The invention relates to high-strength, beryllium-free, molded zirconium alloy objects which are plastically deformable at room temperature.
Such molded objects can be used as high-stressed components, for example, in the aircraft industry, in space travel and also in the automobile industry, but also for medical equipment and implants in the medical area, when the mechanical load-carrying capability, the corrosion resistance and the surface stresses must satisfy high requirements, especially in the case of components having a complicated shape.
It is well known that certain multicomponent, metallic materials can be transformed into a metastable, glassy state (metallic glasses) by rapid solidification, in order to obtain advantageous properties, such as soft magnetic, mechanical and/or catalytic properties. Because of the cooling rate required for the melt, most of these materials can be produced only with small dimensions in at least one direction, for example, as thin strips or powders. With that, they are unsuitable as solid construction materials (see, for example, B. T. Masumoto, Mater. Sci. Eng. A179/180 (1994) 8-16).
Furthermore, certain compositional ranges of multi-component alloys are known in which such metallic glasses can also be produced in solid form, for example, with dimensions greater then 1 mm, by casting processes. Such alloys are, for example, Pd—Cu—Si, Pd40Ni40P20,Zn—Cu—Ni—Al, La—Al—Ni—Cu (see, for example, B. T. Masumoto, Mater. Sci. Eng. A179/180 (1994) 8-16 and W. L. Johnson in Mater. Sci. Forum Vol. 225-227, pages 35-50, Transtec Publications 1996, Switzerland).
Especially, beryllium-containing metallic glasses, which have a composition corresponding to the chemical formula (Zr1-xTix)a1ETMa2(Cu1-yNiy)b1LTMb2Bec, and dimensions greater than 1 mm, are also known (A. Peker, W. L. Johnson, U.S. Pat. No. 5,288,344). In this connection, the coefficient a1, a2, b1, b2, c, x, y refer to the content of the elements in atom percent, ETM is an early transition metal and LTM a late transition metal.
Furthermore, molded metallic glass objects, larger than 1 mm in all their dimensions, are known for certain composition rangers of the quinary Zr—Ti—Al—Cu—Ni alloys (L. Q. Xing et al. Non-Cryst. Sol 205-207 (1996) p. 579-601, presented at 9th Int. Conf. on Liquid and Amorphous Metals, Chicago, Aug., 27 to Sep. 1, 1995; Xing et al., Mater. Sci. Eng. A 220 (1996) 155-161) and the pseudoquinary alloy (Zr, Hf)a(Al, Zn)b(Ti, Nb)c(CuxFey(Ni, Co)z)d (DE 197 06 768 06 768 A1; DE 198 33 329 C2).
A composition of a multi-component beryllium-containing alloy with the chemical formula (Zr100-a-bTiaNbb)75(BexCuyNiz)25 is also known. In this connection, the coefficients a and b refer to the proportion of the elements in atom percent with a=18.34 and b=6.66 and the coefficients x, y and z refer to the ratio in atom percent with x:y:z=9:5:4. This is a two-phase alloy; it has a brittle, glassy matrix of high strength and a ductile, plastically deformable, dendritic, cubic, body centered phase. As a result, there is an appreciable improvement in the mechanical properties at room temperature, particularly in the area of microscopic expansion (C. C. Hays, C. P. Kim and W. L. Johnson, Phys. Rev. Lett. 84, 13, p. 2901-2904 (2000)). However, the use of the highly toxic beryllium is a serious disadvantage of this alloy.
It is an object of the invention to make a beryllium-free, high strength, and plastically deformable, molded objects of zirconium alloys available which, in comparison to the aforementioned metallic glasses, have macroscopic plasticity and deformation consolidation during shaping processes at room temperature, without a significant effect on other properties such as strength, elastic expansion or corrosion behavior.
The inventive molded objects comprise a material, the composition of which corresponds to the formula:
Zra(E1)b(E2)c(E3)d(E4)e
in which:
A further characterizing, distinguishing feature consists therein that the molded objects have a homogenous, microstructural structure, which consists of a glassy or nanocrystalline matrix, in which a ductile, dendritic, cubic, body-centered phase is embedded, a third phase possible being contained in a proportion by volume not exceeding 10 percent.
It is advantageous if the material contains the element Nb as E1, the element Cu as E2, the element Ni as E3 and the element Al as E4.
