The invention relates to improvements in suspended ceiling grid components and, in particular, to end connectors for main runners or tees of such systems.
It is difficult to produce a main tee grid splice connector with previously known designs that is consistently easy to assemble in the field and that will result in a reliable and positive interconnection. Various known end connectors for main runners or tees can be somewhat difficult to install for numerous reasons. Such connectors may not be self-aligning and if they have provisions for self-alignment, their performance in this regard may be marginal at best. Smooth engagement and coupling between end connectors can be obstructed where the configuration of the connector parts have prominent surfaces or projections that interfere with the coupling advance of mating end connectors.
Typically, main runners are 12 feet long and are installed by a technician who, during an installation, grasps the runner, relative to the end being joined to a preceding runner, on the far side of its center. This permits proper balance and allows the technician to be in a suitable position to initially tie the runner up in suspended position. Thus, the technician is at least 6 feet away from the joint so that it is difficult for the technician to clearly see the end receiving pocket of the preceding runner. Moreover, from this location, the technician cannot cup the ends to be joined in one hand to align them together. Consequently, there remains in the art, a need for an end connection or splice system that affords self-aligning capability.
A more subtle but sometimes more troublesome problem occurs when the end connectors are out or nearly out of dimensional tolerance due to variations in material stock, tool wear or other manufacturing conditions. In this circumstance, the forces required to connect the ends of the runners may vary from one runner to the next so that the technician installing the grid is confounded by not knowing for sure if a good connection is being made. Additionally, these dimensionally marginal parts can require excessive assembly force, again to the distraction or frustration of the technician.
U.S. Pat. No. 6,729,100 discloses a main tee splice that has advanced the art and proven to be a consistently reliable product.
The invention departs from a previous practice of tightly vertically fitting an end tab or tongue of one splice to a receiving depression of a mating splice to achieve a remarkable increase in tensile force capacity. In accordance with the invention, the receiving depression along its base is deliberately made with a vertical average dimensional tolerance larger than a specified maximum height of the end tab. While vertical registration between splices may be insignificantly degraded, the splice joint can achieve a substantial increase in strength, reaching as much as 48% over prior art arrangements of equivalent material thickness. The disclosed splice joint can enable a reduction in the thickness of grid body material where, as preferred, the splice is integrally formed in the grid runner body. The result can be a significant savings in production cost.
In the illustrated embodiment, the end tab has elements for aligning itself to the receiving pocket of an opposed connector in both the vertical and horizontal directions. The vertical alignment feature is advantageously effective from a condition where the end tab misalignment is physically limited by the flange of the opposed tee runner. This structure enables a connection to be made where the end tab is first laid on the flange of the opposing previously installed runner and then is simply subjected to an endwise force by the installer. The leading profile of the end tab is effective, in the vertical location established by the flange of the opposed tee, to cam the end tab towards alignment with the mating connector. The vertical self-aligning character of the end tab is augmented by a lock lance element that registers with a groove in an opposed connector end tab. The vertical alignment action of the lock lance is assisted by horizontal alignment elements of the connector. The horizontal alignment elements of the connector comprise a lead angle formed by bending the forward portion of the end tab out of the plane of a main portion of the end tab and an outwardly flared entrance to the end tab receiving pocket. These lead angle and flared entrance elements provide relatively large, smooth caroming surfaces, as compared to edge areas, that improve the smooth functioning of the connector. The lead angle of the end tab and outward flare of the opposed connector are readily inter-engaged for horizontal alignment. Additionally, these lead angle and outward flare components avoid any direct edge-to-surface contact between these components so that smooth sliding action occurs when the lock lance moves out of the relief groove of the opposed connector in the late stages of the assembly movement where the potential interference between the connectors is greatest.
The disclosed connector is arranged to produce an audible click when a connection is completed and, therefore, signal the same to the installer technician. The repeatability and loudness of the click is the result of several structural elements of the connector. The lock lance has a locking edge configured to cause it to snap over a mating edge of the opposed connector without interference with the locking edge of the opposing connector. The resilient character of the receiving pocket of the opposed connector imparts kinetic energy to the end tab when its lock lance snaps over the locking edge of the opposed connector.
Referring now to the drawings, and in particular to
The runner or tee 10 has an end connector or splice 20 that, in the illustrated case, is integral with the web 16. It will be understood that certain features of the invention can be applied to connectors that are formed in a single web wall or layer or are formed wholly or partially as separate elements that are joined to the main parts of a runner with rivets or other means as is known in the art. As is conventional, a runner or tee 10 will have a connector 20 at each end.
