High strength lever handle lock mechanism

Information

  • Patent Grant
  • 6626018
  • Patent Number
    6,626,018
  • Date Filed
    Monday, January 29, 2001
    23 years ago
  • Date Issued
    Tuesday, September 30, 2003
    20 years ago
Abstract
A lock mechanism for use with lever handles includes a lock core and a latch mechanism that is rigidly connected to the lock core to prevent the lock core from rotating in the door. Through-bolts are not needed, allowing a small diameter rose to be used. Stops and a spring return mechanism are entirely located within the lock core, allowing the rose to be thin. The lock core defines the rest position for the lever handles at an angle slightly above horizontal. To avoid the necessity for producing different locks in left and right-hand configurations, the lock core is made substantially symmetrical about a vertical plane, instead of a horizontal plane, and the inner and outer sides of the lock mechanism can be interchanged. A heavy-duty locking piece, including a pair of locking lugs that directly engage the lock core near its inner perimeter, allow the lock to withstand abusive forces applied through the lever handle. Endplay is nearly completely eliminated to provide a quality feel through the use of collars that connect the interchangeable inner and outer sides of the lock to the lock core.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to cylindrical locks of the type installed in bored openings in a door. More particularly, the present invention relates to the highest quality and strongest locks of this type designed for use with lever handles where abusive mechanical loads can be applied to the lock mechanism through the lever handle.




2. Description of Related Art




Doors are much easier to open when the door handle is shaped as a lever handle rather than a conventional round knob. For this reason, lever handles are preferred in some applications, and they may be required under applicable regulations for certain doors in public buildings to facilitate access by the disabled and the elderly.




However, the lever shape of the door handle allows much greater force to be applied to the internal locking mechanism of the door than can be applied with a round knob. In most door locks, the lock mechanism prevents the knob from being turned when the door is locked. When a round door knob is replaced by a lever handle, the greater leverage available from a lever handle may allow a vandal or thief to break the internal components of the lock mechanism by standing or jumping on the lever end of the handle. This problem is particularly acute for cylindrical locks, which have less internal room than mortise type locks to accommodate heavy-duty locking components.




Another problem relates to the unbalanced shape of a lever handle, which tends to cause the lever handle to droop. A conventional round doorknob is balanced around the rotational axis of the handle. Thus, it takes relatively little force to return the handle to the rest position. This return force is usually provided by the latch rod return springs in the lock. A lever handle, however, requires much more force to return it to the level position. Sufficient force cannot be provided by the latch rod return springs, so most lever handle designs incorporate auxiliary lever handle return springs.




Because the lever handle return springs are large, and because there is limited space inside the lock, the auxiliary lever handle support springs have heretofore been located in the rose. While this is effective, locating the lever handle return springs in the rose produces a thick rose that is considered by some to be relatively unattractive.




The visual symmetry of a round doorknob means that it is not critical that the knob return exactly to the rest position when the handle is released. However, if a lever handle does not fully return to the level rest position, it appears to droop.




Such visual droop is particularly objectionable. A rest position that is slightly above level, however, is generally not considered to be objectionable.




To avoid visual droop, as a result of normal wear or component tolerances, it would be desirable for the rest position of the lever handle to be slightly above horizontal. However, heretofore it has been difficult to arrange for the lever handle to return to a position above level without constructing the lock in two different versions for left-hand swing and right-hand swing doors or without placing the stops in the rose.




A conventional lock can be installed in either a left-hand swing or a right-hand swing door by flipping the lock top for bottom. This keeps the locking side of the lock mechanism on the same side of the door, while allowing for both the left-hand swing and right-hand swing operation. If the stop position were to be located in the lock mechanism, however, this rotation about a horizontal axis would cause the above-level stop position to reverse to an objectionable below-level position. Requiring separate locks for left and right-hand swing doors, however, is undesirable as it increases inventory costs and results in confusion and delay when the wrong lock is ordered.




Accordingly, the stops are usually placed in the rose. This allows the rose to be reversed relative to the lock body, as needed to always keep the top of the rose at the top regardless of whether the lock is installed in a left-hand or right-hand swing door. Placing the stops in the rose, however, is undesirable as it requires that the rose be made thick to accommodate the stops.




When the rose is used to provide the stops to limit handle motion and to house the return springs, it is necessary to anchor the rose relative to the door. Usually this is done with through-bolts, which connect roses on opposite sides of the door and pass outside of the main hole for the lock body. Through-holes, however, require a large diameter rose to cover these holes. Such a large diameter rose is considered by some to be unattractive and the large diameter increases the cost of the rose.




Another problem with prior art lever handle cylindrical locks arises as a result of the method used to attach the handle to the lock mechanism. Generally, the handle slides over a shaft and is captured by a spring loaded capture piece. The capture piece must have some clearance from the hole that captures it, and this clearance allows axial motion between the shaft and the handle. This motion is perceived as a “loose” handle by the user and is undesirable. Often, there is also some relative motion between the shaft and the lock mechanism as well, which contributes additional objectionable axial motion between the handle and the door. It is highly desirable to reduce or eliminate this axial endplay between the handle and the lock mechanism.




Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide a lock mechanism for use with lever handles that is strong and resistant to abuse.




It is another object of the present invention to provide a lock mechanism for use with lever handles that does not require boring through-holes.




A further object of the invention is to provide a lock mechanism for use with lever handles that uses thin and small diameter rose plates.




