The invention relates to a high temperature fuel cell with a carrier structure including an anode layer at the fuel-side accordance with the precharacterising part of claim 1 and also to a high temperature fuel cell with an electrolyte layer formed as a carrier, on which the anode layer is applied. The invention also relates to a method for the manufacture of fuel cells of this kind.
An SOFC fuel cell with a fuel-side carrier structure is known from the not prior published EP-A-1 343 215 (=P.7183) which forms an anode substrate and which serves as a carrier for a thin film electrolyte and also a cathode. In the contact region between the anode, which is a thin part layer of the carrier structure, and the electrolyte, electrochemical reactions take place, at so-called three phase points (nickel/solid electrolyte/gas), in which the nickel atoms are oxidised by oxygen ions (O2−) of the electrolytes and these are then reduced again by a gaseous fuel (H2,CO), with H2O and CO2 being formed and electrons freed during oxidation being conducted further by the anode substrate. The EP-A-1 343 215 describes a carrier structure which has a “redox stability” and which with reference to this redox stability is sufficiently well designed with regard to gas permeability and also economics for a use in high temperature fuel cells.
The carrier structure of these known fuel cells is made up of an electrode material and contains macro-pores, which are produced by means of pore formers and form the communicating cavities. The electrode material includes skeleton-like or net-like continuous structure of particles joined by sintering, so-called “reticular systems” (can also be termed percolating phases) which form two interlaced systems: a first reticular system made of ceramic material and a second reticular system which contains metals or one metal—Ni in particular—and which produces an electrically conductive connection through the carrier structure. The electrode material has the characteristics that during the carrying out of redox cycles by means of the change between oxidising and reducing conditions firstly no substantial changes of characteristic occur in the ceramic reticular system and secondly an oxidation or rather reduction of the metal results in the other reticular system. Moreover, the two reticular systems together form a dense structure which contains micro-pores in the oxidised condition, the proportion of which in relation to the volume of the electrode material is, or can be, smaller than 5% related to the volume of the electrode material.
The two reticular systems arise in a natural way from the constituent particles in the form of a statistical distribution of the particles, if these are prepared in such a way that the two kinds of particles respectively exhibit a narrow size spectrum, when the proportion for each reticular system amounts to 30% per unit volume and when the particles are mixed with each other homogeneously. The system of communicating cavities formed by the macro-pores is likewise a reticular system. This hollow cavity system results in the necessary gas permeability.
The carrier structure described may show the desired redox stability, however in other respects it shows deficiencies. During a redox cycle the structure contracts during the transition from the oxidised state to the reduced state (constriction); the electrolyte layer is correspondingly placed under a compressive pressure. The compression is followed by an expansion during the reversed redox transition. This expansion is greater than the compression by more than 0.01% due to irreversible processes in the carrier structure in many of the anode substrates. Cracks develop in the electrolyte layer, which represents a gas separating membrane, due to the expansion through which the necessary gas tightness is lost.
The object of the invention is to produce a high temperature fuel cell with a fuel side carrier structure including an anode layer in which the electrolyte layer applied to the carrier structure remains gastight during a redox cycle. This object is satisfied by the fuel cell defined in claim 1.
The high temperature fuel cell includes a fuel side carrier structure which includes an anode layer and which serves as a carrier for a thin, gastight sintered solid material electrolyte layer. This carrier structure is formed by a heterogeneous phase in which hollow cavities in the form of macro-pres and micro-pores are contained. The heterogeneous phase includes two part phases which penetrate one another in interlaced manner. The first part phase is composed of a ceramic material and the second part phase has metal for which a redox cycle can be carried out with a complete reduction and renewed oxidation. The first part phase is composed of large and small ceramic particles, from which inherently stable “burr corpuscles” are formed as islands in the heterogeneous phase. The second part phase produces an electrically conductive connection through the carrier structure in the presence of the reduced form of the metal. The large and small ceramic particles have an average diameter d50 larger than 5 μm and smaller than 1 μm respectively. The quantity ratios of the ceramic particles are selected in such a manner that the “burr corpuscles” are associated with an “adhesive burr composite”, through which the carrier structure is stabilised against changes in stability. The metric characteristics of the carrier structure are substantially maintained at the boundary surface to the electrolyte layer so that volume changes of the second part phase during the redox cycle leave the gas-tightness of the electrolyte layer substantially intact.
