This application is a continuation-in-part of application Ser. No. 15/426,595, filed on Feb. 7, 2017.
The present disclosure generally relates to an air-to-air aftercooler (ATAAC) for an engine and, more specifically, to an ATAAC having high temperature capable tube-to-header joint assemblies.
Engine systems for many machines, and equipment include an air intake system that delivers intake air to an internal combustion engine for combustion with fuel. The air intake system may include an air compressor that pressurizes the intake air to force more air into the engine for combustion. At higher engine power densities, the temperature of the compressed air at the compressor outlet may approach or even exceed 350° C.
To cool the compressed air before introduction into the engine, the air intake system may also include an air-to-air aftercooler (ATAAC) disposed downstream of the air compressor. The ATAAC may include an inlet end (or a hot end) from where the hot compressed air enters the ATAAC, an outlet end (or a cold end) where the cooled compressed air exits the ATAAC. A typical ATAAC includes a plurality of core tubes that are coupled to headers disposed at both the cold end and the hot end. Usually, the plurality of core tubes are coupled to the headers through a grommet joint. Such grommet joints use rubber composite grommets to couple the plurality of core tubes to the headers. At temperatures greater than 350 degrees, the integrity of the rubber composite grommets (used in the grommet joint) may get compromised, therefore, compromising the integrity of the joint between the plurality of core tubes and the headers, which may be undesirable.
U.S. Pat. No. 7,971,909 discloses a pipe joint and a method of joining pipes using a pipe joint. The pipe joint includes a joint body, a fastening member such as a nut, and a sleeve. The sleeve is integrated with the fastening member or the joint body before the fastening member is attached to the joint body. When the fastening member is attached to the joint body, the sleeve is cut off and separated from the fastening member or joint body. When the nut is fully attached, the sleeve bites into the pipe, and the pipe is joined to the joint body.
In accordance with an aspect of the present disclosure an air-to-air aftercooler (ATAAC) for an engine system is disclosed. The ATAAC includes a header, disposed at an end of the ATAAC, adapted to receive hot air, the header comprising a first surface, a second surface, and defining a plurality of slots extending from the first surface to the second surface. Further, the ATAAC includes a plurality of core tubes, each of the plurality of core tubes having a flared end portion. The plurality of core tubes are coupled with the header through a plurality of joint assemblies each of the plurality of joint assemblies includes an adapter. The adapter further includes a first section threadedly engaged with one of the plurality of slots. The adapter further includes a tapered section inserted inside the flared end portion of one of the plurality of core tubes. Furthermore, the adapter includes a second section defined between the tapered section and the first section. Additionally, each of plurality of joint assemblies a sleeve disposed around the one of the plurality of core tubes, the sleeve is engaged with the flared end portion of the one of the plurality of core tubes. Further, each of the joint assembly includes a nut engaged with the sleeve and the second section of the adapter, wherein the engagement of the nut with the sleeve and the second section facilitates retention of the tapered section of the adapter within the flared end portion of the one of the plurality of core tubes.
In accordance with an aspect of the present disclosure an engine system is disclosed. The engine system includes an engine, a compressor coupled upstream of the engine and is configured to provide compressed air to the engine. Further, the engine system includes an air-to-air aftercooler (ATAAC) coupled downstream of the compressor and upstream of the engine. The ATAAC includes a header, disposed at an end of the ATAAC, adapted to receive hot air, the header comprising a first surface, a second surface, and defining a plurality of slots extending from the first surface to the second surface. Further, the ATAAC includes a plurality of core tubes, each of the plurality of core tubes having a flared end portion. The plurality of core tubes are coupled with the header through a plurality of joint assemblies each of the plurality of joint assemblies includes an adapter. The adapter further includes a first section threadedly engaged with one of the plurality of slots. The adapter further includes a tapered section inserted inside the flared end portion of one of the plurality of core tubes. Furthermore, the adapter includes a second section defined between the tapered section and the first section. Additionally, each of plurality ofjoint assemblies a sleeve disposed around the one of the plurality of core tubes, the sleeve is engaged with the flared end portion of the one of the plurality of core tubes. Further, each of the joint assembly includes a nut engaged with the sleeve and the second section of the adapter, wherein the engagement of the nut with the sleeve and the second section facilitates retention of the tapered section of the adapter within the flared end portion of the one of the plurality of core tubes.