The connector 20 includes an end tab 21 and an end tab receiving pocket 22 that, as explained below, cooperate with an identical connector in the manner of a “handshake” to connect the opposed ends of two aligned tees or runners 10 together. The end tab 21 and pocket 22 are die cut and formed by suitable stamping dies. The end tab 21 projects from an imaginary vertical plane perpendicular to the lengthwise direction of the tee 10 and located where the lower face 18 terminates, this location being the nominal end of the tee proper. Major or “land” portions of the end tab 21 are planar and are offset from the plane of the center of the tee 10 (where the walls of the web 16 abut) by a distance at least equal to the thickness of the stock forming the walls of the web (i.e. the thickness of one web wall). As will be understood, this will allow a face of an end tab 21 to abut the face of another end tab substantially at the mid-plane of each of the tees 10 being joined or connected.
The side profile of the end tab 21 is generally rectangular having two parallel horizontal edges 23, 24 at the top and bottom, respectively. A plane of an end portion or lead angle 26 is at an acute angle of about 35°, for example, from the plane of the end tab proper to the side of the tee 10 from which the end tab is offset.
A lock lance 27 is stamped into a forward area of the end tab 21 at mid-height of the end tab. The lock lance 27 projects from the plane of the end tab proper to the same side to which the lead angle end portion 26 is bent and from which the end tab is offset. The lock lance 27 is bulbous and preferably has the general shape of a longitudinal half of a bullet. A locking edge 28 of the lance 27 is originally cut by a stamping die from a line common to an end edge 29 of a relief and alignment groove 31.
The relief groove 31 is vertically aligned with the lock lance 27 and extends longitudinally rearwardly from the lock lance to a somewhat rounded end 33 adjacent the receiving pocket 22. The relief groove 31 has a depth about equal or more than the height of the lock lance 27 and a width moderately larger than that of the lock lance.
The tab receiving pocket 22 comprises a wall 37 and an opening 38. In the illustrated case, the wall 37 and opening 38 are rectangular and are produced by lancing or cutting the stock of the web 16 along parallel horizontal lines or cuts 39 and a vertical line or cut 42. Any burr at the cut or edge 42 should not be greater than 0.005 inch. The pocket wall 37 is integral with the web 16 along a side 43 proximal to the web 16 while the remainder including a distal edge 44 and top and bottom edges 46, 47 are cut free of the web. With particular reference to
The lateral or horizontal offset of the plane of the end tab 21 mentioned earlier provides a depression 56 at a rearward portion of the tab. Preferably, the depth or horizontal offset of the depression 56 equals a single thickness of a layer or ply of the two-ply web 16, that is, one-half the web thickness. In accordance with the invention, the depression 56 is accurately sized in the vertical direction to fully receive the projecting forward portion of the end tab 21 of an identical mating splice 20. By way of example, but not limitation, the vertical manufacturing dimension D (
The connector 20 is adapted to mate with an identical connector as shown in
The relief groove 31 avoids significant interference between the connectors due to the projection of the lock lance 27 until after they have been effectively aligned by the end tabs 21 being substantially received in opposed pocket holes or openings 38. When the lock lances 27 reach the end 33 of the respective relief grooves 31 of their opposed connector 20 continued advance of the tee being installed requires the pocket walls 37 to momentarily resiliently deflect laterally outwardly to allow the lock lances to slide out of the ends of the grooves and over a short distance on the surface of the end tab proper until it passes the cut or edge 42 formed when the pocket wall 37 was made. The re-entrant character of the wall 37 allows the surface area of the bend line 52 to exclusively contact the opposing end tab 21 and assures consistent spring action. At this point, the lock lances 27, under the influence of the spring-like force developed by the deflected resilient pocket walls 37 snap longitudinally behind the edges 42 of the opposed connector thereby completing a connection or splice.
A beneficial result of the disclosed structural features of the connector is that an audible click is produced when the lock lance edges 28 pass over the edges 42 of the pocket openings 38 allowing the end tabs 21 to snap against one another. The click signals the installing technician that a connection has been completed. The loudness of this click is due in part to the geometry of the lock lance edge 28 which is, as discussed, 90 degrees or less, thereby avoiding a condition where if this edge were in a plane greater than 90 degrees, it would slide down the opposed locking edge 42 and mute the click.
