The invention is directed to high-strength aluminum alloys and methods of making and processing the same. The invention further relates to 6XXX aluminum alloys exhibiting improved mechanical strength, formability, corrosion resistance, and anodized qualities.
Recyclable aluminum alloys with high strength are desirable for improved product performance in many applications, including transportation (encompassing without limitation, e.g., trucks, trailers, trains, and marine) applications, electronic applications, and automobile applications. For example, a high-strength aluminum alloy in trucks or trailers would be lighter than conventional steel alloys, providing significant emission reductions that are needed to meet new, stricter government regulations on emissions. Such alloys should exhibit high strength, high formability, and corrosion resistance.
However, identifying processing conditions and alloy compositions that will provide such an alloy has proven to be a challenge. In addition, the hot rolling of compositions with the potential of exhibiting the desired properties often results in edge cracking issues and the propensity for hot tearing.
Covered embodiments of the invention are defined by the claims, not this summary. This summary is a high-level overview of various aspects of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification, any or all drawings and each claim.
Provided herein are methods of preparing 6XXX series aluminum alloys, the aluminum alloys, and products comprising the alloys.
One aspect relates to methods of processing aluminum. For example, disclosed is a method of producing an aluminum alloy metal product, the method comprising casting an aluminum alloy to form an ingot, wherein the aluminum alloy comprises about 0.9-1.5 wt. % Cu, about 0.7-1.1 wt. % Si, about 0.7-1.2 wt. % Mg, about 0.06-0.15 wt. % Cr, about 0.05-0.3 wt. % Mn, about 0.1-0.3 wt. % Fe, up to about 0.2 wt. % Zr, up to about 0.2 wt. % Sc, up to about 0.25 wt. % Sn, up to about 0.2 wt. % Zn, up to about 0.15 wt. % Ti, up to about 0.07 wt. % Ni, and up to about 0.15 wt. % of impurities, with the remainder as Al; homogenizing the ingot; hot rolling the ingot to produce a plate, shate, or sheet; and solutionizing the plate, shate or sheet at a temperature between about 520° C. and about 590° C. Throughout this application, all elements are described in weight percentage (wt. %) based on the total weight of the alloy. In some examples, the homogenizing step can include heating the ingot to a temperature of about 520° C. to about 580° C. In some cases, the hot rolling step can be conducted at an entry temperature of about 500° C. to about 540° C. and an exit temperature of about 250° C. to about 380° C. Optionally, the methods can include annealing the plate, shate or sheet. In some such cases, the annealing step can be performed at a temperature that is between about 400° C. and about 500° C. for a soaking time of about 30 to about 120 minutes. In yet other aspects, the methods can include cold rolling the plate, shate or sheet. In some cases, the methods can include quenching the plate, shate or sheet after the solutionizing step. In some other aspects, the methods include aging the plate, shate or sheet. In some such cases, the aging step includes heating the plate, shate or sheet between about 180° C. to about 225° C. for a period of time.
Another aspect relates to methods of processing aluminum that include manufacturing by casting an aluminum alloy to form an ingot, wherein the aluminum alloy comprises about 0.6-0.9 wt. % Cu, about 0.8-1.3 wt. % Si, about 1.0-1.3 wt. % Mg, about 0.03-0.25 wt. % Cr, about 0.05-0.2 wt. % Mn, about 0.15-0.3 wt. % Fe, up to about 0.2 wt. % Zr, up to about 0.2 wt. % Sc, up to about 0.25 wt. % Sn, up to about 0.9 wt. % Zn, up to about 0.1 wt. % Ti, up to about 0.07 wt. % Ni, and up to about 0.15 wt. % of impurities, with the remainder as Al; homogenizing the ingot; hot rolling and cold rolling the ingot to produce a rolled product; and solutionizing the rolled product, wherein the solutionizing temperature is between about 520° C. and about 590° C. In some examples, the homogenizing step is a one-step homogenization that can include heating the ingot to a temperature of about 520° C. to about 580° C. for a period of time. In other examples, the homogenizing step is a two-step homogenization that can include heating the ingot to a temperature of about 480° C. to about 520° C. for a period of time and further heating the ingot to a temperature of about 520° C. to about 580° C. for a period of time. In some cases, the hot rolling step can be conducted at an entry temperature of about 500° C. to about 540° C. and an exit temperature of about 250° C. to about 380° C. In some cases, the methods can include quenching the rolled product after the solutionizing step. In some other aspects, the methods include aging the rolled product. In some such cases, the aging step includes heating the plate, shate or sheet between about 180° C. to about 225° C. for a period of time.
Another aspect relates to methods of processing aluminum that include manufacturing by casting an aluminum alloy to form an ingot, wherein the aluminum alloy comprises about 0.5-2.0 wt. % Cu, about 0.5-1.5 wt. % Si, about 0.5-1.5 wt. % Mg, about 0.001-0.25 wt. % Cr, about 0.005-0.4 wt. % Mn, about 0.1-0.3 wt. % Fe, up to about 0.2 wt. % Zr, up to about 0.2 wt. % Sc, up to about 0.25 wt. % Sn, up to about 4.0 wt. % Zn, up to about 0.15 wt. % Ti, up to about 0.1 wt. % Ni, and up to about 0.15 wt. % of impurities, with the remainder as Al; homogenizing the ingot; hot rolling and cold rolling the ingot to produce a rolled product; and solutionizing the rolled product, wherein the solutionizing temperature is between about 520° C. and about 590° C. In some examples, the homogenizing step is a one-step homogenization that can include heating the ingot to a temperature of about 520° C. to about 580° C. for a period of time. In other examples, the homogenizing step is a two-step homogenization that can include heating the ingot to a temperature of about 480° C. to about 520° C. for a period of time and further heating the ingot to a temperature of about 520° C. to about 580° C. for a period of time. In some cases, the hot rolling step can be conducted at an entry temperature of about 500° C. to about 540° C. and an exit temperature of about 250° C. to about 380° C. In some cases, the methods can include quenching the rolled product after the solutionizing step. In some other aspects, the methods include aging the rolled product. In some such cases, the aging step includes heating the sheet between about 180° C. to about 225° C. for a period of time.
Also disclosed is an aluminum alloy comprising about 0.9-1.5 wt. % Cu, about 0.7-1.1 wt. % Si, about 0.7-1.2 wt. % Mg, about 0.06-0.15 wt. % Cr, about 0.05-0.3 wt. % Mn, about 0.1-0.3 wt. % Fe, up to about 0.2 wt. % Zr, up to about 0.2 wt. % Sc, up to about 0.25 wt. % Sn, up to about 0.2 wt. % Zn, up to about 0.15 wt. % Ti, up to about 0.07 wt. % Ni, and up to about 0.15 wt. % of impurities, with the remainder as Al.
Also disclosed is an aluminum alloy comprising about 0.6-0.9 wt. % Cu, about 0.8-1.3 wt. % Si, about 1.0-1.3 wt. % Mg, about 0.03-0.25 wt. % Cr, about 0.05-0.2 wt. % Mn, about 0.15-0.3 wt. % Fe, up to about 0.2 wt. % Zr, up to about 0.2 wt. % Sc, up to about 0.25 wt. % Sn, up to about 0.9 wt. % Zn, up to about 0.1 wt. % Ti, up to about 0.07 wt. % Ni, and up to about 0.15 wt. % of impurities, with the remainder as Al. Optionally, the aluminum alloy has a Si to Mg ratio of from about 0.55:1 to about 1.30:1 by weight. Optionally, the aluminum alloy has an excess Si content of from −0.5 to 0.1, as described in more detail below.
Also disclosed is an aluminum alloy comprising about 0.5-2.0 wt. % Cu, about 0.5-1.5 wt. % Si, about 0.5-1.5 wt. % Mg, about 0.001-0.25 wt. % Cr, about 0.005-0.4 wt. % Mn, about 0.1-0.3 wt. % Fe, up to about 0.2 wt. % Zr, up to about 0.2 wt. % Sc, up to about 0.25 wt. % Sn, up to about 0.3 wt. % Zn, up to about 0.1 wt. % Ti, up to about 0.1 wt. % Ni, and up to about 0.15 wt. % of impurities, with the remainder as Al.
Further disclosed are products (e.g., transportation body parts, automotive body parts, or electronic device housings) comprising an alloy obtained according to the methods provided herein.
Further aspects, objects, and advantages of the invention will become apparent upon consideration of the detailed description and figures that follow.
The terms “invention,” “the invention,” “this invention” and “the present invention” used herein are intended to refer broadly to all of the subject matter of this patent application and the claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below.
In this description, reference is made to alloys identified by aluminum industry designations, such as “series” or “6XXX.” For an understanding of the number designation system most commonly used in naming and identifying aluminum and its alloys, see “International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys” or “Registration Record of Aluminum Association Alloy Designations and Chemical Compositions Limits for Aluminum Alloys in the Form of Castings and Ingot,” both published by The Aluminum Association.
As used herein, the meaning of “a,” “an,” or “the” includes singular and plural references unless the context clearly dictates otherwise.
As used herein, a plate generally has a thickness of greater than about 15 mm. For example, a plate may refer to an aluminum product having a thickness of greater than 15 mm, greater than 20 mm, greater than 25 mm, greater than 30 mm, greater than 35 mm, greater than 40 mm, greater than 45 mm, greater than 50 mm, or greater than 100 mm.
As used herein, a shate (also referred to as a sheet plate) generally has a thickness of from about 4 mm to about 15 mm. For example, a shate may have a thickness of 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 13 mm, 14 mm, or 15 mm.
As used herein, a sheet generally refers to an aluminum product having a thickness of less than about 4 mm. For example, a sheet may have a thickness of less than 4 mm, less than 3 mm, less than 2 mm, less than 1 mm, less than 0.5 mm, less than 0.3 mm, or less than 0.1 mm.
Reference is made in this application to alloy temper or condition. For an understanding of the alloy temper descriptions most commonly used, see “American National Standards (ANSI) H35 on Alloy and Temper Designation Systems.” An F condition or temper refers to an aluminum alloy as fabricated. An 0 condition or temper refers to an aluminum alloy after annealing. A T4 condition or temper refers to an aluminum alloy after solution heat treatment (SHT) (i.e., solutionization) followed by natural aging. A T6 condition or temper refers to an aluminum alloy after solution heat treatment followed by artificial aging (AA).
The following aluminum alloys are described in terms of their elemental composition in weight percentage (wt. %) based on the total weight of the alloy. In certain examples of each alloy, the remainder is aluminum, with a maximum wt. % of 0.15% for the sum of the impurities.
Alloy Compositions
Described below are novel 6XXX series aluminum alloys. In certain aspects, the alloys exhibit high strength, high formability, and corrosion resistance. The properties of the alloys are achieved due to the methods of processing the alloys to produce the described plates, shates, and sheets. The alloys can have the following elemental composition as provided in Table 1:
In other examples, the alloys can have the following elemental composition as provided in Table 2.
In other examples, the alloys can have the following elemental composition as provided in Table 3.
Aluminum Alloys for Preparing Plates and Shates
In one example, an aluminum alloy can have the following elemental composition as provided in Table 4. In certain aspects, the alloy is used to prepare aluminum plates and shates.
In another example, an aluminum alloy for use in preparing aluminum plates and shates can have the following elemental composition as provided in Table 5.
In another example, an aluminum alloy for use in preparing aluminum plates and shates can have the following elemental composition as provided in Table 6.