It is yet another object of the present invention to provide a lock mechanism for use with lever handles that has reduced endplay between the handle and the lock body.




It is still another object of the present invention to provide a lock mechanism for use with lever handles that can be more completely disassembled and repaired in the field.




Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.




SUMMARY OF THE INVENTION




The above and other objects, which will be apparent to those skilled in art, are achieved in the present invention, which is directed to a lock mechanism that includes a lock core with a bearing that fits into a first opening bored through the faces of a door and a latch mechanism that fits into a second opening bored perpendicularly from the edge of the door into the first opening.




The latch mechanism includes a latch bolt frame adapted to fit within the second opening. The latch bolt frame is removably attached to the lock core with a rigid connection. The rigid connection between the latch bolt frame and the lock core prevents rotation of the lock core relative to the door. This provides an extremely robust anchor between the lock core and the door so that through-bolts are not required. Because through-bolts are not needed, the rose can have a small diameter, producing a pleasing external appearance for the lock mechanism.




The latch bolt frame may be constructed as a tube enclosing the latch mechanism. The latch bolt frame is sufficiently robust to prevent significant rotation of the lock core during the application of 1000 inch-pounds of torque to the lock core by the lever handle.




The latch mechanism includes a latch bolt, which slides axially inside the latch bolt frame between extended and retracted positions. A sleeve is mounted in the bearing of the lock core, perpendicular to the latch bolt frame. The sleeve includes a shaft portion that extends outward from the bearing and a lever handle is mounted thereon. The sleeve is operatively connected to the latch mechanism to move the latch bolt between the extended and retracted positions as the sleeve is rotated by the lever handle.




A locking piece is mounted in the sleeve so that it can slide axially from a locked position to an unlocked position. The locking piece includes at least one locking lug, and preferably two locking lugs that project radially outward from the sleeve. The locking lugs engage the lock core in the locked position to prevent the lever handle and sleeve from rotating relative to the lock core. By making the locking lugs robust and extending them outward beyond the radius of the sleeve, the forces on them are reduced and they are able to withstand significant abuse, as compared to prior art designs.




In the preferred embodiment of this invention, the locking piece includes a latch driver at an end thereof. The handle turns the sleeve, the sleeve turns the locking piece and the locking piece turns the latch driver. The latch driver forms the operative connection between the sleeve and the latch mechanism by engaging the latch mechanism to drive the latch bolt when the locking piece is in the unlocked position. The latch driver disengages from the latch mechanism when the locking piece is in the locked position.




In the most highly preferred design, the locking piece also includes a key driven piece extending through the locking piece. The key driven piece engages the latch mechanism when the locking piece is in the locked position to allow the latch rod to be retracted by a key while the locking piece remains in the locked position.




Inside the lock core is a spring return for returning the lever handle to a level position, or, more preferably, to slightly above level. The spring return includes a plurality of coil springs, preferably two on each side of the lock core. The coil springs are located in curved contact with an inner surface of the cylindrical lock core. Thus, no portion of the spring return mechanism needs to be located within the rose. This allows the rose to be very thin to provide a pleasing appearance for the lock mechanism.




To provide the strongest construction, the latch bolt frame extends completely through the lock core. In this aspect of the invention, the spring return includes four coil springs organized into two pairs. The pairs of coil springs are located on opposite sides of the latch bolt frame, but still within the lock core.




To reduce the angular distance that the lever handle must be turned, while permitting complete retraction of the latch bolt, the latch mechanism is constructed with a retractor mechanism that retracts the latch bolt and a latch retraction amplifier comprising a retractor arm pivotally attached to the latch bolt frame at one end thereof and contacting the latch bolt at an opposite end thereof. A retractor link extends between the retractor mechanism and the retractor arm. The link acts upon the retractor arm to amplify the linear motion of the latch rod such that the latch bolt moves to the completely retracted position when the lever handle is rotated by no more than forty-five degrees.




The lock core defines an angular mounting orientation of the lever handle relative to the lock core when the lever handle is at rest. The latch bolt frame engages the lock core at an angle less than 180 degrees relative to the angular mounting orientation of the lever handle on the lock core. In this way, the lever handle is held at an angle greater than zero above horizontal when the latch bolt frame is horizontal.




In another aspect of the present invention, endplay is eliminated from the connection of the handles to the lock. To accomplish this, the lever handle is securely mounted on the shaft portion of the sleeve to prevent axial motion of the lever handle relative to the sleeve. The sleeve includes an enlarged portion having a diameter greater than an inner diameter of the bearing receiving the sleeve. The enlarged portion of the sleeve is held in contact with a face surface of the bearing by a retaining collar. The enlarged portion of the sleeve cooperates with the face surface of the bearing to prevent axial motion of the sleeve relative to the lock core.




In still another aspect of the present invention, the retaining collar is provided with one or more lock notches, one of the lock notches engages a lock pin to prevent the retaining collar from being removed. In the preferred embodiment of the invention, the lock pin includes a head and the lock core includes a recess that receives the head of the lock pin. This allows the retaining collar to be tightened into position on the lock core. The head of the lock pin is then extended outward from the recess in the lock core and into engagement with the lock notch in the retaining collar after the retaining collar has been tightened.




In yet another aspect of the present invention, the lock core includes a cylindrical center core and a pair of bearing caps. Each of the bearing caps includes a bearing. The bearing caps are connected to the lock core with removable fasteners to allow the lock core to be disassembled.











