High strength steel having good toughness

Abstract
Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g., at least about 165 ksi, while maintaining good toughness.
Description
RELATED APPLICATION

This application is related to Applicant's co-pending application entitled ULTRA HIGH STRENGTH STEEL HAVING GOOD TOUGHNESS, Ser. No. 13/031,133, filed Feb. 18, 2011, the entirety of which is hereby incorporated by reference.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to metal production and, in certain embodiments, relates to methods of producing metallic tubular bars having high strength while concurrently possessing good toughness.


2. Description of the Related Art


Seamless steel tubes are widely used in a variety of industrial applications. Due to requirements for higher load bearing capacity, situations of dynamic stresses, and the need for lighter components, there is an increasing demand for the development of steel tubes possessing increased strength and toughness.


In the oil industry, perforating guns comprising steel tubes containing explosive charges are used to deliver explosive charges to selected locations of wells. The steel tubes used as perforating gun carriers are subjected to very high external collapse loads that are exerted by the hydrostatic well pressure. On the other hand, during detonation, the steel tubes are also subjected to very high dynamic loads. To address this issue, efforts have been directed to the development of steel tubes with high strength, while at the same time maintaining very good impact toughness.


At present, the highest available steel grade in the market has a minimum yield strength of about 155 ksi. As a result, thick walled tubes are often employed in certain formations in order to withstand the high collapse pressures present. However, the use of thick walled tubes significantly reduces the working space available for the explosive charges, which may limit the range of applications in which the tubes may be employed.


From the foregoing, then, there is a need for improved compositions for metallic tubular bars, and, in particular, systems and methods for producing metallic tubular bars with a combination of high tensile properties and toughness.


SUMMARY OF THE INVENTION

Embodiments of the invention are directed to steel tubes and methods of manufacturing the same. In one embodiment, a quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g., at least about 165 ksi, while maintaining good toughness.


In an embodiment, a steel tube is provided. The steel tube comprises

    • about 0.20 wt. % to about 0.30 wt. % carbon;
    • about 0.30 wt. % to about 0.70 wt. % manganese;
    • about 0.10 wt. % to about 0.30 wt. % silicon;
    • about 0.90 wt. % to about 1.50 wt. % chromium;
    • about 0.60 wt. % to about 1.00 wt. % molybdenum;
    • about 0.020 wt. % to about 0.040 wt % niobium; and
    • about 0.01 wt. % to about 0.04 wt. % aluminum;
    • wherein the steel tube is processed to have a yield strength greater than about 165 ksi and wherein the Charpy V-notch energy is greater or equal to about 80 J/cm2 in the longitudinal direction and greater than or equal to about 60 J/cm2 in the transverse direction at about room temperature.


In a further embodiment, a method of making a steel tube is provided. The method comprises providing a carbon steel composition. The method further comprises forming the steel composition into a tube. The method also comprises heating the formed steel tube in a heating operation to a first temperature. The method additionally comprises quenching the formed steel tube in a quenching operation from the first temperature at a first rate such that the microstructure of the quenched steel is greater than or equal to about 95% martensite by volume. The method further comprises tempering the formed steel tube after the quenching operation by heating the formed steel tube to a second temperature less than about 550° C. The steel tube after tempering has a yield strength greater than about 165 ksi and the Charpy V-notch energy is greater or equal to about 80 J/cm2 in the longitudinal direction and 60 J/cm2 in the transverse direction at about room temperature.


In an additional embodiment, a method of forming a steel tube is provided. The method comprises providing a steel rod. The steel rod comprises

    • about 0.20 wt. % to about 0.30 wt. % carbon;
    • about 0.30 wt. % to about 0.70 wt. % manganese;
    • about 0.10 wt. % to about 0.30 wt. % silicon;
    • about 0.90 wt. % to about 1.50 wt. % chromium;
    • about 0.60 wt. % to about 1.00 wt. % molybdenum;
    • about 0.020 wt. % to about 0.40 wt. % niobium; and
    • about 0.01 wt. % to about 0.04 wt. % aluminum.


The method further comprises forming the steel rod into a tube in a hot forming operation at a temperature of about 1200° C. to 1300° C. The method further comprises heating the formed steel tube in a first heating operation to a temperature of about 880° C. to 950° C. for about 10 to 30 minutes. The method additionally comprises quenching the formed steel tube in a quenching operation after the first heating operation at a rate such that the microstructure of the quenched steel is greater than or equal to about 95% martensite. The method further comprises tempering the formed steel tube after the second quenching operation by heating the formed steel tube to a temperature between about 450° C. to about 550° C. for between about 5 minutes to about 30 minutes such that the final microstructure possesses about 95% martensite with the remainder consisting essentially of bainite. The microstructure, after tempering, may further include spherical carbides having a largest dimension less than or equal to about 150 μm and/or elongated carbides having a length less than or equal to about 1 μm and a thickness less than or equal to about 200 nm. The microstructure, after quenching, may further comprise an average grain size within the range between about 5 μm to about 15 μm. The steel tube after tempering has a yield strength greater than about 165 ksi and wherein the Charpy V-notch energy is greater or equal to about 80 J/cm2 in the longitudinal direction and about 60 J/cm2 in the transverse direction at about room temperature.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C are embodiments of methods of forming high strength steels;



FIGS. 2A-2B are micrographs of an embodiment of the steel composition after austenizing, quenching, and tempering heat treatments; and



FIG. 3 is a plot of Charpy impact energy (CVN) versus yield strength for steels formed from embodiments of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure provide steel compositions, tubular bars (e.g., pipes) formed using the steel compositions, and respective methods of manufacture. The tubular bars may be employed, for example, as perforating gun carriers for in the oil and gas industry. It may be understood, however, that tubular bars comprise one example of articles of manufacture which may be formed from embodiments of the steels of the present disclosure and should in no way be construed to limit the applicability of the disclosed embodiments.


The term “bar” as used herein is a broad term and includes its ordinary dictionary meaning and also refers to a generally hollow, elongate member which may be straight or have bends or curves and be formed to a predetermined shape, and any additional forming required to secure the formed tubular bar in its intended location. The bar may be tubular, having a substantially circular outer surface and inner surface, although other shapes and cross-sections are contemplated as well. As used herein, the term “tubular” refers to any elongate, hollow shape, which need not be circular or cylindrical.


The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.


The term “room temperature” as used herein has its ordinary meaning as known to those skilled in the art and may include temperatures within the range of about 16° C. (60° F.) to about 32° C. (90° F.).


In general, embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the steel composition may be formed and subjected to a heat treatment including austenizing, quenching, and tempering. The microstructure at the end of quenching includes at least about 95% martensite, by volume. Subsequent tempering may be performed within the range between about 450° C. to about 550° C. The microstructure resulting after tempering includes a fine carbide distribution, where the carbide particles are relatively small in size owing to the relatively low tempering temperatures. This microstructure provides relatively high strength and toughness. For example, yield strengths greater than about 165 ksi and Charpy V-Notch energies of at least 80 J/cm2 in the LC direction and at least about 60 J/cm2 in the CL direction.


In other embodiments, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) to refine the grain size of the final microstructure. This refinement may improve the strength and toughness of the formed steel composition. Repeating the austenizing and quenching operations twice may be referred to herein as double austenizing. It may be understood, however, that the austenizing and quenching operations may be performed any number of times, without limit, to achieve the desired microstructure and mechanical properties. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering operations a selected number of times (e.g., 2), with tempering performed after each quenching operation.


It is anticipated that embodiments of articles formed from selected steel compositions in this manner (e.g., tubular bars and pipes) will possess high yield strength, at least about 165 ksi (about 1138 MPa), as measured according to ASTM E8, while maintaining good toughness. For example, experiments discussed herein illustrate that steels formed from embodiments of the disclosed composition may further exhibit Charpy V-notch impact energies greater than about 80 J/cm2 in the LC direction and about 60 J/cm2 in the CL direction, as measured according to ASTM Standard E23. As discussed in greater detail below, these improvements in properties are achieved, at least in part, due to refinement of the microstructure of the formed steel compositions (e.g., grain size, packet size, and average carbide size) as a result of varying the temperatures of respective austenizing operations.