In certain examples, the disclosed alloy includes copper (Cu) in an amount from about 0.6% to about 0.9% (e.g., from 0.65% to 0.9%, from 0.7% to 0.9%, or from 0.6% to 0.7%) based on the total weight of the alloy. For example, the alloy can include 0.6%, 0.61%, 0.62%, 0.63%, 0.64%, 0.65%, 0.66%, 0.67%, 0.68%, 0.69%, 0.7%, 0.71%, 0.72%, 0.73%, 0.74%, 0.75%, 0.76%, 0.77%, 0.78%, 0.79%, 0.8%, 0.81%, 0.82%, 0.83%, 0.84%, 0.85%, 0.86%, 0.87%, 0.88%, 0.89%, or 0.9% Cu. All expressed in wt. %.
In certain examples, the disclosed alloy includes silicon (Si) in an amount from about 0.8% to about 1.3% (e.g., from 0.8% to 1.2%, from 0.9% to 1.2%, from 0.8% to 1.1%, from 0.9 to 1.15%, from 1.0% to 1.1%, or from 1.05 to 1.2%) based on the total weight of the alloy. For example, the alloy can include 0.8%, 0.81%, 0.82%, 0.83%, 0.84%, 0.85%, 0.86%, 0.87%, 0.88%, 0.89%, 0.9%, 0.91%, 0.92%, 0.93%, 0.94%, 0.95%, 0.96%, 0.97%, 0.98%, 0.99%, 1.0% 1.01% 1.02% 1.03% 1.04% 1.05% 1.06% 1.07% 1.08% 1.09% 1.1% 1.11%, 1.12%, 1.13%, 1.14%, 1.15%, 1.16%, 1.17%, 1.18%, 1.19%, or 1.2%, 1.21%, 1.22%, 1.23%, 1.24%, 1.25%, 1.26%, 1.27%, 1.28%, 1.29%, or 1.3% Si. All expressed in wt. %.
In certain examples, the disclosed alloy includes magnesium (Mg) in an amount from about 1.0% to about 1.3% (e.g., from 1.0% to 1.25%, from 1.1% to 1.25%, from 1.1% to 1.2%, from 1.0% to 1.2%, from 1.05% to 1.3%, or from 1.15% to 1.3%) based on the total weight of the alloy. For example, the alloy can include 1.0%, 1.01%, 1.02%, 1.03%, 1.04%, 1.05%, 1.06%, 1.07%, 1.08%, 1.09%, 1.1%, 1.11%, 1.12%, 1.13%, 1.14%, 1.15%, 1.16%, 1.17%, 1.18%, 1.19%, 1.2%, 1.21%, 1.22%, 1.23%, 1.24%, 1.25%, 1.26%, 1.27%, 1.28%, 1.29%, or 1.3% Mg. All expressed in wt. %.
In certain aspects, Cu, Si and Mg can form precipitates in the alloy to result in an alloy with higher strength. These precipitates can form during the aging processes, after solution heat treatment. During the precipitation process, metastable Guinier Preston (GP) zones can form, which in turn transfer to β″ needle shape precipitates that contribute to precipitation strengthening of the disclosed alloys. In certain aspects, addition of Cu leads to the formation of lathe-shaped L phase precipitation, which is a precursor of Q′ precipitate phase formation and which further contributes to strength. In certain aspects, the Cu and Si/Mg ratios are controlled to avoid detrimental effects to corrosion resistance.
In certain aspects, for a combined effect of strengthening, formability and corrosion resistance, the alloy has a Cu content of less than about 0.9 wt. % along with a controlled Si to Mg ratio and a controlled excess Si range, as further described below.
The Si to Mg ratio may be from about 0.55:1 to about 1.30:1 by weight. For example, the Si to Mg ratio may be from about 0.6:1 to about 1.25:1 by weight, from about 0.65:1 to about 1.2:1 by weight, from about 0.7:1 to about 1.15:1 by weight, from about 0.75:1 to about 1.1:1 by weight, from about 0.8:1 to about 1.05:1 by weight, from about 0.85:1 to about 1.0:1 by weight, or from about 0.9:1 to about 0.95:1 by weight. In certain aspects, the Si to Mg ratio is from 0.8:1 to 1.15:1. In certain aspects, the Si to Mg ratio is from 0.85:1 to 1:1.
In certain aspects, the alloy may use an almost balanced Si to slightly under-balanced Si approach in alloy design instead of a high excess Si approach. In certain aspects, excess Si is about −0.5 to 0.1. Excess Si as used herein is defined by the equation:
Excess Si=(alloy wt. % Si)−[(alloy wt. % Mg)−⅙×(alloy wt. % Fe+Mn+Cr)]. For example, excess Si can be −0.50, −0.49, −0.48, −0.47, −0.46, −0.45, −0.44, −0.43, −0.42, −0.41, −0.40, −0.39, −0.38, −0.37, −0.36, −0.35, −0.34, −0.33, −0.32, −0.31, −0.30, −0.29, −0.28, −0.27, −0.26, −0.25, −0.24, −0.23, −0.22, −0.21, −0.20, −0.19, −0.18, −0.17, −0.16, −0.15, −0.14, −0.13, −0.12, −0.11, −0.10, −0.09, −0.08, −0.07, −0.06, −0.05, −0.04, −0.03, −0.02, −0.01, 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, or 0.10. In certain aspects, the alloy has Cu<0.9 wt. %, the Si/Mg ratio is 0.85-0.1, and excess Si is −0.5-0.1.
In certain aspects, the alloy includes chromium (Cr) in an amount from about 0.03% to about 0.25% (e.g., from 0.03% to 0.15%, from 0.05% to 0.13%, from 0.075% to 0.12%, from 0.03% to 0.04%, from 0.08% to 0.15%, from 0.03% to 0.045%, from 0.04% to 0.06%, from 0.035% to 0.045%, from 0.04% to 0.08%, from 0.06% to 0.13%, from 0.06% to 0.22%, from 0.1% to 0.13%, or from 0.11% to 0.23%) based on the total weight of the alloy. For example, the alloy can include 0.03%, 0.035%, 0.04%, 0.045%, 0.05%, 0.055%, 0.06%, 0.065%, 0.07%, 0.075%, 0.08%, 0.085%, 0.09%, 0.095%, 0.1%, 0.105%, 0.11%, 0.115%, 0.12%, 0.125%, 0.13%, 0.135%, 0.14%, 0.145%, 0.15%, 0.155%, 0.16%, 0.165%, 0.17%, 0.175%, 0.18% 0.185%, 0.19%, 0.195%, 0.20%, 0.205%, 0.21%, 0.215%, 0.22%, 0.225%, 0.23%, 0.235%, 0.24%, 0.245%, or 0.25% Cr. All expressed in wt. %.
In certain examples, the alloy can include manganese (Mn) in an amount from about 0.05% to about 0.2% (e.g., from 0.05% to 0.18% or from 0.1% to 0.18%) based on the total weight of the alloy. For example, the alloy can include 0.05%, 0.051%, 0.052%, 0.053%, 0.054%, 0.055%, 0.056%, 0.057%, 0.058%, 0.059%, 0.06%, 0.061%, 0.062%, 0.063%, 0.064%, 0.065%, 0.066%, 0.067%, 0.068%, 0.069%, 0.07%, 0.071%, 0.072%, 0.073%, 0.074%, 0.075%, 0.076%, 0.077%, 0.078%, 0.079%, 0.08%, 0.081%, 0.082%, 0.083%, 0.084%, 0.085%, 0.086%, 0.087%, 0.088%, 0.089%, 0.09%, 0.091%, 0.092%, 0.093%, 0.094%, 0.095%, 0.096%, 0.097%, 0.098%, 0.099%, 0.1%, 0.11%, 0.12%, 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19%, or 0.2% Mn. All expressed in wt. %. In certain aspects, the Mn content was used to minimize coarsening of constituent particles.
In certain aspects, some Cr is used to replace Mn in forming dispersoids. Replacing Mn with Cr can advantageously form dispersoids. In certain aspects, the alloy has a Cr/Mn weight ratio of about 0.15-0.6. For example, the Cr/Mn ratio may be 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, or 0.60. In certain aspects, the Cr/Mn ratio promotes appropriate dispersoids, leading to improved formability, strengthening, and corrosion resistance.
In certain aspects, the alloy also includes iron (Fe) in an amount from about 0.15% to about 0.3% (e.g., from 0.15% to about 0.25%, from 0.18% to 0.25%, from 0.2% to 0.21%, or from 0.15% to 0.22%) based on the total weight of the alloy. For example, the alloy can include 0.15%, 0.16%, 0.17%, 0.18%, 0.19%, 0.2%, 0.21%, 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, or 0.30% Fe. All expressed in wt. %. In certain aspects, the Fe content reduces the forming of coarse constituent particles.
In certain aspects, the alloy includes zirconium (Zr) in an amount up to about 0.2% (e.g., from 0% to 0.2%, from 0.01% to 0.2%, from 0.01% to 0.15%, from 0.01% to 0.1%, or from 0.02% to 0.09%) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.02% 0.03%, 0.04% 0.05% 0.06% 0.07% 0.08% 0.09% 0.1%, 0.11%, 0.12% 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19%, or 0.2% Zr. In certain aspects, Zr is not present in the alloy (i.e., 0%). All expressed in wt. %.
In certain aspects, the alloy includes scandium (Sc) in an amount up to about 0.2% (e.g., from 0% to 0.2%, from 0.01% to 0.2%, from 0.05% to 0.15%, or from 0.05% to 0.2%) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.11%, 0.12%, 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19%, or 0.2% Sc. In certain examples, Sc is not present in the alloy (i.e., 0%). All expressed in wt. %.
In certain aspects, Sc and/or Zr were added to the above-described compositions to form Al3Sc, (Al,Si)3Sc, (Al,Si)3Zr and/or Al3Zr dispersoids.
In certain aspects, the alloy includes tin (Sn) in an amount up to about 0.25% (e.g., from 0% to 0.25%, from 0% to 0.2%, from 0% to 0.05%, from 0.01% to 0.15%, or from 0.01% to 0.1%) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.11%, 0.12%, 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19%, 0.2%, 0.21%, 0.22%, 0.23%, 0.24%, or 0.25%. In certain aspects, Sn is not present in the alloy (i.e., 0%). All expressed in wt. %.
In certain aspects, the alloy described herein includes zinc (Zn) in an amount up to about 0.9% (e.g., from 0.001% to 0.09%, from 0.004% to 0.9%, from 0.03% to 0.9%, or from 0.06% to 0.1%) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.011%, 0.012%, 0.013%, 0.014%, 0.015%, 0.016%, 0.017%, 0.018%, 0.019%, 0.02%, 0.021%, 0.022%, 0.023%, 0.024%, 0.025%, 0.026%, 0.027%, 0.028%, 0.029%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.11%, 0.12%, 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19%, 0.2%, 0.21%, 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, 0.3%, 0.31%, 0.32%, 0.33%, 0.34%, 0.35%, 0.36%, 0.37%, 0.38%, 0.39%, 0.4%, 0.41%, 0.42%, 0.43%, 0.44%, 0.45%, 0.46%, 0.47%, 0.48%, 0.49%, 0.5%, 0.51%, 0.52%, 0.53%, 0.54%, 0.55%, 0.56%, 0.57%, 0.58%, 0.59%, 0.6%, 0.61%, 0.62%, 0.63%, 0.64%, 0.65%, 0.66%, 0.67%, 0.68%, 0.69%, 0.7%, 0.71%, 0.72%, 0.73%, 0.74%, 0.75%, 0.76%, 0.77%, 0.78%, 0.79%, 0.8%, 0.81%, 0.82%, 0.83%, 0.84%, 0.85%, 0.86%, 0.87%, 0.88%, 0.89%, or 0.9% Zn. All expressed in wt. %. In certain aspects, Zn can benefit forming, including bending and the reduction of bending anisotropy in plate products.