BRIEF DESCRIPTION OF THE DRAWINGS




The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:





FIG. 1

is a partially exploded perspective view showing major components of the present invention. These are the principal component subassemblies that are provided from the factory and fitted together during installation.





FIG. 2

is a perspective view of the present invention showing the components of

FIG. 1

in their assembled configuration. The lever handles are not shown so that the other assembled components can be seen more clearly.





FIG. 3

is a more completely exploded view of the present invention shown in FIG.


1


.





FIG. 4

is a view taken from the side along line


4





4


in

FIG. 3

showing the upward angle of the lever handles relative to horizontal.





FIG. 5

is a perspective view of a bearing cap from the front inner side.





FIG. 6

is a side view of the latch mechanism showing the latch bolt extended. A portion of the latch bolt frame has been cut away to show the latch retractor mechanism.





FIG. 7

is a side view of the latch mechanism showing the latch bolt retracted. A portion of the latch bolt frame has been cut away to show the latch retractor mechanism.











DESCRIPTION OF THE PREFERRED EMBODIMENT(S)




In describing the preferred embodiment of the present invention, reference will be made herein to

FIGS. 1-7

of the drawings in which like numerals refer to like features of the invention.




Referring to

FIGS. 1 and 2

, the present invention includes a lock core


10


having two externally threaded bearings


12


,


14


on opposite sides. The lock core


10


includes a front opening


16


that receives a latch mechanism


18


including a latch bolt frame


20


formed in the shape of a tube. The latch mechanism


18


includes a latch bolt


22


and a retractor mechanism


102


(see

FIGS. 6 and 7

) located within the latch bolt frame


20


for retracting the latch bolt.




The tube comprising the latch bolt frame


20


extends through opening


16


in the front of the lock core


10


, across the centerline


24


, and into engagement with a second opening


26


in the back of the lock core (see FIG.


3


). A lock pin


28


with an enlarged head


30


extends through the lock core


10


and through hole


32


in the back of the latch bolt frame to securely hold the latch mechanism


18


in the lock core


10


.

FIG. 2

shows this assembled construction.




The axis


34


of the latch bolt mechanism and the axis


24


of the handles and lock core define a “T” shape. The latch bolt frame


20


rigidly engages the lock core


10


and extends outward from the cylindrical lock core to prevent rotation of the lock core


10


relative to the opening in the door in which it is installed. The lock core


10


is conventionally installed in an opening bored perpendicularly between the two faces of the door. The latch mechanism


18


is also installed in the conventional manner into a smaller hole drilled perpendicularly from the edge of the door into the larger opening.




Both the latch bolt frame and the lock core are ruggedly constructed. In particular, the tubular latch bolt frame cannot bend easily. Accordingly, the extension of the latch bolt frame out of the lock core, the rugged construction, and the extension of the latch bolt frame entirely through the lock core into pinned engagement with the back of the lock core, all cooperate to create a compact connection between the door and the lock mechanism. This arrangement makes the lock core highly resistant to rotation within the door and allows the forces applied to the lock mechanism during abuse to be transferred from the handle to the lock core and from there directly to the door. This eliminates the need for separate through-bolts, which are normally used in high quality lever handle locks to resist the abusive forces that can be applied to the lever handle.




The outside handle


36


is mounted on the shaft portion


38


of a sleeve


40


. An inner portion of sleeve


40


rotates inside bearing


12


(see FIG.


3


). The inner portion


42


and the shaft portion


38


of the sleeve


40


are separated by an enlarged portion


44


, which has a diameter greater than the inside diameter of bearing


12


.




The inner portion of sleeve


40


slides into its bearing


12


until the enlarged portion


44


contacts face surface


46


of the bearing


12


. The sleeve


40


is held in its bearing


12


by an outside retaining collar


48


.




The outside retaining collar is threaded internally so it can be threaded onto the external threads of bearing


12


. The outside retaining collar


48


holds the enlarged portion


44


of the sleeve


40


in rotational contact with the face surface


46


of bearing


12


. Retaining collar


48


is provided with external threads (as well as internal threads) so that rose


50


(which is internally threaded) can be threaded onto its exterior. Outside collar


48


is provided with flats


52


so that it can be tightened with a wrench without damaging the external threads. The collar is tightened sufficiently to hold sleeve


40


with the desired pressure against the face surface


46


of bearing


12


. This design completely eliminates axial motion of the sleeve


40


relative to the lock core


10


.




The outer handle


36


is held to the shaft portion


38


of sleeve


40


by a setscrew


54


and by a spring retaining mechanism


56


. The spring retaining mechanism


56


cooperates with the lock cylinder


58


to prevent the handle


36


from being removed if key


60


is not inserted into the lock cylinder and turned. Setscrew


54


prevents the handle


36


from moving axially relative to the shaft portion


38


. The setscrew eliminates endplay between the handle


36


and the lock core


10


, providing a quality feel for the lock mechanism. The spring retaining mechanism


56


and the lock cylinder


58


cooperate to prevent the lever handle


36


from being removed without the key.




The inner side of the door is similar, and includes an inner sleeve


62


having an inner sleeve portion


64


, an enlarged portion


66


and an inner portion


68


that fits inside of bearing


14


. An inner collar


70


is internally threaded to engage the external threads on bearing


14


and is externally threaded to receive inner rose


72


. Inner handle


74


fits over shaft portion


64


of inner sleeve


62


. Setscrew


75


threads into inner handle


74


to hold the inner handle on the inner sleeve


62


and eliminate endplay.