For example, in one embodiment, repeated austenizing and quenching operations at different temperatures may be employed to refine the grain size and packet size of the formed steel tube with the objective of improving the toughness of the steel tube. The grain size of the tube can also be reduced by decreasing the austenizing temperature, as grain growth is a diffusion controlled process that may be delayed by reducing the austenizing temperature. However the austenizing temperature should also be high enough to decompose substantially all of the iron carbides (cementite) in the steel composition. If the austenizing temperature is not high enough, large cementite particles may remain in the final microstructure of the steel that impair the toughness of the steel. Thus, in order to improve the toughness of the steel, the austenizing temperature is preferably selected to be slightly above the minimum value to that is needed to dissolve the cementite. While temperatures higher than this minimum may guarantee the decomposition of cementite, they may produce excessive grain growth.


For this reason, a preferred temperature range for austenizing is provided in each condition. The preferred range depends on the iron carbide size of the initial microstructure. In an embodiment, if the steel is in the as hot-rolled condition (e.g., the case of the first austenizing treatment), the minimum temperature is preferably high enough to dissolve the large carbides appearing in the starting microstructure (e.g., about 900° C. to about 950° C.) If the material is in the as-quenched condition (e.g., the case of a second austenizing performed without intermediate tempering) there are substantially no cementite carbides present in the initial microstructure, so the minimum austenizing temperature is preferably lower (e.g., about 880° C. to about 930° C.).


These observations may be employed to reduce the austenizing temperature for refining the steel microstructure. If an intermediate tempering is performed, cementite carbides may be precipitated during tempering resulting in an increase in the minimum austenizing temperature as compared to the ideal case of the as quenched condition with substantially no cementite carbides.


However, during industrial processing it may be not possible or feasible to perform a double austenizing and quenching procedure without intermediate tempering. Therefore, the austenizing, quenching, and tempering operations may be repeated instead. When performing a tempering, reducing the tempering temperature is desirable in order to avoid the precipitation of large carbides, which need a higher austenizing temperature to be dissolved. For this reason, the tempering temperature is limited to less than about 550° C.


The metal composition of the present disclosure preferably comprises a steel alloy comprising not only carbon (C) but also manganese (Mn), silicon (Si), chromium (Cr), molybdenum (Mo), niobium (Nb), and aluminum (Al). Additionally, one or more of the following elements may be optionally present and/or added nickel (Ni), vanadium (V), titanium (Ti), and calcium (Ca). The remainder of the composition may comprise iron (Fe) and impurities. In certain embodiments, the concentration of impurities may be reduced to as low an amount as possible. Embodiments of impurities may include, but are not limited to, sulfur (S), phosphorous (P), copper (Cu), nitrogen (N), lead (Pb), tin (Sn), arsenic (As), antimony (Sb), and bismuth (Bi). Elements within embodiments of the steel composition may be provided as below in Table 1, where the concentrations are in wt. % unless otherwise noted.









TABLE 1







STEEL COMPOSITION











Preferred Composition



Composition Range (wt. %)
Range (wt. %)











Element
Minimum
Maximum
Minimum
Maximum














C
0.20
0.30
0.24
0.27


Mn
0.30
0.70
0.45
0.55


Si
0.10
0.30
0.20
0.30


S
0
0.10
0
0.003


P
0
0.015
0
0.010


Cr
0.90
1.50
0.90
1.0


Mo
0.60
1.0
0.65
0.70


Ni
0
0.50
0
0.15


Nb
0.020
0.040
0.025
0.030


V
0
0.005
0
0.005


Ti
0
0.010
0
0.010


Cu
0
0.30
0
0.15


Al
0.01
0.04
0.01
0.04


Ca
0
0.05
0
0.05


N
0
0.0080
0.01
0.0060









C is an element whose addition to the steel composition inexpensively raises the strength of the steel. In some embodiments, if the C content of the steel composition is less than about 0.20% it may be difficult to obtain the strength desired in the steel. On the other hand, in some embodiments, if the steel composition has a C content greater than about 0.30%, toughness may be impaired. Therefore, in an embodiment, the C content of the steel composition may vary within the range between about 0.20% to about 0.30%, preferably within the range between about 0.24% to about 0.27%.


Mn is an element whose addition to the steel composition is effective in increasing the hardenability, strength, and toughness. In some embodiments, if the Mn content of the steel composition is less than about 0.30%, it may be difficult to obtain the desired strength in the steel. However, in some embodiments, if the Mn content of the steel composition exceeds about 0.7%, banding structures within the steel may become marked and the toughness of the steel may decrease. Accordingly, in an embodiment, the Mn content of the steel composition may vary within the range between about 0.30% to about 0.7%, preferably within the range between about 0.45% to about 0.55%.


Si is an element whose addition to the steel composition has a deoxidizing effect during steel making process and also raises the strength of the steel. In some embodiments, if the Si content of the steel composition exceeds about 0.30%, the toughness and formability of the steel may decrease. Therefore, in an embodiment, the Si content of the steel composition may vary within the range between about 0.10% to about 0.30%, preferably within the range between about 0.20% to about 0.30%.


S is an impurity element whose presence within the steel composition causes the toughness and workability of the steel to decrease. Accordingly, in some embodiments, the S content of the steel composition is limited to less than or equal to about 0.010%, preferably less than or equal to about 0.003%.


P is an impurity element whose presence within the steel composition causes the toughness of the steel to decrease. Accordingly, in some embodiments, the P content of the steel composition limited to less than or equal to about 0.015%, preferably less than or equal to about 0.010%.


Cr is an element whose addition to the steel composition increases hardenability and tempering resistance of the steel. Therefore, Cr is desirable for achieving high strength levels. In an embodiment, if the Cr content of the steel composition is less than about 0.90%, it may be difficult to obtain the desired strength. In other embodiments, if the Cr content of the steel composition exceeds about 1.50%, the toughness of the steel may decrease. Therefore, in certain embodiments, the Cr content of the steel composition may vary within the range between about 0.90% to about 1.50%, preferably within the range between about 0.90% to about 1.0%.


Mo is an element whose addition to the steel composition is effective in increasing the strength of the steel and further assists in retarding softening during tempering. Mo additions to the steel composition may also reduce the segregation of phosphorous to grain boundaries, improving resistance to inter-granular fracture. In an embodiment, if the Mo content of the steel composition is less than about 0.60%, it may be difficult to obtain the desired strength in the steel. However, this ferroalloy is expensive, making it desirable to reduce the maximum Mo content within the steel composition. Therefore, in certain embodiments, Mo content within the steel composition may vary within the range between about 0.60% to about 1.00%, preferably within the range between about 0.65% to about 0.70%.


Ni is an element whose addition to the steel composition is optional and may increase the strength and toughness of the steel. However, Ni is very costly and, in certain embodiments, the Ni content of the steel composition is limited to less than or equal to about 0.50%, preferably less than or equal to about 0.15%.


Nb is an element whose addition to the steel composition may refine the austenitic grain size of the steel during hot rolling, with the subsequent increase in both strength and toughness. Nb may also precipitate during tempering, increasing the steel strength by particle dispersion hardening. In an embodiment, if the Nb content of the steel composition is less than about 0.020%, it may be difficult to obtain the desired combination of strength and toughness. However, in other embodiments, if the Nb content is greater than about 0.040%, a dense distribution of precipitates may form that may impair the toughness of the steel composition. Therefore, in an embodiment, the Nb content of the steel composition may vary within the range between about 0.020% to about 0.040%, preferably within the range between about 0.025% to about 0.030%.


V is an element whose addition to the steel composition may be used to increase the strength of the steel by carbide precipitations during tempering. However, in certain embodiments, V may be omitted from the steel composition. In an embodiment, when present, if the V content of the steel composition is greater than about 0.005%, a large volume fraction of vanadium carbide particles may be formed, with an attendant reduction in toughness of the steel. Therefore, in certain embodiments, the maximum V content of the steel composition may be less than or equal to about 0.005%.


Ti is an element whose addition to the steel composition may be used to refine austenitic grain size. However, in certain embodiments, Ti may be omitted from the steel composition. Additionally, in embodiments of the steel composition when Ti is present and in concentrations higher than about 0.010%, coarse TiN particles may be formed that impair toughness of the steel. Therefore, in certain embodiments, the maximum Ti content of the steel composition may be less than or equal to about 0.010%.


Cu is an impurity element that is not required in certain embodiments of the steel composition. However, depending upon the steel fabrication process, the presence of Cu may be unavoidable. Thus, in certain embodiments, the Cu content of the steel composition may be limited to less than or equal to about 0.30%, preferably less than or equal to about 0.15%.