In certain aspects, the alloy includes titanium (Ti) in an amount up to about 0.1% (e.g., from 0.01% to 0.1%,) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.011%, 0.012%, 0.013%, 0.014%, 0.015%, 0.016%, 0.017%, 0.018%, 0.019%, 0.02%, 0.021%, 0.022%, 0.023%, 0.024%, 0.025%, 0.026%, 0.027%, 0.028%, 0.029%, 0.03%, 0.031%, 0.032%, 0.033%, 0.034%, 0.035%, 0.036%, 0.037%, 0.038%, 0.039%, 0.04%, 0.05%, 0.051%, 0.052%, 0.053%, 0.054%, 0.055%, 0.056%, 0.057%, 0.058%, 0.059%, 0.06%, 0.07%, 0.08%, 0.09%, or 0.1% Ti. All expressed in wt. %. In certain aspects, Ti is used as a grain-refiner agent.
In certain aspects, the alloy includes nickel (Ni) in an amount up to about 0.07% (e.g., from 0% to 0.05%, 0.01% to 0.07%, from 0.03% to 0.034%, from 0.02% to 0.03%, from 0.034 to 0.054%, from 0.03 to 0.06%, or from 0.001% to 0.06%) based on the total weight of the alloy. For example, the alloy can include 0.01%, 0.011%, 0.012%, 0.013%, 0.014%, 0.015%, 0.016% 0.017% 0.018%, 0.019% 0.02%, 0.021%, 0.022% 0.023%, 0.024%, 0.025%, 0.026%, 0.027%, 0.028%, 0.029%, 0.03%, 0.031%, 0.032%, 0.033%, 0.034%, 0.035%, 0.036%, 0.037%, 0.038%, 0.039%, 0.04%, 0.041%, 0.042%, 0.043%, 0.044%, 0.045%, 0.046%, 0.047%, 0.048%, 0.049%, 0.05%, 0.0521%, 0.052%, 0.053%, 0.054%, 0.055%, 0.056%, 0.057%, 0.058%, 0.059%, 0.06%, 0.061%, 0.062%, 0.063%, 0.064%, 0.065%, 0.066%, 0.067%, 0.068%, 0.069%, or 0.07% Ni. In certain aspects, Ni is not present in the alloy (i.e., 0%). All expressed in wt. %.
Optionally, the alloy compositions can further include other minor elements, sometimes referred to as impurities, in amounts of about 0.05% or below, 0.04% or below, 0.03% or below, 0.02% or below, or 0.01% or below each. These impurities may include, but are not limited to, V, Ga, Ca, Hf, Sr, or combinations thereof. Accordingly, V, Ga, Ca, Hf, or Sr may be present in an alloy in amounts of 0.05% or below, 0.04% or below, 0.03% or below, 0.02% or below, or 0.01% or below. In certain aspects, the sum of all impurities does not exceed 0.15% (e.g., 0.1%). All expressed in wt. %. In certain aspects, the remaining percentage of the alloy is aluminum.
Aluminum Alloys for Preparing Sheets
Also described is an aluminum alloy for use in preparing aluminum sheets. For example, the aluminum alloy can be used to prepare automotive body sheets. Optionally, a non-limiting example of such an alloy can have the following elemental composition as provided in Table 7.
Another non-limiting example of such an alloy has the following elemental composition as provided in Table 8.
Another non-limiting example of such an alloy has the following elemental composition as provided in Table 9.
Another non-limiting example of such an alloy has the following elemental composition as provided in Table 10.
Another non-limiting example of such an alloy has the following elemental composition as provided in Table 11.
Another non-limiting example of such an alloy has the following elemental composition as provided in Table 12.
Another non-limiting example of such an alloy has the following elemental composition as provided in Table 13.
Another non-limiting example of such an alloy has the following elemental composition as provided in Table 14.
Another non-limiting example of such an alloy has the following elemental composition as provided in Table 15.
In certain aspects, the alloy includes copper (Cu) in an amount from about 0.5% to about 2.0% (e.g., from 0.6 to 2.0%, from 0.7 to 0.9%, from 1.35% to 1.95%, from 0.84% to 0.94%, from 1.6% to 1.8%, from 0.78% to 0.92% from 0.75% to 0.85%, or from 0.65% to 0.75%) based on the total weight of the alloy. For example, the alloy can include 0.5%, 0.51%, 0.52%, 0.53%, 0.54%, 0.55% 0.56%, 0.57%, 0.58%, 0.59%, 0.6%, 0.61%, 0.62%, 0.63%, 0.64%, 0.65%, 0.66%, 0.67%, 0.68%, 0.69%, 0.7%, 0.71%, 0.72%, 0.73%, 0.74%, 0.75%, 0.76%, 0.77%, 0.78%, 0.79%, 0.8%, 0.81%, 0.82%, 0.83%, 0.84%, 0.85%, 0.86%, 0.87%, 0.88%, 0.89%, 0.9%, 0.91%, 0.92%, 0.93%, 0.94%, 0.95%, 0.96%, 0.97%, 0.98%, 0.99%, 1.0%, 1.01%, 1.02%, 1.03%, 1.04%, 1.05%, 1.06%, 1.07%, 1.08%, 1.09%, 1.1%, 1.11%, 1.12%, 1.13%, 1.14%, 1.15%, 1.16%, 1.17%, 1.18%, 1.19%, 1.2%, 1.21%, 1.22%, 1.23%, 1.24%, 1.25%, 1.26%, 1.27%, 1.28%, 1.29%, 1.3%, 1.31%, 1.32%, 1.33%, 1.34%, or 1.35%, 1.36%, 1.37%, 1.38%, 1.39%, 1.4%, 1.41%, 1.42%, 1.43%, 1.44%, 1.45%, 1.46%, 1.47%, 1.48%, 1.49%, 1.5%, 1.51%, 1.52%, 1.53%, 1.54%, 1.55%, 1.56%, 1.57% 1.58% 1.59% 1.6% 1.61% 1.62% 1.63% 1.64% 1.65% 1.66% 1.67%, 1.68%, 1.69%, 1.7%, 1.71%, 1.72%, 1.73%, 1.74%, 1.75%, 1.76%, 1.77%, 1.78%, 1.79%, 1.8%, 1.81% 1.82% 1.83% 1.84% 1.85% 1.86% 1.87% 1.88% 1.89% 1.9% 1.91% 1.92%, 1.93%, 1.94%, 1.95%, 1.96%, 1.97%, 1.98%, 1.99%, or 2.0% Cu. All expressed in wt. %.
In certain aspects, the alloy includes silicon (Si) in an amount from about 0.5% to about 1.5% (e.g., from 0.5% to 1.4%, from 0.55% to 1.35%, from 0.6% to 1.24%, from 1.0% to 1.3%, or from 1.03 to 1.24%) based on the total weight of the alloy. For example, the alloy can include 0.5%, 0.51%, 0.52%, 0.53%, 0.54%, 0.55%, 0.56%, 0.57%, 0.58%, 0.59%, 0.6%, 0.61%, 0.62%, 0.63%, 0.64%, 0.65%, 0.66%, 0.67%, 0.68%, 0.69%, 0.7%, 0.71%, 0.72%, 0.73%, 0.74%, 0.75%, 0.76%, 0.77%, 0.78%, 0.79%, 0.8%, 0.81%, 0.82%, 0.83%, 0.84%, 0.85%, 0.86%, 0.87%, 0.88%, 0.89%, 0.9%, 0.91%, 0.92%, 0.93%, 0.94%, 0.95%, 0.96%, 0.97%, 0.98%, 0.99%, 1.0%, 1.01%, 1.02%, 1.03%, 1.04%, 1.05%, 1.06%, 1.07%, 1.08%, 1.09%, 1.1%, 1.11%, 1.12%, 1.13%, 1.14%, 1.15%, 1.16%, 1.17%, 1.18%, 1.19%, 1.2%, 1.21%, 1.22%, 1.23%, 1.24%, 1.25%, 1.26%, 1.27%, 1.28%, 1.29%, 1.3%, 1.31%, 1.32%, 1.33%, 1.34%, 1.35%, 1.36%, 1.37%, 1.38%, 1.39%, 1.4%, 1.41%, 1.42%, 1.43%, 1.44%, 1.45%, 1.46%, 1.47%, 1.48%, 1.49%, or 1.5% Si. All expressed in wt. %.
In certain aspects, the alloy includes magnesium (Mg) in an amount from about 0.5% to about 1.5% (e.g., about 0.6% to about 1.35%, about 0.65% to 1.2%, from 0.8% to 1.2%, or from 0.9% to 1.1%) based on the total weight of the alloy. For example, the alloy can include 0.5%, 0.51%, 0.52%, 0.53%, 0.54%, 0.55%, 0.56%, 0.57%, 0.58%, 0.59%, 0.6%, 0.61%, 0.62%, 0.63%, 0.64%, 0.65%, 0.66%, 0.67%, 0.68%, 0.69%, 0.7%, 0.71%, 0.72%, 0.73%, 0.74%, 0.75%, 0.76%, 0.77%, 0.78%, 0.79%, 0.8%, 0.81%, 0.82%, 0.83%, 0.84%, 0.85%, 0.86%, 0.87%, 0.88%, 0.89%, 0.9%, 0.91%, 0.92%, 0.93%, 0.94%, 0.95%, 0.96%, 0.97%, 0.98%, 0.99%, 1.0%, 1.01%, 1.02%, 1.03%, 1.04%, 1.05%, 1.06%, 1.07%, 1.08%, 1.09%, 1.1%, 1.11%, 1.12%, 1.13%, 1.14%, 1.15%, 1.16%, 1.17%, 1.18%, 1.19%, 1.2%, 1.21%, 1.22%, 1.23%, 1.24%, 1.25%, 1.26%, 1.27%, 1.28%, 1.29%, 1.3%, 1.31%, 1.32%, 1.33%, 1.34%, 1.35%, 1.36%, 1.37%, 1.38%, 1.39%, 1.4%, 1.41%, 1.42%, 1.43%, 1.44%, 1.45%, 1.46%, 1.47%, 1.48%, 1.49%, or 1.5% Mg. All expressed in wt. %.
In certain aspects, the alloy includes chromium (Cr) in an amount from about 0.001% to about 0.25% (e.g., from 0.001% to 0.15%, from 0.001% to 0.13%, from 0.005% to 0.12%, from 0.02% to 0.04%, from 0.08% to 0.15%, from 0.03% to 0.045%, from 0.01% to 0.06%, from 0.035% to 0.045%, from 0.004% to 0.08%, from 0.06% to 0.13%, from 0.06% to 0.18%, from 0.1% to 0.13%, or from 0.11% to 0.12%) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.011%, 0.012%, 0.013%, 0.014%, 0.015%, 0.02%, 0.025%, 0.03%, 0.035%, 0.04%, 0.045%, 0.05%, 0.055%, 0.06%, 0.065%, 0.07%, 0.075%, 0.08%, 0.085%, 0.09%, 0.095%, 0.1%, 0.105%, 0.11%, 0.115%, 0.12%, 0.125%, 0.13%, 0.135%, 0.14%, 0.145%, 0.15%, 0.155%, 0.16%, 0.165%, 0.17%, 0.175%, 0.18% 0.185%, 0.19%, 0.195%, 0.20%, 0.205%, 0.21%, 0.215%, 0.22%, 0.225%, 0.23%, 0.235%, 0.24%, 0.245%, or 0.25% Cr. All expressed in wt. %.