In a conventional design, the lock core comes pre-assembled with the inner and outer shafts. The outer shaft must always be located on the locked side of the door. Accordingly, a conventional lock core is not symmetrical about a vertical plane through the center of the lock between the two halves. However, conventional designs are substantially symmetrical about the horizontal plane through the center of the lock. The horizontal symmetry allows the lock core to be flipped top for bottom for installation in either a right hand swing or a left hand swing door. This symmetry is important in producing a single lock that can be installed in both right-hand and left-hand swing doors.




The present invention, however, differs significantly. It is designed so that the lock core


10


is not symmetrical about the horizontal plane, but, instead, is substantially symmetrical about the vertical plane. To change the present lock mechanism for right-hand or left-hand installation, the lock core


10


is rotated about its vertical axis, instead of the horizontal axis. In a prior art design, this rotation would change the inside and outside of the lock because the inside and outside are fixed relative to the lock core.




To prevent this reversal in the present design, the inner sleeve


62


and outer sleeve


40


are removable. The inside and outside of the lock mechanism can be reversed by removing the collars


48


and


70


and their associated sleeves


40


,


62


to which the inner and outer handles are attached. This change in basic symmetry from the horizontal plane of the prior art to the vertical plane allows the stops for the handles to be located inside the lock core, instead of in the rose, while retaining the feature that the rest position of the handles is slightly upwardly elevated. As can be seen best in

FIG. 4

, the lock core


10


, and the stops inside the core which define the rest position of the handles, are rotated slightly relative to the centerline


34


of the latch mechanism


18


such that the centerlines of the lever handles


36


and


74


are angled upward relative to horizontal by the angle θ, which is preferably about one or two degrees, and most preferably less than three degrees. Unlike prior art designs, in the present invention it is the lock core which defines the angular mounting orientation of the lever handle when it is at its rest position. The angle between centerline


34


of the latch bolt frame where it enters the lock core and the centerline of the lever handles is less than 180 degrees by the small angle θ.




The lock core


10


is always installed with the same surface at the top regardless of whether it is installed in a right hand swing or a left hand swing door. The inner and outer handles, roses, collars and sleeves can be installed on either side of the lock core to make either side the outside.




When the lock mechanism is unlocked, rotating lever handle


36


rotates sleeve


40


. As can be seen in

FIG. 3

, sleeve


40


includes slot


80


, which extends perpendicularly across inner portion


42


of the sleeve. Slot


80


receives lugs


82


and


84


on locking piece


86


. The lugs project outwardly from the sleeve


40


and are guided by slot


80


.




The slot


80


allows locking piece


86


to slide axially inside the sleeve


40


between a locked position and an unlocked position. The locked position for the locking piece positions the locking piece close to handle


36


. In the unlocked position, locking piece


86


is located at the far end of the sleeve


40


from the handle


36


.




Because sleeve


40


cannot turn relative to the handle


36


, rotation of the handle always rotates locking piece


86


. Locking piece


86


includes an internally splined central opening


88


that engages externally splined portion


90


on spline member


92


. Spline member


92


fits inside the shaft portion


38


of sleeve


40


and engages splined opening


88


inside locking piece


86


. It is held in position by C-ring


94


, which fits into ring groove


96


. The splined portion


98


extends outward beyond the end of locking piece


86


to engage a corresponding splined opening


100


(see

FIGS. 6 and 7

) to operate retractor mechanism


102


inside the latch mechanism


18


. Splined portions


90


and


98


form a single piece comprising a latch driver that always moves and rotates with locking piece


86


. Extending through the center of these two splined portions


90


,


98


, however, is a shaft connecting key end


104


to splined end


106


. These two ends comprise a single key driven piece that always moves axially with the latch driver piece and the locking piece


86


. However, the key driven piece is free to rotate as a unit relative to the locking piece and to the latch driver. Key end


104


is driven by cylinder lock


108


through connecting piece


110


and the key tailpiece


111


. When key end


104


is rotated, splined end


106


is also turned.




When the locking piece


86


is in the unlocked position, splined portion


98


engages splined opening


100


in the retractor mechanism so that rotation of the handle will operate the retractor mechanism. When the locking piece


86


moves outward to the locked position, splined portion


98


is withdrawn from splined opening


100


. In this position, only splined end


106


engages the splined opening


100


and the latch may be retracted by rotating key


112


.




The axial motion of locking piece


86


between the inward (unlocked) position and the outward (locked) position causes the locking lugs


82


and


84


to engage and disengage the corresponding locking lug slots


114


,


116


.




From the description above, the complete locking action can now be described. The lock mechanism is locked by sliding the locking piece


86


outward to the locked position. The locking piece can be moved to this position from the outside of the lock by the lock cylinder


108


and key


112


or from the inside by the button mechanism


117


. As the locking piece moves outward, it simultaneously disengages splined portion


98


from the splined opening


100


in the retractor and moves the two heavy-duty locking lugs into engagement with the locking lug slots


114


,


116


in the lock core. Thus the locking lugs connect the lever handle


36


to the lock core, so that the rugged “T” design can prevent rotation as the handle is disengaged from the retractor.




As can be seen in

FIG. 3

, the lock core


10


includes a center core piece


118


and two bearing caps


120


,


122


, which incorporate bearings


12


and


14


respectively.