Al is an element whose addition to the steel composition has a deoxidizing effect during the steel making process and further refines the grain size of the steel. In an embodiment, if the Al content of the steel composition is less than about 0.010%, the steel may be susceptible to oxidation, exhibiting high levels of inclusions. In other embodiments, if the Al content of the steel composition greater than about 0.040%, coarse precipitates may be formed that impair the toughness of the steel. Therefore, the Al content of the steel composition may vary within the range between about 0.010% to about 0.040%


Ca is an element whose addition to the steel composition is optional and may improve toughness by modifying the shape of sulfide inclusions. Thereafter, in certain embodiments, the minimum calcium content of the steel may satisfy the relationship Ca/S>1.5. In other embodiments of the steel composition, excessive Ca is unnecessary and the steel composition may comprise a Ca content less than or equal to about 0.05%.


The contents of unavoidable impurities including, but not limited to, S, P, N, Pb, Sn, As, Sb, Bi and the like are preferably kept as low as possible. However, mechanical properties (e.g., strength, toughness) of steels formed from embodiments of the steel compositions of the present disclosure may not be substantially impaired provided these impurities are maintained below selected levels. In one embodiment, the N content of the steel composition may be less than or equal to about 0.008%, preferably less than or equal to about 0.006%. In another embodiment, the Pb content of the steel composition may be less than or equal to about 0.005%. In a further embodiment, the Sn content of the steel composition may be less than or equal to about 0.02%. In an additional embodiment, the As content of the steel composition may be less than or equal to about 0.012%. In another embodiment, the Sb content of the steel composition may be less than or equal to about 0.008%. In a further embodiment, the Bi content of the steel composition may be less than or equal to about 0.003%.


In one embodiment, tubular bars may be formed using the steel composition disclosed above in Table 1. The tubular bars may preferably have a wall thickness selected within the range between about 4 mm to about 25 mm. In one embodiment, the metallic tubular bars may be seamless. In an alternative implementation, the metallic tubular bars may contain one or more seams.


Embodiments of methods 100, 120, 140 of producing high strength metallic tubular bars are illustrated in FIGS. 1A-1C. It may be understood that methods 100, 120, 140 may be modified to include greater or fewer steps than those illustrated in FIGS. 1A-1C without limit.


With reference to FIG. 1A, in operation 102, the steel composition is formed and cast into a metallic billet. In operation 104, the metallic billet may be hot formed into a tubular bar. In operations 106 (e.g., 106A, 106B, 106C), the formed tubular bar may be subjected to heat treatment. In operation 110, finishing operations may be performed on the bar.


Operation 102 of the method 100 preferably comprises fabrication of the metal and production of a solid metal billet capable of being pierced and rolled to form a metallic tubular bar. In one embodiment, the metal may comprise steel. In further embodiments, selected steel scrap and sponge iron may be employed to prepare the raw material for the steel composition. It may be understood, however, that other sources of iron and/or steel may be employed for preparation of the steel composition.


Primary steelmaking may be performed using an electric arc furnace to melt the steel, decrease phosphorous and other impurities, and achieve a selected temperature. Tapping and deoxidation, and addition of alloying elements may be further performed.


One of the main objectives of the steelmaking process is to refine the iron by removal of impurities. In particular, sulfur and phosphorous are prejudicial for steel because they degrade the mechanical properties of the steel. In one embodiment, secondary steelmaking may be performed in a ladle furnace and trimming station after primary steelmaking to perform specific purification steps.


During these operations, very low sulfur contents may be achieved within the steel, calcium inclusion treatment as understood in the art of steelmaking may be performed, and inclusion flotation may be performed. In one embodiment inclusion flotation may be performed by bubbling inert gases in the ladle furnace to force inclusions and impurities to float. This technique may produce a fluid slag capable of absorbing impurities and inclusions. In this manner, a high quality steel having the desired composition with a low inclusion content may result. Following the production of the fluid slag, the steel may be cast into a round solid billet having a substantially uniform diameter along the steel axis.


The billet thus fabricated may be formed into a tubular bar through hot forming processes 104. In an embodiment, a solid, cylindrical billet of clean steel may be heated to a temperature of about 1200° C. to 1300° C., preferably about 1250° C. The billet may be further subject to a rolling mill. Within the rolling mill, the billet may be pierced, in certain preferred embodiments utilizing the Manessmann process, and hot rolling may be used to substantially reduce the outside diameter and wall thickness of the tube, while the length is substantially increased. In certain embodiments, the Manessmann process may be performed at temperatures of about 1200° C. The obtained hollow bars may be further hot rolled at temperatures within the range between about 1000° C. to about 1200° C. in a retained mandrel continuous mill. Accurate sizing may be carried out by a sizing mill and the seamless tubes cooled in air to about room temperature in a cooling bed


In a non-limiting example, a solid bar possessing an outer diameter within the range between about 145 mm to about 390 mm may be hot formed as discussed above into a tube possessing an outer diameter within the range between about 39 mm to about 275 mm and a wall thickness within the range between about 4 mm to about 25 mm. The length of the tubes may be varied, as necessary. For example, in one embodiment, the length of the tubes may vary within the range between about 8 m to about 15 m.


In this fashion, a straight-sided, metallic tubular bar having a composition within the ranges illustrated in Table 1 may be provided.


In operations 106A-106C, the formed metallic tubular bar may be subjected to heat treatment. In operation 106A, a tubular bar formed as discussed above may be heated so as to substantially fully austenize the microstructure of the tubular bar. A tubular bar that is substantially fully austenized may comprise greater than about 99.9 wt. % austenite on the basis of the total weight of the tubular bar. The tubular bar may be heated to a maximum temperature selected within the range between about 880° C. to about 950° C. The heating rate during the first austenizing operation 106A may vary within the range between about 15° C./min to about 60° C./min. The tubular bar may be further heated to the maximum temperature over a time within the range between about 10 minutes to about 30 minutes.


Following the hold period, the tubular bar may be subjected to quenching operation 106B. In an embodiment, quenching may be performed using a system of water sprays (e.g., quenching heads). In another embodiment, quenching may be performed using an agitated water pool (e.g., tank) in which additional heat extraction is obtained by a water jet directed to the inner side of the pipe. In either case, the tubular bar may be cooled at a rate between approximately 15° C./sec to 50° C./sec to a temperature preferably not greater than about 150° C. The microstructure of the steel composition, after the quenching operation 104, comprises at least about 95% martensite, with the remaining microstructure comprising substantially bainite.


Following the austenizing and quenching operations 106A, 106B, the tubular bar may be further subjected to a tempering operation 106C. During the tempering operation 106C, the tubular bar may be heated a temperature within the range between about 450° C. to about 550° C. The heating rate during the tempering operation 106C may vary within the range between about 15° C./min to about 60° C./min. The tubular bar may be further heated to the maximum temperature over a time within the range between about 10 minutes to about 40 minutes. Upon achieving the selected maximum temperature, the tubular bar may be held at about this temperature for a time within the range between about 5 minutes to about 30 minutes.


Due to the low tempering temperatures, the final microstructure of the steel composition after the tempering operation 106C comprises slightly tempered martensite having a fine carbide distribution. This microstructure is illustrated in FIGS. 2A-2B. As illustrated in FIG. 2, the tempered martensite is composed of a ferrite matrix (e.g., dark gray phases) and several types of carbides (light gray particles).


With respect to morphology, two types of carbides were observed to be present in the microstructure, approximately spherical and elongated. Regarding the spherical carbides, the maximum size (e.g., largest dimension such as diameter) was observed to be about 150 nm. Regarding the elongated carbides, the maximum size was observed to be about 1 μm length and about 200 nm in thickness.


The hot rolled tube may be further subjected to different finishing operations 110. Non-limiting examples of these operations may include cutting the tube to length, and cropping the ends of the tube, straightening the tube using rotary straightening equipment, if necessary, and non-destructive testing by a plurality of different techniques, such as electromagnetic testing or ultrasound testing. In an embodiment, the tubular bars may be straightened at a temperature not lower than the tempering temperature reduced by 50° C., and then cooled in air down to room temperature in a cooling bed.


Advantageously, seamless steel pipes obtained according to embodiments of the method 100 discussed above may be employed in applications including, but not limited to, perforating gun carriers in the oil and gas industry. As discussed in greater detail below, mechanical testing has established that embodiments of the steel pipes exhibit a yield strength of at least about 165 ksi (measured according to ASTM E8, “Standard Test Methods for Tension Testing of Metallic Materials,” the entirety of which is incorporated by reference) and a Charpy V-notch impact energy at room temperature, measured according to ASTM E23 (“Standard Test Methods for Notched Bar Impact Testing of Metallic Materials,” the entirety of which is incorporated by reference) of at least about 80 Joules/cm2 for samples taken in the LC direction and at least about 60 Joules/cm2 for samples taken in the CL direction.