In order to realize particularly advantageous properties the material should have a composition with b=6 to 10, c=6 to 11, d=0 to 9 and e=7 to 12.
A composition with the ratios of Zr:Nb=5:1 to 11:1 and Zr:Al=6:1 to 9:1 is advantageous.
The dendritic, cubic, body-centered phase, contained in the material, should advantageously have a composition with b=7 to 15, c=3 to 9, d=0 to 3 and e=7 to 10 (numerical data in atom percent). A material with particular good properties comprises Zr66.4Nb6.4Cu10.5Ni8.7Al8 (numerical data in atom percent).
A further material with particular good properties comprises Zr71Nb9Cu8Ni1Al11 (numerical data in atom percent).
Pursuant to the invention, the proportion by volume of the dendritic, cubic, body-centered phase, formed in the matrix, is 25 to 95 percent and preferably 50 to 95 percent.
The length of the primary dendritic axes ranges from 1 μm to 100 μm and the radius of the primary dendrites is 0.2 μm to 2 μm.
For preparing the molded object, a semi finished product or the finished casting is prepared by casting the melted zirconium alloy into a copper mold.
The detection of the dendritic, cubic, body-centered phase in the glassy or nanocrystalline matrix and the determination of the size and proportion by volume of the dendritic precipitates can be made by x-ray diffraction, scanning electron microscopy or transmission electron microscopy.
The invention is explained in greater detail below by means of examples.
An alloy, having the composition Zr71Nb9Cu8Ni1Al11 (numerical data in atom percent) is cast in a cylindrical copper mold having an internal diameter of 5 mm. The molded object comprises a glass-like matrix in which a ductile, cubic, body-centered phase is embedded. The proportion by volume of the dendritic phase is about 50%. By these means, an elongation at break of 3.5% at a breaking strength of 1791 MPa is achieved. The elastic elongation at the technical yield point (0.2% yield strength) is 2.5% at a strength of 1638 MPa. The modulus of elasticity is 72 GPa.
An alloy, having the composition Zr71Nb9Cu8Ni1Al11, (numerical data in atom percent) is cast in a cylindrical copper mold having an internal diameter of 3 mm. The molded object obtained comprises a nanocrystalline matrix in which a ductile, cubic, body-centered phase is embedded. The proportion by volume of the dendritic phase is about 95%. By these means, an elongation at break of 5.4% at a breaking strength of 1845 MPa is achieved. The elastic elongation at the technical yield point (0.2% yield strength) is 1.5% at a strength of 1440 MPa. The modulus of elasticity is 108 GPa.
An alloy, having the composition Zr66.4Nb4.4Mo2Cu10.5Ni8.7Al8(numerical data in atom percent) is cast in a cylindrical copper mold having an internal diameter of 5 mm. The molded object obtained comprises a glass-like matrix in which a ductile, cubic, body-centered phase is embedded. The proportion by volume of the dendritic phase is about 50 percent. By these means, an elongation at break of 3.4% at a breaking strength of 1909 MPa is achieved. The elastic elongation at the technical yield point (0.2 percent yield strength) is 2.1% at a strength of 1762 MPa. The modulus of elasticity is 94 GPa.
An alloy, having the composition Zr70Nb10.5Cu8Ni2Al9.5 (numerical data in atom percent) is cast in a cylindrical copper mold having an internal diameter of 3 mm. The molded object obtained comprises a nanocrystalline matrix in which ductile, cubic, body-centered phase is embedded. The proportion by volume of the dendritic phase is about 95 percent. By these means, an elongation at break of 6.2% at a breaking strength of 1680 MPa is achieved. The elastic elongation at the technical yield point (0.2% yield strength) is 1.9% at a strength of 1401 MPa. The modulus of elasticity is 84 GPa.
Number | Date | Country | Kind |
---|---|---|---|
101 43 683 | Aug 2001 | DE | national |
102 18 281 | Apr 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE02/03030 | 8/12/2002 | WO | 00 | 3/29/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/025242 | 3/27/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5735975 | Lin et al. | Apr 1998 | A |
6692590 | Xing et al. | Feb 2004 | B2 |
6918973 | Hufnagel et al. | Jul 2005 | B2 |
20020003013 | Hays | Jan 2002 | A1 |
Number | Date | Country |
---|---|---|
198 33 329 | Jan 2000 | DE |
WO-0068469 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040238077 A1 | Dec 2004 | US |