1. Field of the Invention
The present disclosed technology relates generally to agricultural farm equipment, and in particular to a high-speed tillage tool having soil conditioning double tandem reels, the tillage tool to be towed behind a tractor or other suitable vehicle for tilling a field or other piece of land.
2. Description of the Related Art
Tillage implements are generally towed behind tractors and can be equipped with one or more leveling reels or cylinders for conditioning and leveling the soil behind the implement during a tilling operation. The present invention relates to a tillage implement with conditioner reels adapted for raising and lowering relative to the implement frame.
Typical disc tillers and vertical tillers have the negative aspect of soil compaction unless the vehicle is operated at very low speeds. It is difficult to have high quality soil conditioning while traveling at relatively high speeds (8-12 miles per hour). Additionally, transportation of such tillage equipment can be difficult.
Heretofore there has not been available a tillage tool with the advantages and features of the disclosed subject matter.
A fully-integrated tillage implement including two modes of transportation: a working implement mode and a transportation mode, wherein a transport wheel assembly can be hydraulically raised and lowered at will to transform the implement between the various positions. A hydraulic leveling bar affixed to the drawbar assembly serves to keep the entire implement level with the tractor while traversing a field or while towing the implement in transport mode.
The present invention features two sets of rotary disc groups, each disc being individually and independently mounted to a respective mounting assembly, and a double tandem conditioning reel assembly connected by a bearing system specifically designed to allow the conditioning reels to contour to the earth while the implement is in a working orientation. Each element of the present invention is capable of moving with response to changes in field conditions as well as the orientation of the vehicle's components, thus providing a superior high-speed tillage implement.
The drawings constitute a part of this specification and include exemplary embodiments of the invention illustrating various objects and features thereof, wherein like references are generally numbered alike in the several views.
As required, detailed aspects of the disclosed subject matter are disclosed herein; however, it is to be understood that the disclosed aspects are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art how to variously employ the present invention in virtually any appropriately detailed structure.
Certain terminology will be used in the following description for convenience in reference only and will not be limiting. For example, up, down, front, back, right and left refer to the invention as orientated in the view being referred to. The words, “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the aspect being described and designated parts thereof. Forwardly and rearwardly are generally in reference to the direction of travel, if appropriate. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.
Referring to the drawings in more detail, the reference numeral 2 generally designates a tillage tool implement to be towed by a tractor or other suitable vehicle (not shown). The tillage tool 2 is generally constructed from a frame 10, a draw bar assembly 12, a pair of transport wheel assemblies 4 and the various tilling elements. The draw bar assembly also includes a ring coupling 14 and a chain 16 for securing to a vehicle.
Each transport wheel assembly 4 is hingedly connected to the frame 10 via a hinge bar 30, and is locked into one of two positions (working position and travel position) via a hydraulic linear actuator 42.
The draw bar assembly 12 is similarly hingedly connected to the frame 10 at two hinged points 32 and is kept level by a hydraulic leveling arm 18.
A pair of conditioning reels 6 connected in tandem via a bearing 7 is preceded by a row of front discs 20 and a row of rear discs 22. Each disc is independently mounted to a leveling bar 8 via a disc mounting assembly 24. Each is also protected with an air spring 34, allowing the discs to work uneven fields with ease and without damaging a component.
The tandem conditioning reels 6 serve to better conform to uneven terrain when the tillage implement 2 is being drawn through a field. When the transport wheel assemblies 4 are raised in a “working” position, the tandem conditioning reels are placed in direct contact with the earth. When the transport wheel assemblies are lowered into a “transport” position, the conditioning reels are automatically raised away from the earth. This is diagramed in
As shown in
The front disc 20 and rear disc 22 gangs may be alternative left and right discs as illustrated. They may be of varying sizes and designs, and they may optionally be angled. The conditioning reels 6 must follow the discs for optimum results. Additional tools, such as chisels, knives, and tines, could also be affixed behind the discs or the conditioning reels.
The tools float as the implement 2 passes over uneven areas of a field. The front and rear discs float due to the air springs 34 affixed to those assemblies. In a preferred embodiment, the air springs 34 function similar to the invention disclosed in U.S. Pat. Nos. 7,992,650 and 7,997,218 which are assigned to a common assignee to the present application and are incorporated herein by reference.
Reference numeral 5 generally indicates a bearing system which utilizes two conditioning reels 6 operating in tandem, thereby increasing the ability to contour to a field's surface and increasing the coverage area of the conditioning reels. A formed side plate 7 provides an offset between the two reels, such that the reels are offset to maximize the surface area covered by the reels. This offset is built in at the angle 11 shown in
The double tandem conditioning reels 6 increase contour cover of a field after the front 20 and rear 22 discs have worked the field. As shown in
As is true with all trunnion joints, the central element 54 provides a first level of flexibility to the reel 6, and the pivot bolt 58 passing through the trunnion joint permits the reel to rotate on its axis. The side components 56 of the trunnion joint which are mounted to the formed plate 7 provide even more flexibility to the reel against its path of travel.
Further aiding in flexibility is the torsion axle shown in
As shown in
IV. Disc Assembly 24 with Thrust Bearing Assembly 66
It is to be understood that while certain aspects of the disclosed subject matter have been shown and described, the disclosed subject matter is not limited thereto and encompasses various other embodiments and aspects.
This application claims priority in U.S. Provisional Patent Application Nos. 61/789,209, filed Mar. 15, 2013, 61/789,289, filed Mar. 15, 2013 and 61/789,352, filed Mar. 15, 2013, all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61789209 | Mar 2013 | US | |
61789289 | Mar 2013 | US | |
61789352 | Mar 2013 | US |