dividing plate may be made of the same material.
An entirety of an end part of the casing may be open, and a cover may be mounted to the end part to cover an inside of the casing from the outside.
A fastener may pass through the cover and may be fastened to a topmost dividing plate such that the cover is coupled to the casing.
A groove may be provided in an outer surface of the bobbin, the coil surrounding the outer surface of the bobbin being seated in the groove, a primary coating layer made of an insulation material may be provided on an entirety of the outer surface of the bobbin, and a secondary coating layer made of an insulation material may be provided on a surface of the coil on which the coil is wound in the groove and then exposed to an outside of the groove.
The bobbin may be configured to have a shape of a cylinder open at a side thereof.
The high-speed solenoid according to the present invention can obtain the following effects.
In the present invention, the permanent magnet is provided in the casing, and the coil is provided on the bobbin of the mover to operate the mover through electromagnetic interaction therebetween. In this case, the permanent magnet and the coil are provided in multiple pairs to interact with each other, so initial responsiveness is increased. Accordingly, multiple magnetic paths are formed and allow the mover to operate at a relatively high speed.
In the present invention, the bobbin on which the coil is installed is made of a plastic material, so the weight of the mover is relatively decreased and thus the moving speed of the mover can be relatively increased.
In addition, in the present invention, to prevent the generation of withstand voltage with respect to the coil installed on the bobbin, a coating layer made of an insulation material is primarily formed on the outer surface of the bobbin, and a coating layer made of an insulation material is secondarily formed on the portion of the coil in which the coil is wound on the bobbin and then is exposed to the outside. Accordingly, the performance of preventing the generation of the withstand voltage with respect to the coil in the bobbin is improved.
Hereinbelow, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. It should be noted that in adding reference numerals to the components of each drawing, the same components have the same reference numerals as possible even though they are displayed on different drawings. In addition in describing the embodiment of the present invention, when it is determined that detailed descriptions of related well-known structures or functions hinder understanding of the embodiment of the present invention, detailed descriptions thereof will be omitted.
In addition, in describing the components of the embodiment of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature or order of the components is not limited by the terms. When a component is described as being “connected” or “coupled” to another component, the component may be directly connected to or coupled to the another component, but it should be understood that still another component may be “connected” or “coupled” thereto between components.
As illustrated in the drawings, a casing 10 constitutes the appearance of a high-speed solenoid of the present invention. Predetermined space is provided inside the casing 10, and components to be described below are provided therein. Although the casing 10 constitutes the appearance, the casing 10 is made of a material having a high magnetizing force, and thus forms an outer magnetic path. Carbon steel may be used as the material for the casing 10. The casing 10 may be made in various shapes, but has a cylindrical shape in the embodiment. A first end part of the casing 10 is open only in a portion thereof, but the second end part thereof is entirely open. At the second end part, which is entirely open, the inner space of the casing 10 is shielded from the outside by a cover 18 to be described below.
A guide 12 is provided inside the casing 10. An end part of the guide 12 is fixed to the first end part of the casing 10, which is partially open. Threaded parts are formed on the outer surface of the end part of the guide 12 and the inner surface of the first end part of the casing 10, which is partially open so as to fasten the guide 12 and the casing 10. A guide through-hole 13 is formed through the inside of the guide 12. A movable pin 22 of a mover 20 to be described below is provided in the guide through-hole 13.
At least two pairs of first permanent magnet 14 and second permanent magnet 14′, which constitute one pair, are installed inside the casing 10 such that the guide 12 passes through the centers thereof. That is, the first permanent magnet 14 and the second permanent magnet 14′ having ring shapes are provided in a pair. In the embodiment, three pairs of first permanent magnet 14 and second permanent magnet 14′ are provided. Dividing plates 16 are provided to define space dividing magnetic paths by dividing each of the pairs of first permanent magnet 14 and second permanent magnet 14′ therebetween. In the embodiment, each of the dividing plates 16 is provided on each pair of first permanent magnet 14 and second permanent magnet 14′.
Each pair of first permanent magnet 14 and second permanent magnet 14′ of a position at which each of the pairs of first permanent magnet 14 and second permanent magnet 14′ is divided by the dividing plate 16 is configured to have polarity opposite to each other as illustrated in
The cover 18 is mounted to the open second end part of the casing 10. The cover 18 is made of aluminum. The cover 18 may be considered to be a part of the casing 10. A fastener 19 passes through the cover 18 and is fastened to the dividing plate 16. For reference, the pairs of first permanent magnet 14 and second permanent magnet 14′ and the dividing plate 16 are fixed to the inside of the casing 10 by the end part of the guide 12, and the fastener 19 is fastened to one of the dividing plates 16 such that the cover 18 is coupled to the casing 10.