The bearing caps


120


,


122


are held on the center core


118


with screws


124


. There are preferably four screws on each bearing cap. Unlike conventional lock designs, which are not easily disassembled or repaired in the field, by removing the screws, the lock core of the present design can be almost completely disassembled.




The outer bearing cap


120


encloses a pair of springs


130


,


132


and a spring driver


134


. The outer bearing cap


120


is shown in detail in FIG.


5


. The spring driver includes two inwardly directed fingers


136


,


138


, which engage corresponding notches on the outer sleeve


40


. Finger


136


engages notch


140


on sleeve


40


so that rotation of the handle


36


also rotates spring driver


134


.




Spring driver


134


also includes a pair of axially extending tabs


142


and


144


, which drive coil springs


130


and


132


. The coil springs


130


and


132


lie in channels formed in the inside perimeter of each bearing cap and are trapped between two corresponding spring stops


150


,


152


(see FIG.


5


). The spring stops are located at the top and bottom inside the bearing caps. The springs


130


,


132


exert a force between the spring stops


150


,


152


and the tabs


142


,


144


on the spring driver to bring the tabs into alignment with the spring stops.




Rotation of the spring driver


134


in either direction will compress springs


130


and


132


between a spring stop at one end and a tab at the other end. Thus, the location of the spring stops defines the rest position of the handles. The positions of the spring stops and the rest position of the handles relative to horizontal and the axis


34


of the latch mechanism


18


are set during manufacture by the angle at which the bearing caps are installed on the center core piece


118


before the screws


124


are installed.




In addition to the spring stops, which define the rest position, the bearing caps define and limit the maximum rotation of the lever handles. Preferably this maximum rotation is about 45 degrees up and 45 degrees down. The limit stops are provided by two limit channels


156


,


158


machined into the inside of the bearing caps. The limit channels


156


,


158


are immediately adjacent to the locking lug slots


114


,


116


. When the locking piece moves inward to the unlocked position, the locking lugs


82


,


84


move out of the locking lug slots


114


,


116


and into the adjacent limit channels


156


,


158


. The channels are sized to permit the lever handles and locking piece to rotate the desired amount. If an attempt is made to rotate the handles beyond the maximum permitted rotation, the locking lugs contact the ends of the limit channels. Any excess force applied at this limit is transferred to the lock core and from there to the door through the “T” design of the lock. This protects the internal lock mechanism from excess force applied in the unlocked position as well as in the locked position.




A substantially identical arrangement is found within the opposite bearing cap


122


, which includes a corresponding spring driver and pair of coil springs. It will be understood from this description that the lock core includes the stops and the spring return mechanism necessary for the return of the lever handles


36


and


74


to the rest position on the stops. It can also be seen that when the lock mechanism is locked, by sliding lock piece


86


towards handle


36


, the locking lugs


82


and


84


engage bearing cap


120


. Locking lugs


82


and


84


also act against stops in the interior of the lock core.




This mechanism is unlike prior art designs in that the stops and the spring return mechanism are completely located within the lock core and not within the rose assemblies


50


or


72


. The locking mechanism is extremely robust because the locking lugs


82


and


84


project outward from the sleeve into contact with the bearing cap. Thus, the force resisting rotation is transferred through a heavy-duty machined sleeve to a heavy-duty, two lug, locking piece and from there to the lock core. The transfer of force from the locking piece to the core is done at the outer perimeter relative to the sleeve


40


. Because the locking lugs project out from the perimeter of sleeve


40


, the force on the locking mechanism is reduced as compared to prior art designs that locate the locking mechanism entirely within the rollup spindle, which roughly corresponds to the sleeves


40


,


62


of the present design.




The rotation of the lock core


10


within the door is resisted by the “T” design of the latch bolt frame


20


which extends completely through the lock core. The combination of heavy-duty lock core, “T” design and locking lugs that transfer force at a relatively large distance from the centerline of the lock produces a very secure locking mechanism, which is extremely resistant to abuse. The locking mechanism will easily resist the application of 1000 inch pounds of torque to the sleeve by the lever handle without damage. Torque in excess of this will not cause the lock to open. Consequently, it is not necessary to provide through-bolts from the rose


50


to the rose


72


, which pass outside the outer perimeter of the opening receiving the lock core


10


. Because through-holes and through-bolts are not required, the roses


50


,


72


can be thin and have a small diameter. This produces an attractive lock mechanism design, as compared to prior art designs which incorporate the spring return mechanism and through-bolts in the rose.




The outer components of the lock, including the outer handle


36


and lock cylinder


58


are mounted on the outer sleeve


40


. To prevent these components from being removed by removing the collar


48


, the outer collar


48


is produced with one or more sets of locking notches


146


and corresponding oppositely directed locking tabs


148


that produce a castellated edge on the outer collar


48


where it abuts the surface of the outer bearing cap


120


. The locking notches are sufficiently deep to receive the head


30


of the locking pin


28


.




The shaft of the locking pin is slightly longer than the width of the assembled lock core


10


. Because the inner collar


70


does not include the castellated edge, when it is installed, it forces the head


30


of the locking pin


28


to protrude up from the surface of the outer bearing cap


120


. That surface has a recess that initially allows the head


30


of the locking pin


28


to lie just below the plane of the surface where the outer collar


48


will abut it.