In certain aspects, the alloy can include manganese (Mn) in an amount from about 0.005% to about 0.4% (e.g., from 0.005% to 0.34%, from 0.25% to 0.35%, about 0.03%, from 0.11% to 0.19%, from 0.08% to 0.12%, from 0.12% to 0.18%, from 0.09% to 0.31%, from 0.005% to 0.05%, and from 0.01 to 0.03%) based on the total weight of the alloy. For example, the alloy can include 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.011%, 0.012%, 0.013%, 0.014%, 0.015%, 0.016%, 0.017%, 0.018%, 0.019%, 0.02%, 0.021%, 0.022%, 0.023%, 0.024%, 0.025%, 0.026%, 0.027%, 0.028%, 0.029%, 0.03%, 0.031%, 0.032%, 0.033%, 0.034%, 0.035%, 0.036%, 0.037%, 0.038%, 0.039%, 0.04%, 0.041%, 0.042%, 0.043%, 0.044%, 0.045%, 0.046%, 0.047%, 0.048%, 0.049%, 0.05%, 0.051%, 0.052%, 0.053%, 0.054%, 0.055%, 0.056%, 0.057%, 0.058%, 0.059%, 0.06%, 0.061%, 0.062%, 0.063%, 0.064%, 0.065%, 0.066%, 0.067%, 0.068%, 0.069%, 0.07%, 0.071%, 0.072%, 0.073%, 0.074%, 0.075%, 0.076%, 0.077%, 0.078%, 0.079%, 0.08%, 0.081%, 0.082%, 0.083%, 0.084%, 0.085%, 0.086%, 0.087%, 0.088%, 0.089%, 0.09%, 0.091%, 0.092%, 0.093%, 0.094%, 0.095%, 0.096%, 0.097%, 0.098%, 0.099%, 0.1%, 0.11%, 0.12%, 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19%, 0.2% 0.21%, 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, 0.3%, 0.31%, 0.32%, 0.33%, 0.34%, 0.35%, 0.36%, 0.37%, 0.38%, 0.39%, or 0.4% Mn. All expressed in wt. %.
In certain aspects, the alloy includes iron (Fe) in an amount from about 0.1% to about 0.3% (e.g., from 0.15% to 0.25%, from 0.14% to 0.26%, from 0.13% to 0.27%, from 0.12% to 0.28%, or from) based on the total weight of the alloy. For example, the alloy can include 0.1%, 0.11% 0.12% 0.13% 0.14% 0.15% 0.16% 0.17% 0.18% 0.19% 0.2% 0.21% 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, or 0.3% Fe. All expressed in wt. %.
In certain aspects, the alloy includes zirconium (Zr) in an amount up to about 0.2% (e.g., from 0% to 0.2%, from 0.01% to 0.2%, from 0.01% to 0.15%, from 0.01% to 0.1%, or from 0.02% to 0.09%) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.11%, 0.12%, 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19%, or 0.2% Zr. In certain cases, Zr is not present in the alloy (i.e., 0%). All expressed in wt. %
In certain aspects, the alloy includes scandium (Sc) in an amount up to about 0.2% (e.g., from 0% to 0.2%, from 0.01% to 0.2%, from 0.05% to 0.15%, or from 0.05% to 0.2%) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.02%, 0.03%, 0.04%, 0.05% 0.06% 0.07% 0.08% 0.09% 0.1% 0.11% 0.12% 0.13% 0.14% 0.15% 0.16%, 0.17%, 0.18%, 0.19%, or 0.2% Sc. In certain cases, Sc is not present in the alloy (i.e., 0%). All expressed in wt. %.
In certain aspects, the alloy includes zinc (Zn) in an amount up to about 4.0% (e.g., from 0.001% to 0.09%, from 0.4% to 3.0%, from 0.03% to 0.3%, from 0% to 1.0%, from 1.0% to 2.5%, or from 0.06% to 0.1%) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.011%, 0.012%, 0.013%, 0.014%, 0.015%, 0.016%, 0.017%, 0.018%, 0.019%, 0.02%, 0.021%, 0.022%, 0.023%, 0.024%, 0.025%, 0.026%, 0.027%, 0.028%, 0.029%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.11%, 0.12%, 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19%, 0.2%, 0.21%, 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, 0.3%, 0.31%, 0.32%, 0.33%, 0.34%, 0.35%, 0.36%, 0.37%, 0.38%, 0.39%, 0.4%, 0.41%, 0.42%, 0.43%, 0.44%, 0.45%, 0.46%, 0.47%, 0.48%, 0.49%, 0.5%, 0.51%, 0.52%, 0.53%, 0.54%, 0.55%, 0.56%, 0.57%, 0.58%, 0.59%, 0.6%, 0.61%, 0.62%, 0.63%, 0.64%, 0.65%, 0.66%, 0.67%, 0.68%, 0.69%, 0.7%, 0.71%, 0.72%, 0.73%, 0.74%, 0.75%, 0.76%, 0.77%, 0.78%, 0.79%, 0.8%, 0.81%, 0.82%, 0.83%, 0.84%, 0.85%, 0.86%, 0.87%, 0.88%, 0.89%, 0.9%, 0.91%, 0.92%, 0.93%, 0.94%, 0.95%, 0.96%, 0.97%, 0.98%, 0.99%, 1.0%, 1.01%, 1.02%, 1.03%, 1.04%, 1.05%, 1.06%, 1.07%, 1.08%, 1.09%, 1.1%, 1.11%, 1.12%, 1.13%, 1.14%, 1.15%, 1.16%, 1.17%, 1.18%, 1.19%, 1.2%, 1.21%, 1.22%, 1.23%, 1.24%, 1.25%, 1.26%, 1.27%, 1.28%, 1.29%, 1.3%, 1.31%, 1.32%, 1.33%, 1.34%, or 1.35%, 1.36%, 1.37%, 1.38%, 1.39%, 1.4%, 1.41%, 1.42%, 1.43%, 1.44%, 1.45%, 1.46%, 1.47%, 1.48%, 1.49%, 1.5%, 1.51%, 1.52%, 1.53%, 1.54%, 1.55%, 1.56%, 1.57%, 1.58%, 1.59%, 1.6%, 1.61%, 1.62%, 1.63%, 1.64%, 1.65%, 1.66%, 1.67%, 1.68%, 1.69%, 1.7%, 1.71%, 1.72%, 1.73%, 1.74%, 1.75%, 1.76%, 1.77%, 1.78%, 1.79%, 1.8%, 1.81%, 1.82%, 1.83%, 1.84%, 1.85%, 1.86%, 1.87%, 1.88%, 1.89%, 1.9%, 1.91%, 1.92%, 1.93%, 1.94%, 1.95%, 1.96%, 1.97%, 1.98%, 1.99%, 2.0%, 2.01%, 2.02%, 2.03%, 2.04%, 2.05%, 2.06%, 2.07%, 2.08%, 2.09%, 2.1%, 2.11%, 2.12%, 2.13%, 2.14%, 2.15%, 2.16%, 2.17%, 2.18%, 2.19%, 2.2%, 2.21%, 2.22%, 2.23%, 2.24%, 2.25%, 2.26%, 2.27%, 2.28%, 2.29%, 2.3%, 2.31%, 2.32%, 2.33%, 2.34%, 2.35%, 2.36%, 2.37%, 2.38%, 2.39%, 2.4%, 2.41%, 2.42%, 2.43%, 2.44%, 2.45%, 2.46%, 2.47%, 2.48%, 2.49%, 2.5%, 2.51%, 2.52%, 2.53%, 2.54%, 2.55%, 2.56%, 2.57%, 2.58%, 2.59%, 2.6%, 2.61%, 2.62%, 2.63%, 2.64%, 2.65%, 2.66%, 2.67%, 2.68%, 2.69%, 2.7%, 2.71%, 2.72%, 2.73%, 2.74%, 2.75%, 2.76%, 2.77%, 2.78%, 2.79%, 2.8%, 2.81%, 2.82%, 2.83%, 2.84%, 2.85%, 2.86%, 2.87%, 2.88%, 2.89%, 2.9%, 2.91%, 2.92%, 2.93%, 2.94%, 2.95%, 2.96%, 2.97%, 2.98%, 2.99%, 3.0%, 3.01%, 3.02%, 3.03%, 3.04%, 3.05%, 3.06%, 3.07%, 3.08%, 3.09%, 3.1%, 3.11%, 3.12%, 3.13%, 3.14%, 3.15%, 3.16%, 3.17%, 3.18%, 3.19%, 3.2%, 3.21%, 3.22%, 3.23%, 3.24%, 3.25%, 3.26%, 3.27%, 3.28%, 3.29%, 3.3%, 3.31%, 3.32%, 3.33%, 3.34%, 3.35%, 3.36%, 3.37%, 3.38%, 3.39%, 3.4%, 3.41%, 3.42%, 3.43%, 3.44%, 3.45%, 3.46%, 3.47%, 3.48%, 3.49%, 3.5%, 3.51%, 3.52%, 3.53%, 3.54%, 3.55%, 3.56%, 3.57%, 3.58%, 3.59%, 3.6%, 3.61%, 3.62%, 3.63%, 3.64%, 3.65%, 3.66%, 3.67%, 3.68%, 3.69%, 3.7%, 3.71%, 3.72%, 3.73 3.74% 3.75% 3.76% 3.77% 3.78% 3.79% 3.8% 3.81%, 3.82% 3.83% 3.84% 3.85%, 3.86%, 3.87%, 3.88%, 3.89%, 3.9%, 3.91%, 3.92%, 3.93%, 3.94%, 3.95%, 3.96%, 3.97%, 3.98%, 3.99%, or 4.0% Zn. In certain cases, Zn is not present in the alloy (i.e., 0%). All expressed in wt. %.
In certain aspects, the alloy includes tin (Sn) in an amount up to about 0.25% (e.g., from 0% to 0.25%, from 0% to 0.2%, from 0% to 0.05%, from 0.01% to 0.15%, or from 0.01% to 0.1%) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.11%, 0.12%, 0.13%, 0.14%, 0.15% 0.16% 0.17% 0.18% 0.19% 0.2% 0.21% 0.22% 0.23% 0.24% or 0.25%.
In certain cases, Sn is not present in the alloy (i.e., 0%). All expressed in wt. %.
In certain aspects, the alloy includes titanium (Ti) in an amount up to about 0.15% (e.g., from 0.01% to 0.1%,) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.011%, 0.012%, 0.013%, 0.014%, 0.015%, 0.016%, 0.017%, 0.018%, 0.019%, 0.02%, 0.021%, 0.022%, 0.023%, 0.024%, 0.025%, 0.026%, 0.027%, 0.028%, 0.029%, 0.03%, 0.031%, 0.032%, 0.033%, 0.034%, 0.035%, 0.036%, 0.037%, 0.038%, 0.039%, 0.04%, 0.05%, 0.051%, 0.052%, 0.053%, 0.054%, 0.055%, 0.056%, 0.057%, 0.058%, 0.059%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.11%, 0.12%, 0.13%, 0.14%, or 0.15% Ti. All expressed in wt. %.
In certain aspects, the alloy includes nickel (Ni) in an amount up to about 0.1% (e.g., from 0.01% to 0.1%,) based on the total weight of the alloy. For example, the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.011%, 0.012%, 0.013%, 0.014%, 0.015%, 0.016%, 0.017%, 0.018%, 0.019%, 0.02%, 0.021%, 0.022%, 0.023%, 0.024%, 0.025%, 0.026%, 0.027%, 0.028%, 0.029%, 0.03%, 0.031%, 0.032%, 0.033%, 0.034%, 0.035%, 0.036%, 0.037%, 0.038%, 0.039%, 0.04%, 0.05%, 0.051%, 0.052%, 0.053%, 0.054%, 0.055%, 0.056%, 0.057%, 0.058%, 0.059%, 0.06%, 0.07%, 0.08%, 0.09%, or 0.1% Ni. In certain aspects, Ni is not present in the alloy (i.e., 0%). All expressed in wt. %.