The good combination of strength and toughness obtained in embodiments of the steel composition are ascribed, at least in part, to the combination of the steel composition and to the microstructure. In one aspect, the relatively small size of the carbides (e.g., spherical carbides less than or equal to about 150 nm and/or elongated carbides of about 1 μm or less in length and about 200 nm or less in thickness) increase the strength of the steel composition by particle dispersion hardening without strongly impairing toughness. In contrast, large carbides can easily nucleate cracks.


In alternative embodiments, one of methods 120 or 140 as illustrated in FIGS. 1B and 1C may be employed to fabricate seamless steel pipes when increased strength is desired. The methods 120 and 140 differ from one another and from the method 100 by the heat treatment operations performed on the seamless steel pipe. As discussed in greater detail below, embodiments of heat treatment operations 126 (of method 120) comprise repeated austenizing and quenching operations, followed by tempering. Embodiments of heat treatment operations 146 (of method 140) comprise repeated sequences of austenizing, quenching, and tempering. In other respects, the metal fabrication and casting, hot forming, and finishing operations of methods 100, 120, and 140 are substantially the same.


With reference to method 120, the heat treatment 126 may comprise a first austenizing/quenching operation 126A that may include heating and quenching a tubular bar formed as discussed above into the austenitic range. The conditions under which austenizing is performed during the first austenizing/quenching operation 126A may be designated as A1. The conditions under which quenching is performed during the first austenizing/quenching operation 126A may be designated as Q1.


In an embodiment, the first austenizing and quenching parameters A1 and Q1 are selected such that the microstructure of the tubular bar after undergoing the first austenizing/quenching operation 126A comprises at least about 95% martensite with the remainder including substantially only bainite. In further embodiments, the first austenizing and quenching parameters A1 and Q1 may also produce a microstructure that is substantially free of carbides. In certain embodiments, a microstructure that is substantially free of carbides may comprise a total carbide concentration less than about 0.01 wt. % on the basis of the total weight of the tubular bar. In further embodiments, the average grain size of the tubular bar after the first austenizing and quenching operations 126A may fall within the range between about 10 μm to about 30 μm.


In an embodiment, the first austenizing parameters A1 may be selected so as to substantially fully austenize the microstructure of the tubular bar. A tubular bar that is substantially fully austenized may comprise greater than about 99.9 wt. % austenite on the basis of the total weight of the tubular bar. The tubular bar may be heated to a maximum temperature selected within the range between about 900° C. to about 950° C. The heating rate during the first austenizing operation 126A may vary within the range between about 30° C./min to about 90° C./min. The tubular bar may be further heated to the maximum temperature over a time within the range between about 10 minutes to about 30 minutes.


The tubular bar may be subsequently held at the selected maximum temperature for a hold time selected within the range between about 10 minutes to about 30 minutes. The relatively low austenizing temperatures employed in embodiments of the disclosed heat treatments, within the range between about 900° C. to about 950° C., are employed to restrain grain growth as much as possible, promoting microstructural refinement that may give rise to improvements in toughness. For these austenizing temperatures, the austenizing temperature range of about 900° C. to about 950° C. is also sufficient to provide substantially complete dissolution of cementite carbides. Within this temperature range, complete dissolution of Nb- and Ti-rich carbides, even when using extremely large holding times, is generally not achieved. The cementite carbides, which are larger than Nb and Ti carbides, may impair toughness and reduce strength by retaining carbon.


Following the hold period, the tubular bar may be subjected to quenching. In an embodiment, quenching during the austenizing/quenching operations 126A may be performed a system of water sprays (e.g., quenching heads). In another embodiment, quenching may be performed using an agitated water pool (e.g., tank) in which additional heat extraction is obtained by a water jet directed to the inner side of the pipe.


Embodiments of the quenching parameters Q1 are as follows. The tubular bar may be cooled at a rate between approximately 15° C./sec to 50° C./sec to a temperature preferably not greater than about 150° C.


The second austenizing/quenching operation 126B may comprise heating and quenching the tubular bar formed as discussed above into the austenitic range. The conditions of under which austenizing is performed during the second austenizing/quenching operation 126B may be designated as A2. The conditions under which quenching is performed during the second austenizing/quenching operation 126B may be designated as Q2.


In an embodiment, the second austenizing and quenching parameters A2 and Q2 may be selected such that the microstructure of the tubular bar after undergoing the second austenizing/quenching operation 126B comprises at least about 95% martensite. In further embodiments, the austenizing and quenching parameters A2 and Q2 may also produce a microstructure that is substantially free of carbides.


In additional embodiments, the average grain size of the tubular bar after the second austenizing/quenching operations 126B may be less than that obtained after the first austenizing and quenching operations 126A. For example, the grain size of the tubular pipe after the second austenizing/quenching operations 126B may fall within the range between about 5 μm to about 15 μM. This microstructural refinement may improve the strength and/or the toughness of the tubular bar.


In an embodiment, the second austenizing parameters A2 are as follows. The tubular bar may be heated to a maximum austenizing temperature less than that employed in the first austenizing/quenching operations 126A in order to further refine the grain size of the microstructure. The second austenizing operation A2 takes advantage of the carbide dissolution achieved during the first austenizing/quenching operations 106A (A1/Q1). As substantially all the iron carbides (e.g., cementite particles) are dissolved within the microstructure following the first austenizing and quenching operations 126, lower austenizing temperatures can be used during the second austenizing and quenching operations 126B with attendant reduction in grain size (grain refinement). In an embodiment, the second austenizing operation A2 may take place at a temperature selected within the range between about 880° C. to about 930° C. The heating rate during the second austenizing operation A2 may vary within the range between about 15° C./min to about 60° C./min. The tubular bar may be subsequently held at the selected maximum temperature for a hold time selected within the range between about 10 to about 30 minutes.


Following the hold period, the tubular bar may be subjected to quenching Q2. In an embodiment, quenching during the austenizing/quenching operations 126B may be performed a system of water sprays (e.g., quenching heads). In another embodiment, quenching may be performed using an agitated water pool (e.g., tank) in which additional heat extraction is obtained by a water jet directed to the inner side of the pipe.


Embodiments of the quenching parameters Q2 are as follows. The tubular bar may be cooled at a rate between about 15° C./sec to about 50° C./sec to a temperature preferably not greater than about 150° C.


Following the first and second austenizing/quenching operations 126A, 126B, the tubular bar may be further subjected to a tempering operation 126C, also referred to herein as (T). During the tempering operation 126C, the tubular bar may be heated a temperature within the range between about 450° C. to about 550° C. The heating rate during the tempering operation 106C may vary within the range between about 15° C./min to about 60° C./min. The tubular bar may be further heated to the maximum temperature over a time within the range between about 10 minutes to about 40 minutes. Upon achieving the selected maximum temperature, the tubular bar may be held at about this temperature for a time within the range between about 5 minutes to about 30 minutes.


The tubular bars may also be subjected to finishing operations 130. Examples of finishing operations 130 may include, but are not limited to, straightening. Straightening may be performed at a temperature not lower than the tempering temperature reduced by 50° C. Subsequently the straightened tube may be cooled in air down to about room temperature in a cooling bed.


In an alternative embodiment, the formed tubular bar may be subjected to method 140 which employs heat treatment operations 146C. In heat treatment operations 146C, first austenizing and quenching operations 146A (A1) and (Q1) are followed by a first tempering operation 146B (T1), second austenizing and quenching operations 146C (A2) and (Q2), and second tempering operation 146D (T2). The first and second austenizing and quenching operations 146A and 146C may be performed as discussed above with respect to the first and second austenizing and quenching operations 126A and 126B. The first (T1) and second (T2) tempering operations 146B and 146D may also be performed as discussed above with respect to the first tempering operation 106C.


The microstructure resulting from methods 120 and 140 may be similar to that resulting from method 100. For example, in one embodiment, after the first austenizing and quenching operations 126A and 146A, the average grain size may vary within the range between about 10 μm to about 30 μm. In another embodiment, after the second austenizing and quenching operations 126C and 146C, the average grain size may vary within the range between about 5 μm to about 15 μm. In further embodiments, a fine distribution of carbides may be present within the microstructure after tempering operations 126C, 146D. For example, spherical and elongated carbides may be present within the microstructure, with the maximum size of the spherical particles being less than or equal to about 150 nm and the maximum size of the elongated carbides being less than or equal to about 1 μm length and less than or equal to about 200 nm in thickness.