To assemble the mechanism, the lock core


10


is inserted into its opening in the door. It is important that the lock core


10


be inserted with its correct side to the top so that the stops are oriented to produce the desired slight upward angle for the handles when they are at the rest position. The latch mechanism


18


is then inserted into its opening in the door and pushed into opening


16


in the lock core and though to the back side, where it is seated in the second opening


26


in the back of the lock core. Pin


28


is then pushed into the lock core from the outer side of the door and through the back of the latch bolt frame


20


to lock it into place.




Pin


28


is pushed inward until the head


30


lies below the surface of the outer bearing cap


120


. Because either side of the door may become the locked side, both sides of the lock core


10


are provided with a recess to receive the head


30


of the pin


28


.




The outer sleeve


40


is then inserted into the outer bearing, i.e., on the same side as the head


30


of the pin


28


. The bearings


12


and


14


are identical, and both will accept either locking collar, depending on whether a right or left-hand swing door is desired. Next, the outer collar


48


is threaded on and tightened until locking tabs


148


contact the surface of the outer bearing cap


120


. The tabs can pass over the head


30


because it lies below the surface. Once the outer collar is tightened, the inner sleeve


62


is installed in the remaining bearing. As the inner collar


70


is tightened, it contacts the end of pin


28


and pushes the head


30


up out of its recess and into locking engagement with locking notch


146


in the castellated edge of the outer collar. This prevents the outer collar from being removed.




The outer and inner roses


50


and


72


are then attached, followed by the handles. Last, the setscrews


54


,


75


are tightened to completely eliminate endplay. A conventional knob handle is normally designed to retract the latch bolt with a rotation greater than 45 degrees. The present invention will also operate with such greater rotation angles by increasing the angular size of the limit channels. A greater rotation angle is comfortable for the user when grasping a round knob and rotating it by rotating the wrist. However, the motion of the hand when operating a lever handle is different and it is not comfortable for a user to have to rotate a lever handle with a rotation angle much greater than 45 degrees.




This lesser angle means that the retraction mechanism must retract the latch bolt more rapidly, i.e., retract it farther per degree of handle rotation, than is required for a knob handle. In the present invention, this requirement is met by a latch retraction amplifier in the latch bolt.




Referring to

FIGS. 6 and 7

, the retractor mechanism


102


comprises a conventional cam


160


having splined opening


100


. As in prior art designs, a corresponding second cam and second splined opening are also located within the latch mechanism


18


symmetrically adjacent to the first cam


160


and the first splined opening


100


so that the inner and outer handles can independently retract the latch bolt. When the lever handle


36


is turned, splined portion


98


rotates the cam


160


from the position seen in

FIG. 6

to the position seen in FIG.


7


. The cam


160


acts upon the tail


162


of the latch bolt


22


to retract it. In a conventional design, this retraction is direct, with the latch bolt head retracting the same distance as the latch bolt tail is moved. However, in the present design, the linear retraction motion of the head is amplified (as compared to the linear retraction motion of the tail) by retractor arm


164


.




The latch bolt head


22


includes a shaft


166


, which slides in plate


168


of the tailpiece


162


. Conventional springs (not shown) keep the latch bolt head extended (as in

FIG. 6

) relative to the tailpiece


162


. These springs and the motion of the head


22


relative to the tail


162


are well known and are needed to allow the latch bolt head


22


to move inward toward the retracted position, as the door swings closed and the latch bolt strikes the door frame, without requiring the handle to move.




In the present invention, during retraction of the latch bolt by the handle, the head and tail do not move as a unit, as in prior art designs. Instead, the retractor arm and a retractor link


170


are interposed between the head and tail portions of the latch bolt. The retractor link


170


is connected between the latch bolt tailpiece


162


and the retractor arm


164


. The retractor link


170


is connected to the latch bolt tailpiece


162


with pivot


172


and to the retractor arm


164


with pivot


174


.




The retractor arm


164


is connected to the stationary latch bolt frame


20


with pivot


176


. The tip


180


of the retractor arm


164


fits inside of slot


182


in the shaft


166


. Because the tip


180


of the retractor arm is farther from the fixed pivot


176


than the moving pivot


174


is from the fixed pivot


176


, the retraction motion of the tail


162


is amplified and the shaft


166


and head of the latch bolt


22


move to the fully retracted position with significantly less angular rotation of the cam


160


than is required in prior art devices. The retractor link acts upon the retractor arm to amplify the linear motion of the latch rod such that the latch bolt moves to the completely retracted position when the lever handle is rotated by no more than forty-five degrees.




While the present invention has been particularly described, in conjunction with a specific preferred embodiment, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.