Optionally, the alloy compositions described herein can further include other minor elements, sometimes referred to as impurities, in amounts of about 0.05% or below, 0.04% or below, 0.03% or below, 0.02% or below, or 0.01% or below each. These impurities may include, but are not limited to, V, Ga, Ca, Hf, Sr, or combinations thereof. Accordingly, V, Ga, Ca, Hf, or Sr may be present in an alloy in amounts of 0.05% or below, 0.04% or below, 0.03% or below, 0.02% or below, or 0.01% or below. In certain examples, the sum of all impurities does not exceed about 0.15% (e.g., 0.1%). All expressed in wt. %. In certain examples, the remaining percentage of the alloy is aluminum.
An exemplary alloy includes 1.03% Si, 0.22% Fe, 0.66% Cu, 0.14% Mn, 1.07% Mg, 0.025% Ti, 0.06% Cr, and up to 0.15% total impurities, with the remainder Al.
Another exemplary alloy includes 1.24% Si, 0.22% Fe, 0.81% Cu, 0.11% Mn, 1.08% Mg, 0.024% Ti, 0.073% Cr, and up to 0.15% total impurities, with the remainder Al.
Another exemplary alloy includes 1.19% Si, 0.16% Fe, 0.66% Cu, 0.17% Mn, 1.16% Mg, 0.02% Ti, 0.03% Cr, and up to 0.15% total impurities, with the remainder Al.
Another exemplary alloy includes 0.97% Si, 0.18% Fe, 0.80% Cu, 0.19% Mn, 1.11% Mg, 0.02% Ti, 0.03% Cr, and up to 0.15% total impurities, with the remainder Al.
Another exemplary alloy includes 1.09% Si, 0.18% Fe, 0.61% Cu, 0.18% Mn, 1.20% Mg, 0.02% Ti, 0.03% Cr, and up to 0.15% total impurities, with the remainder Al.
Another exemplary alloy includes 0.76% Si, 0.22% Fe, 0.91% Cu, 0.32% Mn, 0.94% Mg, 0.12% Ti, 3.09% Zn, and up to 0.15% total impurities, with the remainder Al.
Alloy Properties
In some non-limiting examples, the disclosed alloys have very high formability and bendability in the T4 temper and very high strength and good corrosion resistance in the T6 temper compared to conventional 6XXX series alloys. In certain cases, the alloys also demonstrate very good anodized qualities.
In certain aspects, the aluminum alloy may have an in-service strength (strength on a vehicle) of at least about 340 MPa. In non-limiting examples, the in-service strength is at least about 350 MPa, at least about 360 MPa, at least about 370 MPa, at least about 380 MPa, at least about 390 MPa, at least about 395 MPa, at least about 400 MPa, at least about 410 MPa, at least about 420 MPa, at least about 430 MPa, or at least about 440 MPa, at least about 450 MPa, at least about 460 MPa, at least about 470 MPa, at least about 480 MPa, at least about 490 MPa, at least about 495 MPa, or at least about 500 MPa. In some cases, the in-service strength is from about 340 MPa to about 500 MPa. For example, the in-service strength can be from about 350 MPa to about 495 MPa, from about 375 MPa to about 475 MPa, from about 400 MPa to about 450 MPa, from about 380 MPa to about 390 MPa, or from about 385 MPa to about 395 MPa.
In certain aspects, the alloy encompasses any in-service strength that has sufficient ductility or toughness to meet a R/t bendability of about 1.3 or less in the T4 temper (e.g., 1.0 or less). In certain examples, the R/t bendability is about 1.2 or less, 1.1 or less, 1.0 or less, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, or 0.4 or less, where R is the radius of the tool (die) used and t is the thickness of the material.
In certain aspects, the alloy provides a bendability in thinner gauge alloy sheets showing a bend angle of less than 95° in T4 temper and less than 140° in T6 temper. In some non-limiting examples the bend angle of alloy sheets in T4 temper can be at least 90°, 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15°, 10°, 5°, or 1°. In some non-limiting examples, the bend angle of alloy sheets in T6 temper can be at least 135°, 130°, 125°, 120°, 115°, 110°, 105°, 100°, 95°, 90°, 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15°, 10°, 5°, or 1°.
In certain aspects, the alloy provides a uniform elongation of greater than or equal to 20% and a total elongation of greater than or equal to 25%. In certain aspects, the alloy provides a uniform elongation of greater than or equal to 22% and a total elongation of greater than or equal to 27%.
In certain aspects, the alloy may have a corrosion resistance that provides an intergranular corrosion (IGC) attack depth of 200 μm or less under the ASTM G110 standard. In certain cases, the IGC corrosion attack depth is 190 μm or less, 180 μm or less, 170 μm or less, 160 μm or less, or even 150 μm or less. In some further examples, the alloy may have a corrosion resistance that provides an IGC attack depth of 300 μm or less for thicker gauge shates and 350 μm or less for thinner gauge sheets under the ISO 11846 standard. In certain cases, the IGC corrosion attack depth is 290 μm or less, 280 μm or less, 270 μm or less, 260 μm or less, 250 μm or less, 240 μm or less, 230 μm or less, 220 μm or less, 210 μm or less, 200 μm or less, 190 μm or less, 180 μm or less, 170 μm or less, 160 μm or less, or even 150 μm or less for alloy shates. In certain cases, the IGC corrosion attack depth is 340 μm or less, 330 μm or less, 320 μm or less, 310 μm or less, 300 μm or less, 290 μm or less, 280 μm or less, 270 μm or less, 260 μm or less, 250 μm or less, 240 μm or less, 230 μm or less, 220 μm or less, 210 μm or less, 200 μm or less, 190 μm or less, 180 μm or less, 170 μm or less, 160 μm or less, or even 150 μm or less for alloy sheets.
The mechanical properties of the aluminum alloy may be controlled by various aging conditions depending on the desired use. As one example, the alloy can be produced (or provided) in the T4 temper or the T6 temper or the T8 temper. T4 plates, shates (i.e., sheet plates), or sheets, which refer to plates, shates, or sheets that are solution heat-treated and naturally aged, can be provided. These T4 plates, shates, and sheets can optionally be subjected to additional aging treatment(s) to meet strength requirements upon receipt. For example, plates, shates, and sheets can be delivered in other tempers, such as the T6 temper or the T8 temper, by subjecting the T4 alloy material to the appropriate aging treatment as described herein or otherwise known to those of skill in the art.
Methods of Preparing the Plates and Shates
In certain aspects, the disclosed alloy composition is a product of a disclosed method. Without intending to limit the invention, aluminum alloy properties are partially determined by the formation of microstructures during the alloy's preparation. In certain aspects, the method of preparation for an alloy composition may influence or even determine whether the alloy will have properties adequate for a desired application.
The alloy described herein can be cast using a casting method as known to those of skill in the art. For example, the casting process can include a Direct Chill (DC) casting process. The DC casting process is performed according to standards commonly used in the aluminum industry as known to one of skill in the art. Optionally, the casting process can include a continuous casting (CC) process. The cast product can then be subjected to further processing steps. In one non-limiting example, the processing method includes homogenization, hot rolling, solutionization, and quenching. In some cases, the processing steps further include annealing and/or cold rolling if desired.
Homogenization
The homogenization step can include heating an ingot prepared from an alloy composition described herein to attain a peak metal temperature (PMT) of about, or at least about, 520° C. (e.g., at least 520° C., at least 530° C., at least 540° C., at least 550° C., at least 560° C., at least 570° C., or at least 580° C.). For example, the ingot can be heated to a temperature of from about 520° C. to about 580° C., from about 530° C. to about 575° C., from about 535° C. to about 570° C., from about 540° C. to about 565° C., from about 545° C. to about 560° C., from about 530° C. to about 560° C., or from about 550° C. to about 580° C. In some cases, the heating rate to the PMT can be about 100° C./hour or less, 75° C./hour or less, 50° C./hour or less, 40° C./hour or less, 30° C./hour or less, 25° C./hour or less, 20° C./hour or less, or 15° C./hour or less. In other cases, the heating rate to the PMT can be from about 10° C./min to about 100° C./min (e.g., about 10° C./min to about 90° C./min, about 10° C./min to about 70° C./min, about 10° C./min to about 60° C./min, from about 20° C./min to about 90° C./min, from about 30° C./min to about 80° C./min, from about 40° C./min to about 70° C./min, or from about 50° C./min to about 60° C./min).
The ingot is then allowed to soak (i.e., held at the indicated temperature) for a period of time. According to one non-limiting example, the ingot is allowed to soak for up to about 6 hours (e.g., from about 30 minutes to about 6 hours, inclusively). For example, the ingot can be soaked at a temperature of at least 500° C. for 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, or 6 hours, or anywhere in between.
Hot Rolling
Following the homogenization step, a hot rolling step can be performed. In certain cases, the ingots are laid down and hot-rolled with an entry temperature range of about 500° C.-540° C. The entry temperature can be, for example, about 505° C., 510° C., 515° C., 520° C., 525° C., 530° C., 535° C., or 540° C. In certain cases, the hot roll exit temperature can range from about 250° C.-380° C. (e.g., from about 330° C.-370° C.). For example, the hot roll exit temperature can be about 255° C., 260° C., 265° C., 270° C., 275° C., 280° C., 285° C., 290° C., 295° C., 300° C., 305° C., 310° C., 315° C., 320° C., 325° C., 330° C., 335° C., 340° C., 345° C., 350° C., 355° C., 360° C., 365° C., 370° C., 375° C., or 380° C.
In certain cases, the ingot can be hot rolled to an about 4 mm to about 15 mm thick gauge (e.g., from about 5 mm to about 12 mm thick gauge), which is referred to as a shate. For example, the ingot can be hot rolled to an about 4 mm thick gauge, about 5 mm thick gauge, about 6 mm thick gauge, about 7 mm thick gauge, about 8 mm thick gauge, about 9 mm thick gauge, about 10 mm thick gauge, about 11 mm thick gauge, about 12 mm thick gauge, about 13 mm thick gauge, about 14 mm thick gauge, or about 15 mm thick gauge. In certain cases, the ingot can be hot rolled to a gauge greater than 15 mm thick (i.e., a plate). In other cases, the ingot can be hot rolled to a gauge less than 4 mm (i.e., a sheet). The temper of the as-rolled plates, shates and sheets is referred to as F-temper.
Optional Processing Steps: Annealing Step and Cold Rolling Step
In certain aspects, the alloy undergoes further processing steps after the hot rolling step and before any subsequent steps (e.g., before a solutionizing step). Further process steps may include an annealing procedure and a cold rolling step.
The annealing step can result in an alloy with improved texture (e.g., an improved T4 alloy) with reduced anisotropy during forming operations, such as stamping, drawing, or bending. By applying the annealing step, the texture in the modified temper is controlled/engineered to be more random and to reduce those texture components (TCs) that can yield strong formability anisotropy (e.g., Goss, Goss-ND, or Cube-RD). This improved texture can potentially reduce the bending anisotropy and can improve the formability in the forming where a drawing or circumferential stamping process is involved, as it acts to reduce the variability in properties at different directions.
The annealing step can include heating the alloy from room temperature to a temperature from about 400° C. to about 500° C. (e.g., from about 405° C. to about 495° C., from about 410° C. to about 490° C., from about 415° C. to about 485° C., from about 420° C. to about 480° C., from about 425° C. to about 475° C., from about 430° C. to about 470° C., from about 435° C. to about 465° C., from about 440° C. to about 460° C., from about 445° C. to about 455° C., from about 450° C. to about 460° C., from about 400° C. to about 450° C., from about 425° C. to about 475° C., or from about 450° C. to about 500° C.).