Advantageously, seamless steel pipes and tubes formed according to the embodiments of methods 120 and 140 may be suitable for applications including, but not limited to, perforating gun carriers in the oil and gas industry. For example, in one embodiment, tubular bars and pipes formed from embodiments of the steel composition may exhibit a yield strength of at least about 170 ksi (about 1172 MPa) as measured according to ASTM Standard E8. In another embodiment, tubular bars and pipes formed from embodiments of the steel composition may exhibit Charpy V-notch impact energies at room temperature greater than about 80 J/cm2 in the LC direction and about 60 J/cm2 in the CL direction as measured according to ASTM Standard E23. This good combination of properties is ascribed, at least in part, to the refined grain size and relatively small size of the carbides within the microstructure.


Beneficially, in certain embodiments, these results may be achieved without vanadium addition. Vanadium is known to increase strength by carbide precipitation during tempering but may impair toughness.


EXAMPLES

In the following examples, the tensile and impact properties of steel pipes formed using embodiments of the steel making method discussed above are illustrated. The formed steel pipes were tested after heat treatments of austenizing, quenching, and tempering (A+Q+T) (Conditions 1 and 2), double austenizing and tempering (A1+Q1+A2+Q2+T) followed by tempering (Condition 3). The tested steel pipes possessed an outer diameter of about 114.3 mm and a wall thickness of about 8.31 mm, unless otherwise noted. Experiments were performed on samples having approximately the composition and heat treatments of Tables 2 and 3, respectively.









TABLE 2





COMPOSITION OF SAMPLE SPECIMENS






















Heat
C
Mn
Si
Cr
Mo
Ni
Nb





A
0.25
0.47
0.25
0.94
0.67
0.016
0.028


B
0.25
0.49
0.25
0.95
0.70
0.051
0.027





Heat
Cu
S
P
Al
Ti
V
N





A
0.029
0.001
0.008
0.027
0.001
0.001
0.0035


B
0.056
0.001
0.008
0.016
0.001
0.001
0.0039
















TABLE 3







HEAT TREATMENTS OF SAMPLE SPECIMENS












Condition
Heat
Heat treatment
A1 (° C.)
A2 (° C.)
T (° C.)





1
A
Single
880

460


2
B
Single
910

460


3
B
Double
910
890
460




austenizing









Measurements of strength and impact properties were performed on between 3 to 5 pipes for each condition. For each tube, tensile tests were performed in duplicate and impact tests were performed in triplicate at about room temperature. It may be understood that the examples presented below are for illustrative purposes and are not intended to limit the scope of the present disclosure.


Example 1
Room Temperature Tensile Properties and Impact Energies

The strength and elongation of steels having compositions as indicated above in Tables 2 and 3 at were measured according to ASTM Standard E8 at room temperature. The Charpy energies of the steels of Tables 2 and 3 were measured according to ASTM Standard E23 at about room temperature and represent a measure of the toughness of the materials. The Charpy tests were performed on samples having dimensions of about 10×7.5×55 mm taken longitudinally (LC) from the pipes. The average tensile strength, yield strength, elongation, and Charpy V-notch energies (CVN) measured for each condition are reported in Table 4 and average values per tube are reported in FIG. 3.









TABLE 4







AVERAGE TENSILE AND IMPACT PROPERTIES














YS
UTS
YS/
El
Hardness
CVN/cm2


Condition
(ksi)
(ksi)
UTS
(%)
RC
(Joules)





1
172 ± 3
182 ± 3
0.95
14 ± 3
40.8 ± 0.4
91 ± 5


2
176 ± 2
188 ± 2
0.93
14 ± 1
41.9 ± 0.3
92 ± 5


3
180 ± 2
189 ± 1
0.95
13 ± 2
41.8 ± 0.4
97 ± 5









For each of the conditions tested, yield strength was observed to be greater than or equal to about 165 ksi and ultimate tensile strength was observed to be greater than or equal to about 170 ksi. The elongation at failure for each of the conditions tested was further found to be greater than or equal to about 10%. In further embodiments, the yield strength was observed to be greater than about 170 ksi, ultimate tensile strength was observed to be greater than or equal to about 180 ksi, and elongation at failure was found to be greater than or equal to about 13%. In certain embodiments, the measured Charpy V-notch impact energies at about room temperature were greater than about 65 J/cm2 for each of the conditions tested. In further embodiments, the room temperature Charpy energies were greater than or equal to about 90 J/cm2.


The best combination of tensile properties and toughness were observed for heat treatment condition 3, which corresponded to double austenizing. This condition exhibited the largest yield strength (about 189 ksi) and CVN at room temperature (about 97 J/cm2). The improvement in yield strength and toughness is ascribed to the microstructural refinement achieved by the double austenizing/quenching operations.


Example 2
Further Impact Energy Studies

Additional impact energy investigations were performed on steel pipe samples formed according to Condition 1 from about −60° C. to about room temperature in order to identify the ductile to brittle transition temperature of the formed steel compositions. For these measurements, samples were taken in both the longitudinal (LC) and transverse (CL) directions, Charpy tests were performed on samples having dimensions of about 10×7.5×55 mm in the LC orientation and about 10×5×55 mm in the CL orientation. The average Charpy V-notch energies for each condition are reported in Table 5.









TABLE 5







AVERAGE TOUGHNESS OF CONDITION 2 SAMPLES














CVN
Ductile Area


Size/Orientation
T (° C.)
CVN (J)
(J/cm2)
(%)





10 × 7.5 × 55
RT
71
95
100 


LC

(73, 71, 73)

(100, 100, 100)




(73, 72, 65)

(100, 100, 100)



0
64
85
94




(66, 65, 60)

(97, 94, 90)



−20
48
64
71




(52, 41, 51)

(74, 64, 76)



−40
34
45
44




(31, 38, 33)

(38, 50, 45)



−60
27
36
32




(30, 26, 28)

(33, 30, 32)




(29, 28, 24)

(35, 33, 27)


10 × 5 × 55
RT
37
74
100 


CL

(36, 37, 37)

(100, 100, 100)




(37, 37, 35)

(100, 100, 100)



0
38
76
100 




(36, 39, 39)

(100, 100, 100)



−20
30
60
100 




(31, 31, 28)

(100, 100, 100)



−40
25
50
75




(21, 23, 32)

(73, 65, 91)



−60
15
30
31




(17, 16, 15)

(40, 34, 34)




(13, 14, 12)

(27, 30, 18)









As illustrated in Table 5, the LC Charpy samples at about room temperature (RT) exhibited energies greater than about 80 J/cm2 and approximately 100% ductile fracture, as observed from the fracture surface. The CL Charpy samples exhibited energies of greater than about 60 J/cm2 and approximately 100% ductile fracture. As the test temperature decreased from about room temperature to about −60° C., the LC and CL Charpy energies dropped by roughly half to approximately 30-36 J/cm2. Concurrently, the portion of the fracture surface undergoing ductile fracture decreased by approximately two-thirds in each geometry.


From the results, it can be observed that the ductile to brittle transformation temperature (DBTT) is between −20° C. and −40° C. for longitudinally oriented samples (LC) owing to the large reduction in ductile area observed between about −20° C. and about −40° C. in the LC orientation (from about 71% to about 44%). It can be further observed that the DBTT is between about −40° C. and −60° C. for transversely oriented samples (CL) owing to the large reduction in ductile area observed between about −40° C. and about −60° C. (from about 75% to about 31%).


Although the foregoing description has shown, described, and pointed out the fundamental novel features of the present teachings, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus as illustrated, as well as the uses thereof, may be made by those skilled in the art, without departing from the scope of the present teachings. Consequently, the scope of the present teachings should not be limited to the foregoing discussion, but should be defined by the appended claims.