Claims
  • 1. A lock mechanism for mounting in a door, the lock mechanism comprising:a lock core adapted to fit within a first opening in the door, the lock core including a bearing; a latch mechanism including: a latch bolt frame adapted to fit within a second opening in the door, the second opening extending from an edge of the door to the first opening in the door, the latch bolt frame being interlocked with, attached to and rigidly engaging the lock core, the latch bolt frame being engaged by the second opening in the door and the rigid engagement between the latch bolt frame and the lock core acting to prevent rotation of the lock core relative to the door, and a latch bolt axially slidable within the latch bolt frame between extended and retracted positions; a sleeve rotationally mounted in the bearing of the lock core, the sleeve including a shaft portion extending outward from the bearing and the sleeve being operatively connected to the latch mechanism to move the latch bolt between the extended and retracted positions as the sleeve is rotated; a lever handle mounted on the shaft portion of the sleeve to rotate the sleeve; a locking piece slidably mounted in the sleeve, the locking piece sliding axially from a locked position to an unlocked position, the locking piece including at least one locking lug projecting outward from the sleeve, the locking lug engaging the lock core in the locked position to prevent the lever handle and sleeve from rotating relative to the lock core and the latch bolt frame, the locking piece further including a latch driver, the sleeve turning the locking piece and the locking piece turning the latch driver, the latch driver forming the operative connection between the sleeve and the latch mechanism by engaging the latch mechanism to drive the latch bolt between extended and refracted positions when the locking piece is in the unlocked position and the latch driver disengaging from the latch mechanism when the locking piece is in the locked position; and a key driven piece extending through the locking piece, the key driven piece engaging the latch mechanism when the locking piece is in the locked position to allow the latch bolt to be retracted by a key cylinder when the locking piece is in the locked position.
  • 2. The lock mechanism of claim 1 wherein the locking piece includes two locking lugs projecting outward from the sleeve in opposite directions, the locking lugs engaging the lock core in the locked position to prevent the lever handle and sleeve from rotating relative to the lock core and the latch bolt frame.
  • 3. The lock mechanism of claim 1 wherein the latch bolt frame is sufficiently rigidly attached to the lock core to prevent significant rotation of the lock core during the application of 1000 inch-pounds of torque to the sleeve by the lever handle.
  • 4. The lock mechanism of claim 1 wherein the latch bolt frame is a tube.
  • 5. The lock mechanism of claim 1 wherein the lock core includes a spring return, the spring return having sufficient strength to hold the lever handle at or above a level position.
  • 6. The lock mechanism of claim 5 wherein the lock core is substantially cylindrical and the spring return includes a plurality of coil springs, the coil springs being located in curved contact with an inner surface of the lock core.
  • 7. The lock mechanism of claim 5 wherein the latch bolt frame extends through the lock core and the spring return includes four coil springs, the coil springs comprising two pairs of coil springs, the pairs of coil springs being located on opposite sides of the latch bolt frame.
  • 8. The lock mechanism of claim 1 further including a rose, the rose not including any spring return mechanism.
  • 9. The lock mechanism of claim 8 wherein the rose has a smaller diameter than conventional roses used with through-bolted lever handle lock mechanisms.
  • 10. The lock mechanism of claim 1 wherein the lock core defines an angular mounting orientation of the lever handle relative to the lock core when the lever handle is at rest and the latch bolt frame engages the lock core at an angle less than 180 degrees relative to the angular mounting orientation of the lever handle on the lock core, whereby the lever handle is held at an angle greater than zero above horizontal when the second opening in the door and the latch bolt frame are horizontal.
  • 11. The lock mechanism of claim 1 wherein:the lever handle is securely mounted on the shaft portion of the sleeve to prevent axial motion of the lever handle relative to the sleeve; and the sleeve further includes an enlarged portion having a diameter greater than an inner diameter of the bearing receiving the sleeve, the enlarged portion being held in contact with a face surface of the bearing by a retaining collar, the enlarged portion cooperating with the face surface of the bearing to prevent axial motion of the sleeve relative to the lock core.
  • 12. The lock mechanism of claim 1 wherein the lock core includes a cylindrical center core and a pair of removable bearing caps, a first one of the pair of bearing caps including the bearing and the other bearing cap including a second bearing.
  • 13. The lock mechanism of claim 12 wherein the bearing caps are removable from the lock core and are connected to the lock core with removable fasteners.
  • 14. The lock mechanism of claim 1 wherein the rotational mounting of the sleeve in the bearing of the lock core defines a rotational axis for the lock mechanism and the latch bolt frame extends through the lock core and engages the lock core on opposite sides of the rotational axis of the lock mechanism.
  • 15. A lock mechanism for mounting in a door, the lock mechanism comprising:a lock core adapted to fit within a first opening in the door, the lock core including a bearing; a latch mechanism including: a latch bolt frame adapted to fit within a second opening in the door, the second opening extending from an edge of the door to the first opening in the door, the latch bolt frame being interlocked with, attached to and rigidly engaging the lock core, the latch bolt frame being engaged by the second opening in the door and the rigid engagement between the latch bolt frame and the lock core acting to prevent rotation of the lock core relative to the door, and a latch bolt axially slidable within the latch bolt frame between extended and retracted positions; a sleeve rotationally mounted in the bearing of the lock core, the sleeve including a shaft portion extending outward from the bearing and the sleeve being operatively connected to the latch mechanism to move the latch bolt between the extended and retracted positions as the sleeve is rotated; a lever handle mounted on the shaft portion of the sleeve to rotate the sleeve; a locking piece slidably mounted in the sleeve, the locking piece sliding axially from a locked position to an unlocked position, the locking piece including at least one locking lug projecting outward from the sleeve, the locking lug engaging the lock core in the locked position to prevent the lever handle and sleeve from rotating relative to the lock core and the latch bolt frame; a retractor mechanism for moving the latch bolt to the retracted position, and a latch retraction amplifier comprising: a retractor arm pivotally attached to the latch bolt frame at one end thereof and contacting the latch bolt at an opposite end thereof, and a retractor link extending between the retractor mechanism and the retractor arm the sleeve being connected to the retractor mechanism to move the latch bolt to the retracted position when the lever handle is rotated by no more than forty-five degrees.