The plate or shate can soak at the temperature for a period of time. In one non-limiting example, the plate or shate is allowed to soak for up to approximately 2 hours (e.g., from about 15 to about 120 minutes, inclusively). For example, the plate or shate can be soaked at the temperature of from about 400° C. to about 500° C. for 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 60 minutes, 65 minutes, 70 minutes, 75 minutes, 80 minutes, 85 minutes, 90 minutes, 95 minutes, 100 minutes, 105 minutes, 110 minutes, 115 minutes, or 120 minutes, or anywhere in between.
In certain aspects, the alloy does not undergo an annealing step.
A cold rolling step can optionally be applied to the alloy before the solutionizing step. In certain aspects, the rolled product from the hot rolling step (e.g., the plate or shate) can be cold rolled to a thin gauge shate (e.g., about 4.0 to 4.5 mm). In certain aspects, the rolled product is cold rolled to about 4.0, about 4.1 mm, about 4.2 mm, about 4.3 mm, about 4.4 mm, or about 4.5 mm.
Solutionizing
The solutionizing step can include heating the plate or shate from room temperature to a temperature of from about 520° C. to about 590° C. (e.g., from about 520° C. to about 580° C., from about 530° C. to about 570° C., from about 545° C. to about 575° C., from about 550° C. to about 570° C., from about 555° C. to about 565° C., from about 540° C. to about 560° C., from about 560° C. to about 580° C., or from about 550° C. to about 575° C.). The plate or shate can soak at the temperature for a period of time. In certain aspects, the plate or shate is allowed to soak for up to approximately 2 hours (e.g., from about 10 seconds to about 120 minutes inclusively). For example, the plate or shate can be soaked at the temperature of from about 525° C. to about 590° C. for 20 seconds, 25 seconds, 30 seconds, 35 seconds, 40 seconds, 45 seconds, 50 seconds, 55 seconds, 60 seconds, 65 seconds, 70 seconds, 75 seconds, 80 seconds, 85 seconds, 90 seconds, 95 seconds, 100 seconds, 105 seconds, 110 seconds, 115 seconds, 120 seconds, 125 seconds, 130 seconds, 135 seconds, 140 seconds, 145 seconds, or 150 seconds, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 60 minutes, 65 minutes, 70 minutes, 75 minutes, 80 minutes, 85 minutes, 90 minutes, 95 minutes, 100 minutes, 105 minutes, 110 minutes, 115 minutes, or 120 minutes, or anywhere in between.
In certain aspects, the heat treatment is performed immediately after the hot or cold rolling step. In certain aspects, the heat treatment is performed after an annealing step.
Quenching
In certain aspects, the plate or shate can then be cooled to a temperature of about 25° C. at a quench speed that can vary between about 50° C./s to 400° C./s in a quenching step that is based on the selected gauge. For example, the quench rate can be from about 50° C./s to about 375° C./s, from about 60° C./s to about 375° C./s, from about 70° C./s to about 350° C./s, from about 80° C./s to about 325° C./s, from about 90° C./s to about 300° C./s, from about 100° C./s to about 275° C./s, from about 125° C./s to about 250° C./s, from about 150° C./s to about 225° C./s, or from about 175° C./s to about 200° C./s.
In the quenching step, the plate or shate is rapidly quenched with a liquid (e.g., water) and/or gas or another selected quench medium. In certain aspects, the plate or shate can be rapidly quenched with water. In certain aspects, the plate or shate is quenched with air.
Aging
The plate or shate can be naturally aged for a period of time to result in the T4 temper. In certain aspects, the plate or shate in the T4 temper can be artificially aged (AA) at about 180° C. to 225° C. (e.g., 185° C., 190° C., 195° C., 200° C., 205° C., 210° C., 215° C., 220° C., or 225° C.) for a period of time. Optionally, the plate or shate can be artificially aged for a period from about 15 minutes to about 8 hours (e.g., 15 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, or 8 hours or anywhere in between) to result in the T6 temper.
Coil Production
In certain aspects, the annealing step during production can also be applied to produce the plate or shate material in a coil form for improved productivity or formability. For example, an alloy in coil form can be supplied in the 0 temper, using a hot or cold rolling step and an annealing step following the hot or cold rolling step. Forming may occur in 0 temper, which is followed by solution heat treatment, quenching and artificial aging/paint baking.
In certain aspects, to produce a plate or shate in coil form and with high formability compared to F temper, an annealing step as described herein can be applied to the coil. Without intending to limit the invention, the purpose for the annealing and the annealing parameters may include (1) releasing the work-hardening in the material to gain formability; (2) recrystallizing or recovering the material without causing significant grain growth; (3) engineering or converting texture to be appropriate for forming and for reducing anisotropy during formability; and (4) avoiding the coarsening of pre-existing precipitation particles.
Methods of Preparing the Sheets
In certain aspects, the disclosed alloy composition is a product of a disclosed method. Without intending to limit the invention, aluminum alloy properties are partially determined by the formation of microstructures during the alloy's preparation. In certain aspects, the method of preparation for an alloy composition may influence or even determine whether the alloy will have properties adequate for a desired application.
The alloy described herein can be cast using a casting method as known to those of skill in the art. For example, the casting process can include a Direct Chill (DC) casting process. The DC casting process is performed according to standards commonly used in the aluminum industry as known to one of skill in the art. Optionally, the casting process can include a continuous casting (CC) process. The cast product can then be subjected to further processing steps. In one non-limiting example, the processing method includes homogenization, hot rolling, cold rolling, solution heat treatment, and quenching.
Homogenization
The homogenization step can involve a one-step homogenization or a two-step homogenization. In one example of the homogenization step, a one-step homogenization is performed where an ingot prepared from an alloy composition described herein is heated to attain a PMT of about, or at least about, 520° C. (e.g., at least 520° C., at least 530° C., at least 540° C., at least 550° C., at least 560° C., at least 570° C., or at least 580° C.). For example, the ingot can be heated to a temperature of from about 520° C. to about 580° C., from about 530° C. to about 575° C., from about 535° C. to about 570° C., from about 540° C. to about 565° C., from about 545° C. to about 560° C., from about 530° C. to about 560° C., or from about 550° C. to about 580° C. In some cases, the heating rate to the PMT can be about 100° C./hour or less, 75° C./hour or less, 50° C./hour or less, 40° C./hour or less, 30° C./hour or less, 25° C./hour or less, 20° C./hour or less, 15° C./hour or less, or 10° C./hour or less. In other cases, the heating rate to the PMT can be from about 10° C./min to about 100° C./min (e.g., about 10° C./min to about 90° C./min, about 10° C./min to about 70° C./min, about 10° C./min to about 60° C./min, from about 20° C./min to about 90° C./min, from about 30° C./min to about 80° C./min, from about 40° C./min to about 70° C./min, or from about 50° C./min to about 60° C./min).
The ingot is then allowed to soak (i.e., held at the indicated temperature) for a period of time. According to one non-limiting example, the ingot is allowed to soak for up to about 8 hours (e.g., from about 30 minutes to about 8 hours, inclusively). For example, the ingot can be soaked at a temperature of at least 500° C. for 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, or anywhere in between.
In another example of the homogenization step, a two-step homogenization is performed where an ingot prepared from an alloy composition described herein is heated to attain a first temperature of about, or at least about, 480° C. to about 520° C. For example, the ingot can be heated to a first temperature of about 480° C., 490° C., 500° C., 510° C., or 520° C. In certain aspects, the heating rate to the first temperature can be from about 10° C./min to about 100° C./min (e.g., about 10° C./min to about 90° C./min, about 10° C./min to about 70° C./min, about 10° C./min to about 60° C./min, from about 20° C./min to about 90° C./min, from about 30° C./min to about 80° C./min, from about 40° C./min to about 70° C./min, or from about 50° C./min to about 60° C./min). In other aspects, the heating rate to the first temperature can be from about 10° C./hour to about 100° C./hour (e.g., about 10° C./hour to about 90° C./hour, about 10° C./hour to about 70° C./hour, about 10° C./hour to about 60° C./hour, from about 20° C./hour to about 90° C./hour, from about 30° C./hour to about 80° C./hour, from about 40° C./hour to about 70° C./hour, or from about 50° C./hour to about 60° C./hour).
The ingot is then allowed to soak for a period of time. In certain cases, the ingot is allowed to soak for up to about 6 hours (e.g., from 30 minutes to 6 hours, inclusively). For example, the ingot can be soaked at a temperature of from about 480° C. to about 520° C. for 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, or 6 hours, or anywhere in between.
In the second step of the two-step homogenization process, the ingot can be further heated from the first temperature to a second temperature of greater than about 520° C. (e.g., greater than 520° C., greater than 530° C., greater than 540° C., greater than 550° C., greater than 560° C., greater than 570° C., or greater than 580° C.). For example, the ingot can be heated to a second temperature of from about 520° C. to about 580° C., from about 530° C. to about 575° C., from about 535° C. to about 570° C., from about 540° C. to about 565° C., from about 545° C. to about 560° C., from about 530° C. to about 560° C., or from about 550° C. to about 580° C. The heating rate to the second temperature can be from about 10° C./min to about 100° C./min (e.g., from about 20° C./min to about 90° C./min, from about 30° C./min to about 80° C./min, from about 10° C./min to about 90° C./min, about 10° C./min to about 70° C./min, about 10° C./min to about 60° C./min, 40° C./min to about 70° C./min, or from about 50° C./min to about 60° C./min).
In other aspects, the heating rate to the second temperature can be from about 10° C./hour to about 100° C./hour (e.g., about 10° C./hour to about 90° C./hour, about 10° C./hour to about 70° C./hour, about 10° C./hour to about 60° C./hour, from about 20° C./hour to about 90° C./hour, from about 30° C./hour to about 80° C./hour, from about 40° C./hour to about 70° C./hour, or from about 50° C./hour to about 60° C./hour).
The ingot is then allowed to soak for a period of time. In certain cases, the ingot is allowed to soak for up to about 6 hours (e.g., from 30 minutes to 6 hours, inclusively). For example, the ingot can be soaked at a temperature of from about 520° C. to about 580° C. for 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, or 6 hours, or anywhere in between.
Hot Rolling
Following the homogenization step, a hot rolling step can be performed. In certain cases, the ingots are laid down and hot-rolled with an entry temperature range of about 500° C.-540° C. For example, the entry temperature can be, for example, about 505° C., 510° C., 515° C., 520° C., 525° C., 530° C., 535° C., or 540° C. In certain cases, the hot roll exit temperature can range from about 250° C. to about 380° C. (e.g., from about 330° C. to about 370° C.). For example, the hot roll exit temperature can be about 255° C., 260° C., 265° C., 270° C., 275° C., 280° C., 285° C., 290° C., 295° C., 300° C., 305° C., 310° C., 315° C., 320° C., 325° C., 330° C., 335° C., 340° C., 345° C., 350° C., 355° C., 360° C., 365° C., 370° C., 375° C., or 380° C.
In certain cases, the ingot can be hot rolled to an about 4 mm to about 15 mm thick gauge (e.g., from about 5 mm to about 12 mm thick gauge), which is referred to as a shate. For example, the ingot can be hot rolled to an about 4 mm thick gauge, about 5 mm thick gauge, about 6 mm thick gauge, about 7 mm thick gauge, about 8 mm thick gauge, about 9 mm thick gauge, about 10 mm thick gauge, about 11 mm thick gauge, about 12 mm thick gauge, about 13 mm thick gauge, about 14 mm thick gauge, or about 15 mm thick gauge. In certain cases, the ingot can be hot rolled to a gauge greater than 15 mm thick (i.e., a plate). In other cases, the ingot can be hot rolled to a gauge less than 4 mm (i.e., a sheet).