Claims
  • 1. A method of making a steel tube, comprising: providing a carbon steel composition comprising: about 0.20 wt. % to about 0.30 wt. % carbon;about 0.30 wt. % to about 0.70 wt. % manganeseabout 0.10 wt. % to about 0.30 wt. % silicon;about 0.90 wt. % to about 1.50 wt. % chromium;about 0.60 wt. % to about 1.00 wt. % molybdenum;about 0.020 wt. % to about 0.40 wt. % niobium; andabout 0.01 wt. % to about 0.04 wt. % aluminum;forming the steel composition into a tube;heating the formed steel tube in a heating operation to a first temperature of about 880° C. to about 950° C. for about 10 to 30 minutes;quenching the formed steel tube in a quenching operation from the first temperature at a first rate such that the microstructure of the quenched steel is greater than or equal to about 95% martensite by volume; andtempering the formed steel tube after the quenching operation by heating the formed steel tube to a second temperature less than about 550° C.;wherein the steel tube after tempering has a yield strength greater than about 165 ksi and wherein the Charpy V-notch energy is greater or equal to about 80 J/cm2 in the longitudinal direction and 60 J/cm2 in the transverse direction at about room temperature.
  • 2. The method of claim 1, wherein the first temperature is between about 900° C. to about 950° C. for about 10 to 30 minutes.
  • 3. The method of claim 1, wherein the second temperature is between about 450° C. to about 550° C. for about 5 to 30 minutes.
  • 4. The method of claim 1, wherein the grain size of the formed steel composition after quenching is between about 5 to about 15 μm.
  • 5. The method of claim 1, wherein the microstructure of the steel tube, comprises a plurality of approximately spherical carbides having a largest dimension less than or equal to about 150 nm after tempering.
  • 6. The method of claim 1, wherein microstructure of the steel tube comprises a plurality of elongated carbides having a length less than or equal to about 1 μm and a thickness less than or equal to about 200 nm after tempering.
  • 7. The method of claim 1, wherein the first quenching rate is between about 15° C./sec to 50° C./sec.
  • 8. The method of claim 1, wherein the steel composition further comprises: about 0.24 wt. % to about 0.27 wt. % carbon;about 0.45 wt. % to about 0.55 wt. % manganese;about 0.20 wt. % to about 0.30 wt. % silicon;about 0.90 wt. % to about 1.00 wt. % chromium;about 0.65 wt. % to about 0.70 wt. % molybdenum; andabout 0.025 wt. % to about 0.30 wt. % niobium.
  • 9. The method of claim 1, wherein the composition further comprises at least one of: less than or equal to about 0.50 wt. % nickel;less than or equal to about 0.005 wt. % vanadium;less than or equal to about 0.010 wt. % titanium andless than or equal to about 0.05 wt. % calcium.
  • 10. The method of claim 1, wherein the composition comprises substantially no vanadium.
  • 11. The method of claim 1, wherein the remainder of the microstructure consists essentially of bainite after the quenching operation.
  • 12. The method of claim 1, wherein after the quenching operation and before the tempering operation, the formed steel tube undergoes a second heating operation and a second quenching operation.
  • 13. The method of claim 1, wherein after tempering, the formed steel tube undergoes a second heating operation, a second quenching operation, and a second tempering operation.
  • 14. A method of forming a steel tube, comprising: providing a steel rod comprising: about 0.20 wt. % to about 0.30 wt. % carbon;about 0.30 wt. % to about 0.70 wt. % manganese;about 0.10 wt. % to about 0.30 wt. % silicon;about 0.90 wt. % to about 1.50 wt. % chromium;about 0.60 wt. % to about 1.00 wt. % molybdenum;about 0.020 wt. % to about 0.40 wt. % niobium; andabout 0.01 wt. % to about 0.04 wt. % aluminum;forming the steel rod into a tube in a hot forming operation at a temperature of about 1200° C. to 1300° C.;heating the formed steel tube in a first heating operation to a temperature of about 880° C. to 950° C. for about 10 to 30 minutes;quenching the formed steel tube in a first quenching operation after the first heating operation at a rate such that the microstructure of the quenched steel is greater than or equal to about 95% martensite by volume; andtempering the formed steel tube after the first quenching operation by heating the formed steel tube to a temperature between about 450° C. to about 550° C. for between about 5 minutes to about 30 minutes;wherein the steel tube after tempering has a yield strength greater than about 165 ksi and wherein the Charpy V-notch energy is greater or equal to about 80 J/cm2 in the longitudinal direction and about 60 J/cm2 in the transverse direction at about room temperature.
  • 15. The method of claim 14, wherein the first heating operation is at a temperature of about 900° C. to 950° C., and further comprising, prior to said tempering: heating the formed steel tube in a second heating operation to a temperature lower than that of the first heating operation of about 880° C. to 930° C. for about 10 to 30 minutes; andquenching the formed steel tube in a second quenching operation after the second heating operation such that the microstructure of the quenched steel is greater than or equal to about 95% martensite by volume;wherein the steel tube after tempering has a yield strength greater than about 170 ksi and wherein the Charpy V-notch energy is greater or equal to about 80 J/cm2 in the longitudinal direction and about 60 J/cm2 in the transverse direction at about room temperature.
  • 16. The method of claim 15, further comprising, after said first quenching operation and prior to said second quenching operation, tempering the formed steel tube at a temperature below about 550° C.
  • 17. The method of claim 14, wherein the microstructure of the steel tube comprises a plurality of approximately spherical carbides having a largest dimension less than or equal to about 150 nm after tempering.
  • 18. The method of claim 14, wherein microstructure of the steel tube comprises a plurality of elongated carbides having a length less than or equal to about 1 μm and a thickness less than or equal to about 200 nm after tempering.
US Referenced Citations (87)
Number Name Date Kind
3413166 Zackay et al. Nov 1968 A
3655465 Snape et al. Apr 1972 A
3810793 Heller May 1974 A
3915697 Giuliani et al. Oct 1975 A
4231555 Saito Nov 1980 A
4336081 Hijikata et al. Jun 1982 A
4376528 Ohshimatani et al. Mar 1983 A
4379482 Suzuki et al. Apr 1983 A
4407681 Ina et al. Oct 1983 A
4526628 Ohno et al. Jul 1985 A
4721536 Koch et al. Jan 1988 A
4812182 Fang et al. Mar 1989 A
4814141 Imai et al. Mar 1989 A
5352406 Barteri et al. Oct 1994 A
5454883 Yoshie et al. Oct 1995 A
5538566 Gallagher Jul 1996 A
5592988 Meroni et al. Jan 1997 A
5598735 Saito et al. Feb 1997 A
5879474 Bhadeshia et al. Mar 1999 A
5944921 Cumino et al. Aug 1999 A
5993570 Gray Nov 1999 A
6030470 Hensger et al. Feb 2000 A
6188037 Hamada et al. Feb 2001 B1
6196530 Muhr et al. Mar 2001 B1
6217676 Takabe et al. Apr 2001 B1
6248187 Asahi et al. Jun 2001 B1
6267828 Kushida et al. Jul 2001 B1
6311965 Muhr et al. Nov 2001 B1
6384388 Anderson et al. May 2002 B1
6514359 Kawano Feb 2003 B2
6632296 Yoshinaga et al. Oct 2003 B2
6648991 Turconi et al. Nov 2003 B2
6669285 Park et al. Dec 2003 B1