The mover 20 is provided inside the casing 10. The mover is positioned in space between the inner surface of the casing 10 and the outer surface of the first permanent magnet 14, the second permanent magnet 14′, and the dividing plate 16, and in space defined by the cover 18. The mover 20 performs rectilinear motion by a predetermined distance.
The movable pin 22 is provided in the mover 20. A first end part of the movable pin 22 is configured to protrude toward the outside of the casing 10. The movable pin 22 provides power to move another part connected to the first end part protruding to the outside of the casing 10. The movable pin 22 is made of a stainless material.
The movable pin 22 is mounted to a bobbin 24. The bobbin 24 is made of a synthetic resin material. An end part of the bobbin 24 is coupled to the movable pin 22, and the bobbin 24 is formed to have a cylindrical shape. The cylindrical portion of the bobbin 24 formed in the cylindrical shape is located in the space between the inner surface of the casing 10 and the outer surface of the first permanent magnet 14 and the second permanent magnet 14′.
A groove 25 having a predetermined shape is formed in the bobbin 24 by surrounding the outer surface thereof, and a coil 26 is positioned in the groove. The number of the coil 26 is the same as the number of the pair of first permanent magnet 14 and second permanent magnet 14′ such that the coil 26 corresponds to the pair of first permanent magnet 14 and second permanent magnet 14′. In the embodiment, three coils 26 are provided on the bobbin 24. In each of the coils 26 provided on the bobbin 24, coils adjacent to each other are provided to have opposite winding directions. This is to allow the magnetic paths formed in the adjacent coils 26 to be separated from each other.
Before the coil 26 is installed on the outer surface of the bobbin 24, a primary coating layer 27 is formed on the entirety of the outer surface. The primary coating layer 27 is formed on the entire outer surface of the bobbin 24 in addition to portions illustrated in
In addition, a secondary coating layer 27′ is formed on the outer surface of the coil 26 seated in the groove 25 of the bobbin 24. Accordingly, insulation between the coils 26 and parts adjacent thereto can be reliably achieved by an insulating coating formed by surrounding the outer surface of the coil 26 exposed to the outside of the groove 25. Accordingly, the generation of withstand voltage in the bobbin 24 can be prevented by the formation of the primary coating layer 27 and the secondary coating layer 27′.
Meanwhile, the first end part of the movable pin 22 of the mover 20 is connected to the another part as described above, but the second end part thereof is shielded by a cap 30 as illustrated in
Hereinafter, the manufacturing and use of the high-speed solenoid of the present invention having the above-described configuration will be described in detail.
In the present invention, fixture is provided inside the casing 10, and the pair of first permanent magnet 14 and second permanent magnet 14′ and the dividing plate 16 are sequentially positioned in the fixture. In this case, the polarities of the first permanent magnet 14 and the second permanent magnet 14′ are set as illustrated in
Next, the mover 20 is installed. The bobbin 24, on which the coil 26 is wound, is positioned in the space between the outer surface of the first permanent magnet 14, the second permanent magnet 14′, and the dividing plate 16 and the inner surface of the casing 10, and the movable pin 22 is inserted into the guide through-hole 13 of the guide 12.
After the mover 20 is assembled, the cover 18 is mounted to the casing and is fastened by the fastener 19. The fastener 19 passes through the cover 18, and is fastened to a topmost dividing plate 16. After the assembly of the cover 18, the cap 30 is installed.
In the present invention, the distance of the moving stroke of the mover 20 is A illustrated in
In the present invention, when power is applied to the coils 26, the formation of the magnetic paths is illustrated in
Accordingly, the mover 20 can be moved by a force produced while the magnetic paths are formed. When the mover 20 moves, the movable pin 22 also moves together therewith. In the present invention, the first permanent magnet 14 and the second permanent magnet 14′ are used as fixed magnetic force providers. Accordingly, when the first permanent magnet 14 and the second permanent magnet 14 are used instead of an electromagnet, a relatively rapid operation of the mover can be performed. This is because the permanent magnet has a relatively good initial responsiveness.
In the embodiment, three pairs of first permanent magnet 14 and second permanent magnet 14′ are provided. Accordingly, three magnetic paths are also formed separately. Furthermore, these three magnetic paths are separately distributed over almost the entire area of the mover 20. Accordingly, the mover 20 can be moved more rapidly and reliably.