Cold Rolling Step
A cold rolling step can be performed following the hot rolling step. In certain aspects, the rolled product from the hot rolling step can be cold rolled to a sheet (e.g., below approximately 4.0 mm). In certain aspects, the rolled product is cold rolled to a thickness of about 0.4 mm to 1.0 mm, 1.0 mm to 3.0 mm, or 3.0 mm to less than 4.0 mm. In certain aspects, the alloy is cold rolled to about 3.5 mm or less, 3 mm or less, 2.5 mm or less, 2 mm or less, 1.5 mm or less, 1 mm or less, or 0.5 mm or less. For example, the rolled product can be cold rolled to about 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm, 1.1 mm, 1.2 mm, 1.3 mm, 1.4 mm, 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2.0 mm, 2.1 mm, 2.2 mm, 2.3 mm, 2.4 mm, 2.5 mm, 2.6 mm, 2.7 mm, 2.8 mm, 2.9 mm, or 3.0 mm.
Solution Heat Treatment
The solution heat treatment (SHT) step can include heating the sheet from room temperature to a temperature of from about 520° C. to about 590° C. (e.g., from about 520° C. to about 580° C., from about 530° C. to about 570° C., from about 545° C. to about 575° C., from about 550° C. to about 570° C., from about 555° C. to about 565° C., from about 540° C. to about 560° C., from about 560° C. to about 580° C., or from about 550° C. to about 575° C.). The sheet can soak at the temperature for a period of time. In certain aspects, the sheet is allowed to soak for up to approximately 2 hours (e.g., from about 10 seconds to about 120 minutes inclusively). For example, the sheet can be soaked at the temperature of from about 525° C. to about 590° C. for 20 seconds, 25 seconds, 30 seconds, 35 seconds, 40 seconds, 45 seconds, 50 seconds, 55 seconds, 60 seconds, 65 seconds, 70 seconds, 75 seconds, 80 seconds, 85 seconds, 90 seconds, 95 seconds, 100 seconds, 105 seconds, 110 seconds, 115 seconds, 120 seconds, 125 seconds, 130 seconds, 135 seconds, 140 seconds, 145 seconds, or 150 seconds, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 60 minutes, 65 minutes, 70 minutes, 75 minutes, 80 minutes, 85 minutes, 90 minutes, 95 minutes, 100 minutes, 105 minutes, 110 minutes, 115 minutes, or 120 minutes, or anywhere in between.
Quenching
In certain aspects, the sheet can then be cooled to a temperature of about 25° C. at a quench speed that can vary between about 200° C./s to 400° C./s in a quenching step that is based on the selected gauge. For example, the quench rate can be from about 225° C./s to about 375° C./s, from about 250° C./s to about 350° C./s, or from about 275° C./s to about 325° C./s.
In the quenching step, the sheet is rapidly quenched with a liquid (e.g., water) and/or gas or another selected quench medium. In certain aspects, the sheet can be rapidly quenched with water. In certain aspects, the sheet is quenched with air.
Aging
In certain aspects, the sheet can optionally be pre-aged at about 80° C. to about 120° C. (e.g., about 80° C., about 85° C., about 90° C., about 95° C., about 100° C., about 105° C., about 110° C., about 115° C., or about 120° C.) for a period of time. Optionally, the sheet can be pre-aged for a period from 30 minutes to about 12 hours (e.g., 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, or 12 hours), or anywhere in between.
The sheet can be naturally aged for a period of time to result in the T4 temper. In certain aspects, the sheet in the T4 temper can be artificially aged at about 180° C. to about 225° C. (e.g., 185° C., 190° C., 195° C., 200° C., 205° C., 210° C., 215° C., 220° C., or 225° C.) for a period of time. Optionally, the sheet can be artificially aged for a period from about 15 minutes to about 8 hours (e.g., 15 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, or 8 hours or anywhere in between) to result in the T6 temper. Optionally, the sheet can be artificially aged for a period from about 10 minutes to about 2 hours (e.g., 15 minutes, 20 minutes, 30 minutes, 45 minutes, 1 hour, 1.5 hours, 2 hours or anywhere in between) to result in the T8 temper.
Methods of Using
The alloys and methods described herein can be used in automotive, electronics, and transportation applications, such as commercial vehicle, aircraft, or railway applications. For example, the alloys could be used for chassis, cross-member, and intra-chassis components (encompassing, but not limited to, all components between the two C channels in a commercial vehicle chassis) to gain strength, serving as a full or partial replacement of high-strength steels. In certain examples, the alloys can be used in F, T4, T6x, or T8x tempers. In certain aspects, the alloys are used with a stiffener to provide additional strength. In certain aspects, the alloys are useful in applications where the processing and operating temperature is approximately 150° C. or lower.
In certain aspects, the alloys and methods can be used to prepare motor vehicle body part products. For example, the disclosed alloys and methods can be used to prepare automobile body parts, such as bumpers, side beams, roof beams, cross beams, pillar reinforcements (e.g., A-pillars, B-pillars, and C-pillars), inner panels, side panels, floor panels, tunnels, structure panels, reinforcement panels, inner hoods, or trunk lid panels. The disclosed aluminum alloys and methods can also be used in aircraft or railway vehicle applications, to prepare, for example, external and internal panels. In certain aspects, the disclosed alloys can be used for other specialties applications, such as automotive battery plates/shates.
In certain aspects, the products created from the alloys and methods can be coated. For example, the disclosed products can be Zn-phosphated and electrocoated (E-coated). As part of the coating procedure, the coated samples can be baked to dry the E-coat at about 180° C. for about 20 minutes. In certain aspects, a paint bake response is observed wherein the alloys exhibit an increase in yield strength. In certain examples, the paint bake response is affected by the quenching methods during plate, shate or sheet forming.
The described alloys and methods can also be used to prepare housings for electronic devices, including mobile phones and tablet computers. For example, the alloys can be used to prepare housings for the outer casing of mobile phones (e.g., smart phones) and tablet bottom chassis, with or without anodizing. Exemplary consumer electronic products include mobile phones, audio devices, video devices, cameras, laptop computers, desktop computers, tablet computers, televisions, displays, household appliances, video playback and recording devices, and the like. Exemplary consumer electronic product parts include outer housings (e.g., facades) and inner pieces for the consumer electronic products.
The following examples will serve to further illustrate the present invention without, however, constituting any limitation thereof. On the contrary, it is to be clearly understood that resort may be had to various embodiments, modifications and equivalents thereof which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the invention. During the studies described in the following examples, conventional procedures were followed, unless otherwise stated. Some of the procedures are described below for illustrative purposes.
A set of four exemplary aluminum alloys were prepared: TB1, TB2, TB3, and TB4 (Table 16).
The alloys were prepared by DC casting the components into ingots and homogenizing the ingots at 520° C. to 580° C. for 1-5 hours. The homogenized ingots were then laid down and hot rolled with an entry temperature range of 500° C. to 540° C. and a hot roll exit temperature range of from 250° C. to 380° C. A solution heat treatment step was then performed at 540° C. to 580° C. for 15 minutes to 2 hours, followed by a room temperature quench using water and natural aging to achieve the T4 temper. The T6 temper was achieved by aging the T4 alloys at 180° C. to 225° C. for 15 minutes to 8 hours.
The properties of the TB1-TB4 alloys were determined using testing procedures conventional in the art and compared to the control alloys AA6061, AA6013, and AA6111 (Table 17).
In comparison with current commercial high strength 6XXX alloys, for example AA6061, AA6111 and AA6013, these examples of the inventive alloy demonstrate significant improvements in uniform elongation (UE) and bendability in T4 (
This example compares the properties of an annealed TB1 alloy in T4 condition over a control TB1 alloy produced by a similar process without an annealing step.
The composition of the TB1 alloy is as discussed above in Table 16. Similar to Example 1, initial processing for both samples included regular DC casting; homogenization with a heat-up rate of 10-100°/C and soaking at a peak metal temperature of 520-580° C. for 1-5 hours; and hot rolling with an entry temperature range of 500-540° C. and a hot roll exit temperature range of 250-380° C. The as-rolled plate/shates were marked as being in F temper.
For the control alloy, the F temper plate/shates were then converted to T4 temper by solutionization at 540-580° C. for 15 min to 2 hours soaking time, followed by a water quench and natural aging. The control was converted directly from F temper to T4 temper without an intervening annealing step.
For the annealed alloy, the F temper plates/shates were annealed at a temperature range of 400-500° C. and a soaking time of 30-120 min. The resulting as-annealed, 0 temper plates/shates were then converted to T4 temper by solutionization at 540-580° C. for 15 min to 2 hours soaking time, followed by a water quench and natural aging.
The alloy samples were further aged at 180° C.-225° C. for 15 min to 8 hours. Investigation of the tensile properties of the alloys indicated that annealing had not adversely affected the final T6 strength (
A set of three exemplary aluminum alloys were prepared: P7, P8, and P14 (Table 18).
The alloys were prepared according to the procedure of Example 1, with the exception that the solution heat treatment soaking step was performed for a shorter period (either 45 or 120 seconds).
The maximum elongation (in T4 condition) and yield strengths (in T6 condition) of the P7, P8, and P14 alloys were determined using testing procedures conventional in the art (
In comparison with current commercial high strength 6xxx alloys, such as AA6061, AA6111 and AA6013 (see Example 1), the P7, P8, and P14 alloys demonstrate significant improvements in yield strength and corrosion resistance in T6 and uniform elongation. Such improvement is resulted by a combination of well-designed chemical composition and thermomechanical processing.
An additional set of aluminum alloys were prepared (Table 19).
The alloys were prepared according to the procedure of Example 1. The properties of four of the alloys—SL1, SL2, SL3, and SL4—were tested extensively by standard procedures according to EN 10002-1 to establish their yield strength (
To normalize the angle at 2.0 mm, the following formula was used:
αnorm=αmeasure×√{square root over (tmeasure)}/√{square root over (tnorm)}
where αmeasure is the outer bend angle, alpha, tmeasure is the thickness of the sample, tnorm is the normalized thickness, and αnorm is the resulting normalized angle (
Quasi-static crush tests demonstrated good crushability for alloy SL3 in a T6 temper condition (aged at 180° C. for 10 h) with a Rp02 of 330 MPa and very high Rm of 403 MPa. T6 temper was chosen to test the worst case scenario for parts in a body in white stage or a motor carrier operating in an elevated temperature environment. Providing an adequate outer bending angle (alpha about 68°) and a high UTS of more than 400 MPa, Alloy SL3 is suitable for automotive structural applications including a B-pillar, an A-pillar, a C-pillar or a floor panel. The high UTS (Rm>400 MPa) is due to the Cu level of 1.7 wt. %. Typically, at least 1.5 wt. % is necessary for good crushability.
Lateral crash tests demonstrated very good bendability for alloy SL3 in a T6 temper condition (aged at 180° C. for 10 hours) with a Rp02 of 330 MPa and very high Rm of 403 MPa. As demonstrated by the quasi-static crush test and substantiated by the lateral crash test, Alloy SL3 is suitable for automotive structural applications.
The effects of different quenching conditions on yield strength and bendability were tested for alloy composition SL2 prepared at 550° C. PMT (
An additional set of aluminum alloys was prepared (Table 20).
The alloys were prepared according to Example 1, except that the casting was performed using book molds. The yield strengths of the alloys S164, S165, S166, S167, S168, and S169 after different heat treatments were tested using standard conditions as in Example 4 (
The hardness of the different alloys were also tested at their fully aged T6 conditions at after three heat treatments (SHT1, SHT2, and SHT3 of
An additional set of aluminum alloys was prepared (Table 21).