6669789 Edelman et al. Dec 2003 B1
6682610 Inoue Jan 2004 B1
6683834 Ohara et al. Jan 2004 B2
6709534 Kusinski et al. Mar 2004 B2
6767417 Fujita et al. Jul 2004 B2
6958099 Nakamura et al. Oct 2005 B2
7074283 Omura Jul 2006 B2
7083686 Itou Aug 2006 B2
7118637 Kusinski et al. Oct 2006 B2
7214278 Kusinski et al. May 2007 B2
7264684 Numata et al. Sep 2007 B2
7635406 Numata et al. Dec 2009 B2
7744708 López et al. Jun 2010 B2
7862667 Turconi et al. Jan 2011 B2
8002910 Tivelli et al. Aug 2011 B2
8007601 López et al. Aug 2011 B2
8007603 Garcia et al. Aug 2011 B2
8016362 Itoga Sep 2011 B2
8414715 Altschuler et al. Apr 2013 B2
20010035235 Kawano Nov 2001 A1
20020011284 Von Hagen et al. Jan 2002 A1
20030019549 Turconi et al. Jan 2003 A1
20030111146 Kusinski et al. Jun 2003 A1
20030116238 Fujita Jun 2003 A1
20030155052 Kondo et al. Aug 2003 A1
20030165098 Ohara et al. Sep 2003 A1
20040118490 Klueh et al. Jun 2004 A1
20040131876 Ohgami et al. Jul 2004 A1
20040139780 Cai et al. Jul 2004 A1
20050076975 Lopez et al. Apr 2005 A1
20050087269 Merwin Apr 2005 A1
20060124211 Takano et al. Jun 2006 A1
20060137781 Kusinski et al. Jun 2006 A1
20060169368 Lopez et al. Aug 2006 A1
20060243355 Haiderer et al. Nov 2006 A1
20070089813 Tivelli Apr 2007 A1
20070137736 Omura et al. Jun 2007 A1
20070216126 Lopez et al. Sep 2007 A1
20080047635 Kondo et al. Feb 2008 A1
20080129044 Carcagno et al. Jun 2008 A1
20080219878 Kondo et al. Sep 2008 A1
20080226396 Garcia et al. Sep 2008 A1
20080226491 Satou et al. Sep 2008 A1
20080314481 Garcia et al. Dec 2008 A1
20090010794 Turconi et al. Jan 2009 A1
20090101242 Lopez et al. Apr 2009 A1
20100068549 Agazzi Mar 2010 A1
20100136363 Valdez et al. Jun 2010 A1
20100193085 Garcia Aug 2010 A1
20100294401 Gomez Nov 2010 A1
20100319814 Perez Dec 2010 A1
20100327550 Lopez Dec 2010 A1
20110097235 Turconi et al. Apr 2011 A1
20110247733 Arai et al. Oct 2011 A1
Foreign Referenced Citations (71)
Number Date Country
0050159 Oct 2006 AR
1401809 Mar 2003 CN
1487112 Apr 2004 CN
101613829 Dec 2009 CN
101413089 Nov 2010 CN
0 092 815 Nov 1983 EP
0 658 632 Jun 1995 EP
0 753 595 Jan 1997 EP
0 828 007 Mar 1998 EP
0 989 196 Mar 2000 EP
01027944 Aug 2000 EP
1 277 848 Jan 2003 EP
1 288 316 Mar 2003 EP
1 413 639 Apr 2004 EP
1 717 324 Nov 2006 EP
1 914 324 Apr 2008 EP
2 028 284 Feb 2009 EP
2 133 442 Dec 2009 EP
60-086209 May 1985 JP
60-215719 Oct 1985 JP
36025719 Oct 1985 JP
61270355 Nov 1986 JP
63004046 Jan 1988 JP
63004047 Jan 1988 JP
63230847 Sep 1988 JP
63230851 Sep 1988 JP
01 259124 Oct 1989 JP
01 259125 Oct 1989 JP
01 283322 Nov 1989 JP
05-098350 Dec 1990 JP
403006329 Jan 1991 JP
04 021718 Jan 1992 JP
04 107214 Apr 1992 JP
04 231414 Aug 1992 JP
05 287381 Nov 1993 JP
06-093339 Apr 1994 JP
06 172859 Jun 1994 JP
06-220536 Aug 1994 JP
06220536 Aug 1994 JP
07 041856 Feb 1995 JP
07 197125 Aug 1995 JP
08 311551 Nov 1996 JP
09 067624 Mar 1997 JP
09-235617 Sep 1997 JP
10 140250 May 1998 JP
10176239 Jun 1998 JP
10 280037 Oct 1998 JP
11 050148 Feb 1999 JP
11140580 May 1999 JP
11229079 Aug 1999 JP
2000-063940 Feb 2000 JP
2000-313919 Nov 2000 JP
2001-131698 May 2001 JP
2001-164338 Jun 2001 JP
2001-172739 Jun 2001 JP
2001-271134 Oct 2001 JP
2002-096105 Apr 2002 JP
2004-011009 Jan 2004 JP
60 174822 Sep 2005 JP
0245031 Mar 2000 KR
WO 9622396 Jul 1996 WO
WO 0070107 Nov 2000 WO
WO 0188210 Nov 2001 WO
WO 03033856 Apr 2003 WO
WO 2004031420 Apr 2004 WO
WO 2004097059 Nov 2004 WO
WO 2007017161 Feb 2007 WO
WO 2008003000 Jan 2008 WO
WO 2008127084 Oct 2008 WO
WO 2009044297 Apr 2009 WO
WO 2010061882 Jun 2010 WO
Non-Patent Literature Citations (65)
Entry
English language machine translation of JP 06220536 A to Kuriki et al. Generated Aug. 8, 2012.
“Seamless Steel Tubes for Pressure Purposes—Technical Delivery Conditions—Part 1: Non-alloy Steel Tubes with Specified Room Temperature Properties” British Standard BS EN 10216-1:2002 E:1-26, published May 2002.
“Seamless Steel Tubes for Pressure Purposes—Technical Delivery Conditions—Part 2: Non-alloy and Alloy Steel Tubes with Specified Elevated Temperature Properties” British Standard BS EN 10216-2:2002+A2:2007:E:1-45, published Aug. 2007.
“Seamless Steel Tubes for Pressure Purposes—Technical Delivery Conditions—Part 3: Alloy Fine Grain Steel Tubes” British Standard BS EN 10216-3:2002 +A1:2004 E:1-34, published Mar. 2004.
“Seamless Steel Tubes for Pressure Purposes—Technical Delivery Conditions—Part 4: Non-alloy and Alloy Steel Tubes with Specified Low Temperature Properties” British Standard BS EN 10216-4:2002 + A1:2004 E:1-30, published Mar. 2004.
Aggarwal, R. K., et al.: “Qualification of Solutions for Improving Fatigue Life at SCR Touch Down Zone”, Deep Offshore Technology Conference, Nov. 8-10, 2005, Vitoria, Espirito Santo, Brazil, in 12 pages.
Anelli, E., D. Colleluori, M. Pontremoli, G. Cumino, A. Izquierdo, H. Quintanilla, “Metallurgical design of advanced heavy wall seamless pipes for deep-water applications”, 4th International Conference on Pipeline Technology, May 9 to 13, 2004, Ostend, Belgium.
Asahi, et al., Development of Ultra-high-strength Linepipe, X120, Nippon Steel Technical Report, Jul. 2004, Issue 90, pp. 82-87.
ASM Handbook, Mechanical Tubing and Cold Finishing, Metals Handbook Desk Edition, (2000), 5 pages.
Bai, M., D. Liu, Y. Lou X. Mao, L. Li, X. Huo, “Effects of Ti addition on low carbon hot strips produced by CSP process”, Journal of University of Science and Technology Beijing, 2006, vol. 13, N° 3, p. 230.
Beretta, Stefano et al., “Fatigue Assessment of Tubular Automotive Components in Presence of Inhomogeneities”, Proceedings of IMECE2004, ASME International Mechanical Engineering Congress, Nov. 13-19, 2004, pp. 1-8.
Berner, Robert A., “Tetragonal Iron Sulfide”, Science, Aug. 31, 1962, vol. 137, Issue 3531, pp. 669.
Berstein et al.,“The Role of Traps in the Microstructural Control of Hydrogen Embrittlement of Steels” Hydrogen Degradation of Ferrous Alloys, Ed. T. Oriani, J. Hirth, and M. Smialowski, Noyes Publications, 1988, pp. 641-685.
Boulegue, Jacques, “Equilibria in a sulfide rich water from Enghien-les-Bains, France”, Geochimica et Cosmochimica Acta, Pergamom Press, 1977, vol. 41, pp. 1751-1758, Great Britain.
Bruzzoni et al., “Study of Hydrogen Permeation Through Passive Films on Iron Using Electrochemical Impedance Spectroscopy”, PhD Thesis, 2003, Universidad Nacional del Comahue de Buenos Aires, Argentina.
Cancio et al., “Characterization of microalloy precipitates in the austenitic range of high strength low alloy steels”, Steel Research, 2002, vol. 73, pp. 340-346.
Carboni, A., A. Pigani, G. Megahed, S. Paul, “Casting and rolling of API X 70 grades for artic application in a thin slab rolling plant”, Stahl u Eisen, 2008, N° 1, p. 131-134.
Chang, L.C., “Microstructures and reaction kinetics of bainite transformation in Si-rich steels,” XP0024874, Materials Science and Engineering, vol. 368, No. 1-2, Mar. 15, 2004, pp. 175-182, Abstract, Table 1.
Clark, A. Horrell, “Some Comments on the Composition and Stability Relations of Mackinawite”, Neues Jahrbuch fur Mineralogie, 1966, vol. 5, pp. 300-304, London, England.
Craig, Bruce D., “Effect of Copper on the Protectiveness of Iron Sulfide Films”, Corrosion, National Association of Corrosion Engineers, 1984, vol. 40, Issue 9, pp. 471-474.
D.O.T. 178.68 Spec. 39, pp. 831-840, Non reusable (non refillable) cylinders, Oct. 1, 2002.