In accordance with an aspect of the present disclosure a method of connecting a core tube to a header disposed at an end of an air-to-air aftercooler (ATAAC) is disclosed. The method includes threadedly engaging a first section of an adapter to a slot defined in the header. Further, the method includes receiving a nut around the core tube. Furthermore, the method includes disposing a sleeve around the core tube, wherein the nut engages with the sleeve, wherein the nut and the sleeve are slidable with respect to the sleeve. Thereafter, the method includes flaring a first end of the core tube to form a flared end portion of the core tube. The method further includes inserting a tapered section of the adapter in the flared end portion of the core tube. Additionally, the method includes threadedly engaging the nut with a second section of the adapter to engage the nut with the sleeve, wherein the engagement of the nut with the sleeve facilitates engagement of the sleeve with the flared end portion to retains the adapter engaged with the flared end portion of the core tube.
Referring to
The engine 102 may be configured to receive a fuel, such as natural gas (or any of one or more components of natural gas), diesel, or hydrogen (H2), for combustion. The engine 102 may ignite the fuel to generate energy, which is thereafter used to power various components of the machine in which the engine 102 is used. The ignition of the fuel generates exhaust gases, which are communicated to the turbine 112 of the turbocharger 104 through a conduit 114. The exhaust gases drive an impeller (not shown) of the turbine 112 of the turbocharger 104. The impeller of the turbine 112 is coupled to the compressor 110 through a shaft. The movement of the impeller of the turbine 112 causes the compressor 110 to operate. The compressor 110 compresses the air from the ambient and delivers the compressed air to the engine 102 through the aftercooler 108. The aftercooler 108 may correspond to a heat exchanger that is configured to cool the compressed air before the compressed air is delivered to the engine 102. Some examples of the aftercooler 108 may include, but are not limited to, air-to-air aftercooler (ATAAC), radiator, and/or the like. For the purpose of the ongoing description, the aftercooler 108 has been considered as the ATAAC 108. The structure of the ATAAC 108 will be described in conjunction with
Referring to
The first header 204 includes a first surface 218 and a second surface 220. The first header 204 is placed in the ATAAC 108 in such a manner that the second surface 220 is proximal to the second header 206 and the first surface 218 is distal from the second header 206. Further, first header 204 includes a plurality of slots 222 that extend from the second surface 220 of the first header 204 to the first surface 218 of the first header 204. In an embodiment, each of the plurality of slots 222 has a circular cross section and has an inner surface224 that is threaded (represented by 226). In an embodiment, the threads 224 defined on the inner surface 224 of each of the plurality of slots 222 correspond to pipe threads.
Similar to the first header 204, the second header 206 also has a first surface 226 and a second surface 228. The second header 206 is placed in the ATAAC 108 in such a manner that the second surface 228 is proximal to the first header 204 and the first surface 226 is distal from the first header 204. Further, similar to the first header 204, the second header 206 includes a plurality of slots (not shown) that extend from the second surface 228 of the second header 206 to the first surface 226 of the second header 206. In an embodiment, the plurality of slots defined in the second header 206 has an inner surface that is non-threaded. In an embodiment, the first header 204 defines a first end 230 of the ATAAC 108, and the second header 206 defines a second end 232 of the ATAAC 108. The first header 204, disposed at the first end 230 of the ATAAC 108, is configured to receive hot compressed air from the compressor 110. The second header 206, disposed at the second end 232 of the ATAAC 108, is configured to provide cooled compressed air to the engine 102. Therefore, the first end 230 of the ATAAC 108 and the second end 232 of the ATAAC 108 may correspond to a hot end 230 and a cold end 232 of the ATAAC 108, respectively.