The lead angle end portions 26 and the flared portions 51 of the pocket walls ensure that only surface-to-surface contact occurs when the greatest interference arises in the connection sequence as the lock lances slide over the land areas between the relief grooves 31 and the locking edges 42 of the openings 38. Contact between the front edge 32 of an end tab 21 or the distal edge 44 of the pocket wall 37 could greatly increase the frictional resistance between the connectors. In part, the re-entrant character of the wall at the bend line 52 avoids such edge contact. With the periphery of the pocket wall, specifically the edges 44, 46 and 47 (apart from where it is joined with the web proper), being free of connection with other parts of the connector, the pocket wall acts as a resilient spring. Consequently, the force to deflect it laterally for passage of the lock lance out of a groove 31 and over the adjacent land to the opening edge 42 is limited. In turn, the force to effectuate a connection is moderate and not prone to vary widely when the connectors 20 are nearly out of tolerance because of material thickness variation, tool wear or other manufacturing conditions. Such wide variation is known to occur in prior art connector designs and is found to be very objectionable to professional installation technicians.
It should be evident that this disclosure is by way of example and that various changes may be made by adding, modifying or eliminating details without departing from the fair scope of the teaching contained in this disclosure. The invention is therefore not limited to particular details of this disclosure except to the extent that the following claims are necessarily so limited.
Number | Name | Date | Kind |
---|---|---|---|
2689630 | Drury | Sep 1954 | A |
2946414 | Gordon | Jul 1960 | A |
3169614 | McCoy | Feb 1965 | A |
3221466 | Downing, Jr. | Dec 1965 | A |
3284977 | Lickliter | Nov 1966 | A |
3286427 | Cotter | Nov 1966 | A |
3288489 | Jahn | Nov 1966 | A |
3297345 | Downing, Jr. | Jan 1967 | A |
3350125 | Adams | Oct 1967 | A |
3374596 | O'Brien | Mar 1968 | A |
3496690 | Jahn | Feb 1970 | A |
3565474 | Stumbo | Feb 1971 | A |
3722167 | Rousey | Mar 1973 | A |
3778947 | Sauer | Dec 1973 | A |
3846031 | Adams | Nov 1974 | A |
3890760 | Jones | Jun 1975 | A |
3898784 | Sauer | Aug 1975 | A |
3921365 | Nute, Jr. | Nov 1975 | A |
3928950 | Beynon | Dec 1975 | A |
3979874 | Cubbier, Jr. | Sep 1976 | A |
4161856 | Brown | Jul 1979 | A |
4314432 | Rosenbaum | Feb 1982 | A |
4317318 | Sauer | Mar 1982 | A |
4317641 | Sauer | Mar 1982 | A |
4389828 | Cary | Jun 1983 | A |
4462198 | Sharp | Jul 1984 | A |
4499697 | LaLonde | Feb 1985 | A |
4525973 | Vukmanic | Jul 1985 | A |
4535580 | Shirey | Aug 1985 | A |
4549383 | Vukmanic | Oct 1985 | A |
4611453 | Worley | Sep 1986 | A |
4648230 | Mieyal | Mar 1987 | A |
4677802 | Vukmanic | Jul 1987 | A |
4785603 | Platt | Nov 1988 | A |
4989387 | Vukmanic | Feb 1991 | A |
5137390 | Felsen | Aug 1992 | A |
5271202 | Vukmanic | Dec 1993 | A |
5517796 | Koski | May 1996 | A |
5761868 | LaLonde | Jun 1998 | A |
5839246 | Ziegler | Nov 1998 | A |
6047511 | Lehane | Apr 2000 | A |
6138425 | Wendt | Oct 2000 | A |
6305139 | Sauer | Oct 2001 | B1 |
6729100 | Koski et al. | May 2004 | B2 |
7926238 | Sareyka | Apr 2011 | B2 |
8584418 | Underkofler | Nov 2013 | B2 |
8782985 | Gulbrandsen | Jul 2014 | B2 |
9062447 | Lehane, Jr. | Jun 2015 | B2 |
9371649 | Cipriani | Jun 2016 | B2 |
9376811 | Cipriani | Jun 2016 | B2 |
9637918 | Carbajal | May 2017 | B1 |
10011987 | Lehane | Jul 2018 | B1 |
10302115 | Bickers | May 2019 | B2 |
20030200719 | Koski | Oct 2003 | A1 |
20060260246 | LaLonde | Nov 2006 | A1 |
20090293403 | Cedrone | Dec 2009 | A1 |