  • 16. A lock mechanism for mounting in a door, the lock mechanism comprising:a lock core adapted to fit within a first opening in the door, the lock core including a bearing; a latch mechanism including: a latch bolt frame adapted to fit within a second opening in the door, the second opening extending from an edge of the door to the first opening in the door, the latch bolt frame being interlocked with, attached to and rigidly engaging the lock core, the latch bolt frame being engaged by the second opening in the door and the rigid engagement between the latch bolt frame and the lock core acting to prevent rotation of the lock core relative to the door, and a latch bolt axially slidable within the latch bolt frame between extended and retracted positions; a sleeve rotationally mounted in the bearing of the lock core, the sleeve including a shaft portion extending outward from the bearing and the sleeve being operatively connected to the latch mechanism to move the latch bolt between the extended and retracted positions as the sleeve is rotated, the sleeve further including an enlarged portion having a diameter greater than an inner diameter of the bearing receiving the sleeve, the enlarged portion being held in contact with a face surface of the bearing by a retaining collar, the enlarged portion cooperating with the face surface of the bearing to prevent axial motion of the sleeve relative to the lock core; the retaining collar including a lock notch, the lock notch engaging a lock pin to prevent the retaining collar from being removed; a lever handle securely mounted on the shaft portion of the sleeve to rotate the sleeve and prevent axial motion of the lever handle relative to the sleeve; and a locking piece slidably mounted in the sleeve, the locking piece sliding axially from a locked position to an unlocked position, the locking piece including at least one locking lug projecting outward from the sleeve, the locking lug engaging the lock core in the locked position to prevent the lever handle and sleeve from rotating relative to the lock core and the latch bolt frame.
  • 17. The lock mechanism of claim 16 wherein the lock pin extends into the lock core.
  • 18. The lock mechanism of claim 16 wherein the lock pin includes a head and the lock core includes a recess for receiving the head of the lock pin to allow the retaining collar to be positioned relative to the lock core, the head of the lock pin extending outward from the recess in the lock core and into the lock notch in the retaining collar after the retaining collar has been positioned relative to the lock core.
  • 19. The lock mechanism of claim 16 wherein the lock pin extends into the latch bolt frame to hold the latch bolt frame relative to the lock core.
  • 20. A lock mechanism for mounting in a door, the lock mechanism comprising:a lever handle; a lock core adapted to fit within a first opening in the door, the lock core including an inside bearing and an outside bearing, the bearings being located on opposite sides of the lock core and corresponding to an inside face and an outside face of the door; a latch mechanism including: a latch bolt frame adapted to fit within a second opening in the door, the second opening extending from an edge of the door to the first opening in the door, and a latch bolt axially slidable within the latch bolt frame between extended and retracted positions; a removable outside retaining collar mounted on the outside bearing; and a sleeve rotationally mounted in the outside bearing of the lock core, the sleeve being operatively connected to the latch mechanism to move the latch bolt between the extended and retracted positions as the sleeve is rotated, the sleeve including: a shaft portion extending outward from the outside bearing, the lever handle being securely mounted on the shaft portion of the sleeve to prevent axial motion of the lever handle relative to the sleeve, and an enlarged portion having a diameter greater than an inner diameter of the outside bearing, the enlarged portion being held in contact with a face surface of the outside bearing by the outside retaining collar, the enlarged portion cooperating with the face surface of the bearing to prevent axial motion of the sleeve relative to the lock core; the sleeve being removable from the outside bearing by removing the outside retaining collar and the sleeve being insertable into the inside bearing; an inside retaining collar mounted on the inside bearing; and a lock pin having a head, the lock pin extending through the lock core; the outside retaining collar including a lock notch, the lock notch engaging the head of the lock pin to prevent the outside retaining collar from being removed; the lock core including a recess for receiving the head of the lock pin to allow the outside retaining collar to be positioned relative to the lock core; and the inside retaining collar contacting an opposite end of the lock pin from the head of the lock pin to push the head of the lock pin outward from the recess in the lock core and into the lock notch in the outside retaining collar when the inside retaining collar is positioned relative to the inside bearing after the outside retaining collar is positioned relative to the outside bearing.
US Referenced Citations (22)
Number Name Date Kind
1249472 Painter et al. Dec 1917 A
1739710 Clark Dec 1929 A
1755434 Ellingson Apr 1930 A
2211130 Knapp Aug 1940 A
2912846 Schweitzer Nov 1959 A
2998274 Russell Aug 1961 A
3157042 Wolz Nov 1964 A
3343860 Kohler Sep 1967 A
3708191 Hegedus Jan 1973 A
3954292 Johnson May 1976 A
4236396 Surko, Jr. et al. Dec 1980 A
4564229 Mullich et al. Jan 1986 A
4575137 Jans Mar 1986 A
4641866 Haeck et al. Feb 1987 A
4641867 Geringer et al. Feb 1987 A
4869083 DeMarseilles et al. Sep 1989 A
5265924 Kim Nov 1993 A
5269162 Robida et al. Dec 1993 A
5421178 Hamel et al. Jun 1995 A
5727406 Banducci Mar 1998 A
5983683 Shen Nov 1999 A
6101856 Pelletier et al. Aug 2000 A
Foreign Referenced Citations (1)
Number Date Country
1505609 Nov 1967 FR
Non-Patent Literature Citations (1)
Entry
Sargent Manufacturing Company, 8Line Parts List. pp 8.1 and 8.2.