The state of the movable pin 22 further protruded to the outside of the casing 10 by the movement of the mover 20 is illustrated in
When an operation signal occurs in this state, power is applied to the coil 26, and the magnetic field is generated accordingly, so the magnetic paths as illustrated in
In the above, all the components constituting the embodiment of the present invention are described as being coupled to each other as one or being operated in the coupled state, but the present invention is not necessarily limited to the embodiment. That is, if it is within the scope of the present invention, at least one of all of the components may be selectively combined and operated. In addition, the terms such as “include”, “compose”, or “have” as described above means that the corresponding components can be inherent unless specifically stated to the contrary. Accordingly, it should be interpreted that other components are not excluded, but may further be included. All terms, including technical or scientific terms, have the same meaning as generally understood by those skilled in the art to which the present invention belongs, unless otherwise defined. Commonly used terms, such as predefined terms, should be interpreted as being consistent with the contextual meaning of the related art, and are not to be interpreted as ideal or excessively formal meanings unless explicitly defined in the present invention.
The above description is only to illustrate the technical idea of the present invention, but those skilled in the art to which the present invention pertains will be able to make various modifications and variations without departing from the essential characteristics of the present invention. Accordingly, the embodiment disclosed in the present invention is not intended to limit the technical spirit of the present invention, but to explain it, and the scope of the technical spirit of the present invention is not limited to the embodiment. The scope of protection of the present invention should be interpreted by the scope of the claims below, and all technical spirits within the scope equivalent thereto should be interpreted as being included in the scope of the claims of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0183194 | Dec 2017 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2018/016409 | 12/21/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/132436 | 7/4/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3470504 | Mallory | Sep 1969 | A |
3728654 | Tada | Apr 1973 | A |
3743898 | Sturman | Jul 1973 | A |
3980908 | McClintock | Sep 1976 | A |
3987383 | Antonitsch | Oct 1976 | A |
4001844 | McClintock | Jan 1977 | A |
4259653 | McGonigal | Mar 1981 | A |
4295066 | Lloyd | Oct 1981 | A |
4306207 | Tada | Dec 1981 | A |
4319211 | Ueda | Mar 1982 | A |
4358691 | Naylor | Nov 1982 | A |
4419643 | Ojima | Dec 1983 | A |
4422060 | Matsumoto | Dec 1983 | A |
4438419 | Helinski | Mar 1984 | A |
4463332 | Everett | Jul 1984 | A |
4490815 | Umehara | Dec 1984 | A |
4751487 | Green, Jr. | Jun 1988 | A |
4826130 | Griffith | May 1989 | A |
4845392 | Mumbower | Jul 1989 | A |
4892285 | Torrence | Jan 1990 | A |
4994776 | Juncu | Feb 1991 | A |
5108070 | Tominaga | Apr 1992 | A |
5272458 | Hoffman | Dec 1993 | A |
5814907 | Bandera | Sep 1998 | A |
5896076 | van Namen | Apr 1999 | A |
6124771 | Kim | Sep 2000 | A |
6265956 | Cascolan | Jul 2001 | B1 |
6639496 | van Namen | Oct 2003 | B1 |
6791442 | Schmidt | Sep 2004 | B1 |
7078833 | Xu | Jul 2006 | B2 |
8928436 | Hirabayashi | Jan 2015 | B2 |
9368266 | Mailer | Jun 2016 | B2 |
10697477 | Sakashita | Jun 2020 | B2 |
20030222534 | Xu | Dec 2003 | A1 |
20040227604 | Mitteer | Nov 2004 | A1 |
20050024174 | Kolb | Feb 2005 | A1 |
20050052265 | Vladimirescu | Mar 2005 | A1 |
20060255892 | Adams | Nov 2006 | A1 |
20080297288 | Irwin | Dec 2008 | A1 |
20090072636 | Gruden | Mar 2009 | A1 |
20100097165 | Schilling | Apr 2010 | A1 |
20100156582 | Zelmer | Jun 2010 | A1 |
20130214886 | Ohtsuka | Aug 2013 | A1 |
20130241680 | Hanchett, Jr. | Sep 2013 | A1 |
20140354381 | Kohlhafer | Dec 2014 | A1 |
20150102878 | Shin | Apr 2015 | A1 |
20150233488 | Holmes | Aug 2015 | A1 |
20160020010 | Mailer | Jan 2016 | A1 |
20160125991 | Wardle | May 2016 | A1 |
20160125992 | Irwin | May 2016 | A1 |
20160172137 | Liang | Jun 2016 | A1 |
20170133138 | Bye | May 2017 | A1 |
20170154716 | McLauchlan | Jun 2017 | A1 |
20170159844 | Fujita | Jun 2017 | A1 |
20180017158 | Lee | Jan 2018 | A1 |
20190178265 | Sakashita | Jun 2019 | A1 |
20190287705 | Pellmann | Sep 2019 | A1 |
20200131685 | Lee | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
2001-217129 | Aug 2001 | JP |
10-2012-0113889 | Oct 2012 | KR |
10-1547950 | Aug 2015 | KR |
10-1552573 | Sep 2015 | KR |
10-1668047 | Oct 2016 | KR |
Number | Date | Country | |
---|---|---|---|
20200402694 A1 | Dec 2020 | US |