The process of cooling the hot compressed air is performed by the plurality of core tubes 208 coupled to the first header 204 of the ATAAC 108 and the second header 206 of the ATAAC 108 through the plurality of first joint assemblies 234 and a plurality of second joint assemblies (not shown). Referring to
The tube portion 314 of the first section 306 extends axially from the junction 316 (i.e., the junction of the flared end portion 312 and the tube portion 314) to the center portion 310. In an embodiment, the tube portion 314 may have a circular cross-sectional shape. Further, the center portion 310 of the core tube 208a may have an oval cross-sectional shape. In an embodiment, the center portion 310 of the core tube 208a may include fins 322 that facilitate heat exchange between the hot compressed air (received from the compressor 110) flowing through the core tube 208a, and the ambient air flowing outside of the core tube 208a. It may be contemplated that other core tubes of the plurality of core tubes 208 may have a similar structure to that of the core tube 208a.
The second section 308 extends axially from the center portion 310 to the second end 304. The second end 304 is coupled to the plurality of slots defined in the second header 206. Further, the first end 302 of the core tube 208a is coupled to first header 204 at a slot 222a through a joint assembly 234a of the plurality of first joint assemblies 234. The structure of the joint assembly 234a has been described in conjunction with
Referring to
Referring to
The first section 508 of the adapter 402 extends axially from the first end 504 to the flange section 510. Further, the outer periphery 516 of the adapter 402 at the first section 508 is threaded (represented by 522) and is configured to engage with one of the plurality of slots 222 defined in the first header 204.
The flange section 510 of the adapter 402 extends axially from the first section 508 of the adapter 402 to the second section 512 of the adapter 402. In an embodiment, an outer diameter of the adapter 402 at the flange section 510 is greater than an outer diameter at other sections of the adapter 402. For example, the outer diameter at the flange section 510 of the adapter 402 is greater than the outer diameter of the adapter 402 at the first section 508. Further, the outer periphery 516 of the adapter 402 at the flange section 510 defines a plurality of grooves 602 that extend axially along a length of the flange section 510. The plurality of grooves 602 enables the usage of a fastening tool (e.g., a wrench) to fasten the first section 508 of the adapter 402 with the plurality of slots 222.
The second section 512 of the adapter 402 extends axially from the flange section 510 of the adapter 402 to the tapered section 514 of the adapter 402. In an embodiment, the outer periphery 516 of the adapter 402 at the second section 512 is threaded (represented by 524). In an embodiment, the threads 524 formed on the outer periphery of the second section 512 of the adapter 402 is different from the threads 522. For example, the threads 522 corresponds to the pipe threads and the threads 524 corresponds to non-pipe threads.
The tapered section 514 extends axially from the second section 512 to the second end 506 of the adapter 402. In an embodiment, an outer diameter of the adapter 402 in the tapered section 514 decreases along the axial direction from the second section 512, to the second end 506. Therefore, the outer diameter of the adapter 402 at the junction of the tapered section 514 and the second section 512 is greater than the outer diameter of adapter 402 at the second end 506. The tapered section 514 of the adapter 402 is inserted inside the flared end portion 312 of the core tube 208a such that an outer surface 517 of the tapered section 514 abuts the inner surface 318 of the flared end portion 312 of the core tube 208a.
The sleeve 502 of the joint assembly 234a is disposed (see
In an embodiment, the sleeve 502 may include a first portion 712 and a second portion 714. The first portion 712 extends axially from the first end 706 of the sleeve 502 to the second portion 714. Further, the second portion 714 of the sleeve 502 extends axially from the first portion 712 of the sleeve 502 to the second end 708. In an embodiment, an outer diameter of the first portion 712 is greater than the outer diameter of the second portion 714. Accordingly, a step 716 is defined at a junction of the first portion 712 and the second portion 714.
Referring back to
The first structure 810 of the nut 404 extends axially from the first end 806 to the third structure 814. Further, the first structure 810 of the nut 404 is threaded (represented by 816) and is configured to engage with the second section 512 of the adapter 402. The threads 816 are defined on the inner periphery 804 of the nut 404. Further, the type of the threads 816 defined on the inner periphery 804 of the nut 404 is of the same type as that of the threads 524 defined in the second section 512 of the adapter 402.
The third structure 814 extends axially from the first structure 810 to the second structure 812. In an embodiment, an inner diameter of the third structure 814 is same as an inner diameter of the first structure 810. Further, the inner periphery 804 of the nut 404 at the third structure 814 is non-threaded.