De Medicis, Rinaldo, “Cubic FeS, A Metastable Iron Sulfide”, Science, American Association for the Advancement of Science, Steenbock Memorial Library, Dec. 11, 1970, vol. 170, Issue 3963, pp. 723-728.
Echaniz, G., Morales, C., Perez, T., “Advances in Corrosion Control and Materials in Oil and Gas Production” Papers from Eurocorr 97 and Eurocorr 98, 13, P. S. Jackman and L.M. Smith, Published for the European Federation of Corrosion, No. 26, European Federation of Corrosion Publications, 1999.
Gojic, Mirko and Kosec, Ladislav, , “The Susceptibility to the Hydrogen Embrittlement of Low Alloy Cr and CrMo Steels”, ISIJ International, 1997, vol. 37, Issue 4, pp. 412-418.
Heckmann, et al., Development of low carbon Nb-Ti-B microalloyed steels for high strength large diameter linepipe, Ironmaking and Steelmaking, 2005, vol. 32, Issue 4, pp. 337-341.
Howells, et al.: “Challenges for Ultra-Deep Water Riser Systems”, IIR, London, Apr. 1997, 11 pages.
Hutchings et al., “Ratio of Specimen thickness to charging area for reliable hydrogen permeation measurement”, British Corrosion. Journal, 1993, vol. 28, Issue 4, pp. 309-312.
Iino et al., “Aciers pour pipe-lines resistant au cloquage et au criquage dus a l'hydrogene”, Revue de Metallurgie, 1979, vol. 76, Issue 8-9, pp. 591-609.
Ikeda et al., “Influence of Environmental Conditions and Metallurgical Factors on Hydrogen Induced Cracking of Line Pipe Steel”, Corrosion/80, National Association of Corrosion Engineers, 1980, vol. 8, pp. 8/1-8/18, Houston, Texas.
Izquierdo, et al.: “Qualification of Weldable X65 Grade Riser Sections with Upset Ends to Improve Fatigue Performance of Deepwater Steel Catenary Risers”, Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, Jul. 6-11, 2008, p. 71.
Johnston, P. W., G.Brooks, “Effect of AI203 and TiO2 Additions on the Lubrication Characteristics of Mould Fluxes”, Molten Slags, Fluxes and Salts '97 Conference, pp. 845-850.
Keizer, Joel, “Statistical Thermodynamics of Nonequilibrium Processes”, Spinger-Verlag, 1987.
Kishi, T., H.Takeucgi, M.Yamamiya, H.Tsuboi, T.Nakano, T.Ando, “Mold Powder Technology for Continuous Casting of Ti-Stabilized Stainless Steels”, Nippon Steel Technical Report, No. 34, Jul. 1987, pp. 11-19.
Korolev, D. F., “The Role of Iron Sulfides in the Accumulation of Molybdenum in Sedimentary Rocks of the Reduced Zone”, Geochemistry, 1958, vol. 4, pp. 452-463.
Lee, Sung Man and Lee, Jai Young, “The Effect of the Interface Character of TiC Particles on Hydrogen Trapping in Steel”, Acta Metall., 1987, vol. 35, Issue 11, pp. 2695-2700.
Mishael, et al., “Practical Applications of Hydrogen Permeation Monitoring,” Corrosion, Mar. 28-Apr. 1, 2004, Corrosion 2004, Nacional Association of Corrosion Engineers, vol. Reprint No. 04476.
Morice et al., “Moessbauer Studies of Iron Sulphides”, J. Inorg. Nucl. Chem., 1969, vol. 31, pp. 3797-3802.
Mukongo, T., P.C.Pistorius, and A.M.Garbers-Craig, “Viscosity Effect of Titanium Pickup by Mould Fluxes for Stainless Steel”, Ironmaking and Steelmaking, 2004, vol. 31, No. 2, pp. 135-143.
Mullet et al., “Surface Chemistry and Structural Properties of Mackinawite Prepared by Reaction of Sulfide Ions with Metallic Iron”, Geochemica et Cosmochemica Acta, 2002, vol. 66, Issue 5, pp. 829-836.
Murcowchick, James B. and Barnes, H.L., “Formation of a cubic FeS”, American Mineralogist, 1986, vol. 71, pp. 1243-1246.
NACE MR0175/IS0 15156-1 Petroleum and natural gas industries—Materials for use in H2S-containing Environments in oil and gas production—Part 1: General principles for selection of cracking-resistant materials, Jun. 28, 2007.
Nagata, M., J. Speer, D. Matlock, “Titanium nitride precipitation behavior in thin slab cast high strength low alloyed steels”, Metallurgical and Materials Transactions A, 2002 ,vol. 33A, p. 3099-3110.
Nakai et al., “Development of Steels Resistant to Hydrogen Induced Cracking in Wet Hydrogen Sulfide Environment”, Transactions of the ISIJ, 1979, vol. 19, pp. 401-410.
Pressure Equipment Directive 97/23/EC, May 29, 1997, downloaded from website:http://ec.europa.eu/enterprise/pressure—equipment/ped/index—en.html on Aug. 4, 2010.
Prevéy, Paul, et al., “Introduction of Residual Stresses to Enhance Fatigue Performance in the Initial Design”, Proceedings of Turbo Expo 2004, Jun. 14-17, 2004, pp. 1-9.
Rickard, D.T., “The Chemistry of Iron Sulphide Formation at Low Tempuratures”, Stockholm Contrib. Geol., 1969, vol. 26, pp. 67-95.
Riecke, Ernst and Bohnenkamp, Konrad, “Uber den Einfluss von Gittersoerstellen in Eisen auf die Wassersroffdiffusion”, Z. Metallkde . . . , 1984, vol. 75, pp. 76-81.
Shanabarger, M.R. and Moorhead, R. Dale, “H2O Adsorption onto clean oxygen covered iron films”, Surface Science, 1996, vol. 365, pp. 614-624.
Shoesmith, et al., “Formation of Ferrous Monosulfide Polymorphs During Corrosion of Iron by Aqueous Hydrogen Sulfide at 21 degrees C”, Journal of the Electrochemical Society, 1980, vol. 127, Issue 5, pp. 1007-1015.
Skoczylas, G., A.Dasgupta, R.Bommaraju, “Characterization of the chemical interactions during casting of High-titanium low carbon enameling steels”, 1991 Steelmaking Conference Proceeding, pp. 707-717.
Smyth, D., et al.: Steel Tublar Products, Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1, ASM Handbook, ASM International, 1990, p. 327-336.
Spry, Alan, “Metamorphic Textures”, Perganom Press, 1969, New York.
Taira et al., “HIC and SSC Resistance of Line Pipes for Sour Gas Service, Nippon Kokan Technical Report”, 1981, vol. 31, Issue 1-13.
Taira et al., “Study on the Evaluation of Environmental Condition of Wet Sour Gas”, Corrosion 83 (Reprint. No. 156, National Association of Corrosion Engineers), 1983, pp. 156/2-156/13, Houston, Texas.
Takeno et al., “Metastable Cubic Iron Sulfide—With Special Reference to Mackinawite”, American Mineralogist, 1970, vol. 55, pp. 1639-1649.
Tenaris Newsletter for Pipeline Services, Apr. 2005, p. 1-8.
Tenaris Newsletter for Pipeline Services, May 2003, p. 1-8.
Thethi, et al.: “Alternative Construction for High Pressure High Temperature Steel Catenary Risers”, OPT USA, Sep. 2003, p. 1-13.
Thewlis, G., Weldability of X100 linepipe, Science and Technology of Welding and Joining, 2000, vol. 5, Issue 6, pp. 365-377.
Tivelli, M., G. Cumino, A. Izquierdo, E. Anelli, A. Di Schino, “Metallurgical Aspects of Heavy Wall—High Strength Seamless Pipes for Deep Water Applications”, RioPipeline 2005, Oct. 17 to 19, 2005, Rio (Brasil), Paper n° IBP 1008—05.
Todoroki, T. Ishii, K. Mizuno, A. Hongo, “Effect of crystallization behavior of mold flux on slab surface quality of a Ti-bearing Fe-Cr-Ni super alloy cast by means of continuous casting process”, Materials Science and Engineering A, 2005, vol. 413-414, p. 121-128.
Vaughan, D. J. and Ridout, M.S., “Moessbauer Studies of Some Sulphide Minerals”, J. Inorg Nucl. Chem., 1971, vol. 33, pp. 741-746.
Wegst, C.W., “Stahlüssel”, Auflage 1989, Seite 119, 2 pages.
Fang, Hong-Sheng, et al.: “The Developing Prospect of Air-cooled Baintitic Steels”, International Journal of Issi, vol. 2, No. 2, Feb. 1, 2005, pp. 9-18.
Turconi, G. L.: “Improvement of resistance to SSC initiation and propagation of high strength OCTG through microstruture and precipitation control”; “Paper 01077”, NACE International, Houston, TX, Mar. 16, 2001. (XP009141583).
Related Publications (1)
Number Date Country
20120211131 A1 Aug 2012 US