The alloys were prepared by DC casting the components into ingots and the casting was performed using book molds. The ingots were homogenized at 520° C. to 580° C. for 1-15 hours. The homogenized ingots were then laid down and hot rolled with an entry temperature range of 500° C. to 540° C. and a hot roll exit temperature range of from 250° C. to 380° C. A solution heat treatment step was then performed at 540° C. to 580° C. for 15 minutes to 2 hours, followed by a room temperature quench using water and natural aging to achieve the T4 temper. The T6 temper was achieved by aging the T4 alloys at 180° C. to 225° C. for 15 minutes to 12 hours. The T8 temper was achieved by aging the T6 alloys at 180° C. to 215° C. for 10 minutes to 2 hours.
Tensile strength of the exemplary alloys is shown in
Bending results of the exemplary alloys are shown in
Paint bake results of the exemplary alloys are shown in
Elongation of the exemplary alloys is shown in
A set of ten exemplary alloys was prepared: TB7, TB8, PF5, TB13, TB14, PF4, TB15, TB16, PF11, PF12 and TB5 (Table 22):
The alloys were prepared by DC casting the components into ingots and homogenizing the ingots at 520° C. to 580° C. for 1-5 hours. The homogenized ingots were then laid down and hot rolled with an entry temperature range of 500° C. to 540° C. and a hot roll exit temperature range of from 250° C. to 380° C. A solution heat treatment step was then performed at 540° C. to 580° C. for 15 minutes to 2 hours, followed by a room temperature quench using water and natural aging to achieve the T4 temper. The T6 temper was achieved by aging the T4 alloys at 150° C. to 250° C. for 15 minutes to 24 hours.
The properties of the TB7, TB8, PF5, TB13, TB14, PF4, TB15, TB16, PF11 and PF12 alloys were determined using testing procedures conventional in the art and compared to the control alloys PF13 and TB5 (Table 23). Corrosion tests were performed according to the ISO 11846 standard.
Overall, the exemplary alloys demonstrated improved yield strength and corrosion resistance when compared to the comparative PF13 and TB5 alloys.
A set of three exemplary alloys was prepared: PF1, PF2 and PF6 (Table 24).
The alloys were prepared by DC casting the components into ingots and homogenizing the ingots at 520° C. to 580° C. for 1-5 hours. The homogenized ingots were then laid down and hot rolled with an entry temperature range of 500° C. to 540° C. and a hot roll exit temperature range of from 250° C. to 380° C. A solution heat treatment step was then performed at 540° C. to 580° C. for 15 minutes to 2 hours, followed by a room temperature quench using water and natural aging to achieve the T4 temper. The T6 temper was achieved by aging the T4 alloys at 150° C. to 250° C. for 15 minutes to 24 hours. The properties of the PF1, PF2, and PF6 alloys were determined using testing procedures conventional in the art. Corrosion tests were performed according to the ISO 11846 standard.
All patents, publications and abstracts cited above are incorporated herein by reference in their entireties. Various embodiments of the invention have been described in fulfillment of the various objectives of the invention. It should be recognized that these embodiments are merely illustrative of the principles of the present invention. Numerous modifications and adaptions thereof will be readily apparent to those skilled in the art without departing from the spirit and scope of the present invention as defined in the following claims.
The present application claims the benefit of U.S. Provisional Patent Application No. 62/269,385 filed Dec. 18, 2015, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4580032 | Carkhuff | Apr 1986 | A |
4589932 | Park | May 1986 | A |
4637842 | Jeffrey et al. | Jan 1987 | A |
5620652 | Tack | Apr 1997 | A |
5662750 | Shen et al. | Sep 1997 | A |
6004506 | Chu et al. | Dec 1999 | A |
6120623 | Gupta et al. | Sep 2000 | A |
6231809 | Matsumoto et al. | May 2001 | B1 |
6280543 | Zonker et al. | Aug 2001 | B1 |
6537392 | Magnusen et al. | Mar 2003 | B2 |
6695935 | Haszler | Feb 2004 | B1 |
8728256 | Che | May 2014 | B2 |
8758529 | Wang | Jun 2014 | B2 |
9217622 | Mooy | Dec 2015 | B2 |
9828652 | Kamat | Nov 2017 | B2 |
9834828 | Doty | Dec 2017 | B2 |
9870841 | Yoshida | Jan 2018 | B2 |
9890443 | Lin et al. | Feb 2018 | B2 |
10096394 | Sekiya | Oct 2018 | B2 |
20020017344 | Gupta et al. | Feb 2002 | A1 |
20030143102 | Matsuoka et al. | Jul 2003 | A1 |
20040094249 | Uchida et al. | May 2004 | A1 |
20040177902 | Mergen et al. | Sep 2004 | A1 |
20040187985 | Matsumoto et al. | Sep 2004 | A1 |
20080145266 | Chen et al. | Jun 2008 | A1 |
20080175747 | Kajihara et al. | Jul 2008 | A1 |
20090242088 | Takaki et al. | Oct 2009 | A1 |
20100059151 | Iwamura et al. | Mar 2010 | A1 |
20110250469 | De Smet et al. | Oct 2011 | A1 |
20120055590 | Kamat et al. | Mar 2012 | A1 |
20120055591 | Kamat et al. | Mar 2012 | A1 |
20130334091 | Sawtell et al. | Dec 2013 | A1 |
20140003993 | Matsumoto et al. | Jan 2014 | A1 |
20140248177 | Kamat et al. | Sep 2014 | A1 |
20140290809 | Hori et al. | Oct 2014 | A1 |
20140366997 | Kamat et al. | Dec 2014 | A1 |
20140366998 | Kamat et al. | Dec 2014 | A1 |
20140366999 | Kamat et al. | Dec 2014 | A1 |
20150007909 | Matsumoto et al. | Jan 2015 | A1 |
20150050520 | Niikura et al. | Feb 2015 | A1 |
20150316210 | Nakai et al. | Nov 2015 | A1 |
20150354044 | Shishido et al. | Dec 2015 | A1 |
20150376741 | Kobayashi | Dec 2015 | A1 |
20170175239 | Ahmed et al. | Jun 2017 | A1 |
20180044755 | Kamat | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
1170118 | Jan 2002 | EP |
1195449 | Apr 2002 | EP |
2055473 | May 2009 | EP |
2075348 | Jul 2009 | EP |
2922222 | Apr 2009 | FR |
650905 | Mar 1951 | GB |
H0543974 | Feb 1993 | JP |
05112840 | May 1993 | JP |
H06136478 | May 1994 | JP |
H06240424 | Aug 1994 | JP |
2005240113 | Oct 1995 | JP |
09209068 | Aug 1997 | JP |
10130768 | Aug 1997 | JP |
2000129382 | May 2000 | JP |
2000160310 | Jun 2000 | JP |
2005042187 | Feb 2005 | JP |
2006009140 | Jan 2006 | JP |
2007009262 | Jan 2007 | JP |
2008045192 | Feb 2008 | JP |
2013542320 | Nov 2013 | JP |
2015034330 | Feb 2015 | JP |
2015528856 | Oct 2015 | JP |
20130103423 | Sep 2013 | KR |
2218437 | Dec 2003 | RU |
2221891 | Jan 2004 | RU |
71175 | Feb 2008 | RU |
2326181 | Jun 2008 | RU |
2327758 | Jun 2008 | RU |
2394113 | Jul 2010 | RU |
2537052 | Dec 2014 | RU |
9527091 | Oct 1995 | WO |
9801591 | Jan 1998 | WO |
9859086 | Dec 1998 | WO |
0003052 | Jan 2000 | WO |
0015859 | Mar 2000 | WO |
0070115 | Nov 2000 | WO |
0192591 | Dec 2001 | WO |
02099151 | Dec 2002 | WO |
2004001086 | Dec 2003 | WO |
2005049878 | Jun 2005 | WO |
2005100623 | Oct 2005 | WO |
2008123355 | Oct 2008 | WO |
2008152919 | Dec 2008 | WO |
2009059826 | May 2009 | WO |
2009093559 | Jul 2009 | WO |
2009119724 | Oct 2009 | WO |
2009123011 | Oct 2009 | WO |
2010029572 | Mar 2010 | WO |
2010119070 | Oct 2010 | WO |
2012033954 | Mar 2012 | WO |
2012070803 | May 2012 | WO |
2012169317 | Dec 2012 | WO |
2013118734 | Aug 2013 | WO |
2013133978 | Sep 2013 | WO |
2014046010 | Mar 2014 | WO |
2014126073 | Aug 2014 | WO |
2014168147 | Oct 2014 | WO |
2015030598 | Mar 2015 | WO |
2015034024 | Mar 2015 | WO |
2015098484 | Jul 2015 | WO |
2015109893 | Jul 2015 | WO |
2015127805 | Sep 2015 | WO |
2015133004 | Sep 2015 | WO |
2015144302 | Oct 2015 | WO |
2015146654 | Oct 2015 | WO |
2015151886 | Oct 2015 | WO |
2015151907 | Oct 2015 | WO |
Entry |
---|
Canadian Application No. 2,981,329 , “Office Action”, dated Oct. 3, 2018, 4 pages. |
International Application No. PCT/US2016/067194 , “International Preliminary Report on Patentability”, dated Jun. 28, 2018, 9 pages. |
Niranjani, V. L., et al., “Development of high strength Al—Mg—Si AA6061 alloy through cold rolling and ageing,” Materials Science and Engineering A, 2009, pp. 169-174, vol. 515, Elsevier. |
“International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys,” Registration Record Series: Teal Sheets, Feb. 1, 2009, The Aluminum Association, Inc., 35 pages. |
International Patent Application No. PCT/US2016/067194, Invitation to Pay Additional Fees and Partial International Search Report dated May 9, 2017, 11 pages. |
International Patent Application No. PCT/US2016/067194, International Search Report and Written Opinion dated Jul. 3, 2017, 13 pages. |
Korean Application No. 10-2017-7030132 , “Office Action”, dated Jan. 22, 2019, 23 pages. |
Australian Application No. 2016369535 , “First Examination Report”, dated Mar. 21, 2019, 3 pages. |
Korean Application No. 10-2017-7030132 , “Office Action”, dated Apr. 4, 2019, 6 pages. |
Russian Application No. 2018121947 , “Office Action”, dated Apr. 24, 2019, 7 pages. |
Daiming , “Metal Material Science”, Southwest Jiaotong University Press, Jun. 30, 2014, 5 pages. |
European Application No. 16840352.5 , “Office Action”, dated Aug. 7, 2019, 9 pages. |
Jiarong , “Q&A on Production Technology of Aluminum Alloy Casting”, Metallurgical Industry Press, Jan. 31, 2008, 6 pages. |
Korean Application No. 10-2017-7030132 , “Office Action”, dated Aug. 20, 2019, 6 pages. |
Korean Application No. 10-2019-7015995 , “Office Action”, dated Aug. 20, 2019, 6 pages. |
Wang et al., “Improving the Strength and Ductility of Al—Mg—Si—Cu Alloys by a Novel Thermo-Mechanical Treatment”, Materials Science and Engineering: A, vol. 607, Jun. 23, 2014, pp. 313-317. |
Yuanyuan , “New Materials, Science and Technology Metallic Material Volume”, South China University of Technology Press, Sep. 30, 2012, 6 pages. |
Canadian Application No. 2,981,329 , “Office Action”, dated Jul. 4, 2019, 5 pages. |
Japanese Application No. 2017-551195 , “Office Action”, dated Jun. 4, 2019, 9 pages. |
Chinese Application No. 201680019400.4 , “Office Action”, dated May 20, 2019, 25 pages. |
Korean Application No. 10-2017-7030132 , “Office Action”, dated Jun. 17, 2019, 14 pages. |
Korean Application No. 10-2019-7015995 , “Office Action”, dated Jun. 17, 2019, 18 pages. |
KR10-2019-7015995 , “Notice of Decision to Grant”, Oct. 1, 2019, 2 pages. |
RU2018121947 , “Office Action”, Sep. 24, 2019, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20170175240 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
62269385 | Dec 2015 | US |