The second structure 812 extends axially from the third structure 814 to the second end 808 of the nut 404. An inner diameter of the of the second structure 812 is less than the inner diameter of the first structure 810 and the third structure 814. Therefore, a step 818 is defined at a junction of the second structure 812 and the third structure 814.
To couple the core tube 208a with the slot 222a, the first section 508 of the adapter 402 is threadedly engaged with the slot 222a (through threaded engagement between the threads defined in the slot 222a and the threads 522 on the first section 508 of the adapter 402). Thereafter, the core tube 208a is engaged with the adapter 402 in such a manner that the tapered section 514 of the adapter 402 is inserted into the flared end portion 312 of the core tube 208a. The inner surface 318 of the flared end portion 312 abuts the outer periphery 516 of the adapter 402 at the tapered section 514. Further, to engage the core tube 208a with the adapter 402, the nut 404 (disposed on the sleeve 502) is threadedly engaged with the second section 512 of the adapter 402. When the nut 404 engages with the second section 512 of the adapter 402, the step 818 (defined on the inner periphery 804 of the nut 404) abuts with the step 716 defined on the outer periphery 704 of the sleeve 502. Such an abutment of the step 818 with the step 716, and further movement (towards the first end 302 of the core tube 208a) of the nut 404 relative to the second section 512 of the adapter 402, causes a portion of the sleeve 502 to be pushed over and engaged with the flared end portion 312 of the core tube 208a. The engagement of the sleeve 502 with the flared end portion 312 facilitates retention and abutment of the tapered section 514 of the adapter 402 with the flared end portion 312 of the core tube 208a, and thereby helps in forming a metal to metal seal between the flared end portion 312 and the tapered section 514.
Referring to
At stage 908, the first end 302 of the core tube 208a is flared using one or more known technologies to form the flared end portion 312. At stage 910, the first section 508 of the adapter 402 is threadedly engaged with the slot 222a of the plurality of slots 222 defined in the first header 204. Further, at stage 912, the tapered section 514 of the adapter 402 is inserted in the flared end portion 312 of the core tube 208a.
At 914, the nut 404 is threadably engaged with the second section 512 of the adapter 402. In an embodiment, as the nut 404 is threadably engaged with the second section 512 of the adapter 402, the nut 404 moves towards the first end 504 of adapter 402, thereby causing sleeve 502 to slides towards the flared end portion 312 of the core tube 208a. Upon further threaded movement of the nut 404, the step 818 of the nut 404 pushes against the step 716 of the sleeve 502, causing the portion of the sleeve 502 to be positioned over a portion of the flared end portion 312 of the core tube 208a leading to engagement of the sleeve 502 with the flared end portion 312. The positioning and engagement of a portion of the sleeve 502 over a flared end portion 312 helps in achieving a metal to metal seal between the flared end portion 312 of the core tube 208a and the tapered section 514 of the adapter 402, achieving a leak proof joint. Further, as the pipe threads are utilized to attached the adapter 402 with the first header 204, a leak proof joint is formed between the adapter 402 and the first header 204. In this manner, each of the core tube 208a is coupled to the first header 204 resulting in ATAAC that can operate and handle compressed air having high temperature specifically compressed air having temperature above 300 degrees.
Number | Name | Date | Kind |
---|---|---|---|
3074748 | Ulrich | Jan 1963 | A |
4735442 | Burli | Apr 1988 | A |
5348082 | Velluet et al. | Sep 1994 | A |
5730213 | Kiser et al. | Mar 1998 | A |
7971909 | Nakata et al. | Jul 2011 | B2 |
8251134 | Janezich | Aug 2012 | B2 |
9015923 | Lindell et al. | Apr 2015 | B2 |
20040183303 | Westermann | Sep 2004 | A1 |
20080216989 | Grajzi | Sep 2008 | A1 |
20100201124 | Duquette et al. | Aug 2010 | A1 |
20110056668 | Taras et al. | Mar 2011 | A1 |
20110253356 | Williams | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
200940977 | Aug 2007 | CN |
201740427 | Feb 2011 | CN |
2014010673 | Jan 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20190063305 A1 | Feb 2019 | US |