The dependent claim 2 refers to advantageous embodiments of the fuel cell of the invention in accordance with claim 1.
For high temperature fuel cells, in which the electrolyte layer is formed as a carrier and in which the anode layer is applied to this layer, the heterogeneous phase, defined in claim 1, can likewise advantageously be used in accordance with claim 3. The special structure of this heterogeneous phase is an effective means against shear forces which are too large, which occur due to the volume difference between the reduced condition and the oxidised condition of the anode material at the boundary surface between the anode layer and the electrolyte layer and which can cause a de-lamination.
The dependent claims 4 to 7 refer to advantageous embodiments of the fuel cells in accordance with the invention. Methods for the manufacture of the fuel cells are the subject of the claims 8 and 9.
The invention will be explained with reference to the drawings, which show:
In high temperature fuel cell as schematically illustrated in
A consumer 6 which loads the fuel cell with an electrical resistance is arranged between the poles 4 and 5. In the practical use of the fuel cell the voltage U between the poles 4 and 5 is produced by a stack of cells connected in series.
On the fuel side the high temperature fuel cell in accordance with the invention contains the carrier structure 1 which includes the anode layer 1a and a second part layer, formed by a heterogeneous phase 1b. By the phase 1b hollow cavities are formed in the form of macro-pores and also micro-pores. The macro-pores bring about the gas permeability of the carrier structure 1. The heterogeneous phase 1b contains two part phases which penetrate one another in interlaced manner. The first part phase comprises a ceramic material and the second part phase has metal for which a redox cycle can be carried out with a complete reduction and renewed oxidation. The second part phase comprises an electrically conductive connection through the carrier structure 1 in the presence of the reduced form of the metal.
The first part phase is composed of large and small ceramic particles 10 and 11 from which inherently stable “burr corpuscles” 12 and 13 are formed as islands in the heterogeneous phase 1b: see
The second part phase forms an approximately homogeneous matrix together with the small ceramic particles 11 of the first part phase. The large ceramic particles 10 are uniformly embedded in this matrix. The particle density of the small ceramic particles 11 is selected in such a manner that clusters each including a plurality of particles 11 occur. On sintering of the carrier structure the particles 11 form into inherently stable structures 13 or 13′ in the clusters. Moreover, on sintering, one of these structures, the structure 13′ with the large ceramic particles 10, join into “large burr corpuscles” 12. A large burr corpuscle 12 of this kind is composed of a core which consists of a large ceramic particle 10 and a halo 100 in which the joined-on structures 13′ are located. The average extension of the halo 100 is given by the sphere 101 drawn in chain-dotted lines in
Apart from the burr corpuscle 12, small spheres 110 are also drawn in chain-dotted lines in
The quantity ratios of the ceramic particles are selected in such a way that the burr corpuscles 12, 13 associate themselves to an “adhesive burr composite”, through which the carrier structure 1 is stabilised against changes in stability: see
The carrier structure is also correspondingly stabilised by the adhesive burr composite during oxidation. By means of this stabilisation the metric characteristics of the carrier structure 1 at the boundary surface to the electrolyte layer 2 are largely maintained. Volume changes of the second part phase during the redox cycle thus leave the gas tightness of the electrolyte layer substantially intact so that the efficiency of the fuel cells is maintained; or the gas tightness is only impaired to the extent that a tolerable loss of efficiency results.
Shear forces also arise between the anode layer and the electrolyte layer, when the oxidation condition of the anode material changes. Due to the adhesive burr composite these shear forces are relatively weak. When the anode layer is applied to an electrolyte layer used as a carrier, shear forces of this kind do not, as a rule, suffice to cause a de-lamination of the anode layer.
The extensions which have arisen due to the oxidation are illustrated in
The anode substrate which comprises the heterogeneous phase 1b contains zirconium oxide YSZ stabilised with Y in the first part phase and Ni as a metal in the second part phase. The second part phase consists wholly or largely of NiO particles adhered joined together by sintering, when the metal is present in oxidised form. The matrix between the large ceramic particles 10 has a heterogeneous grain structure with regard to the NiO particles and the small ceramic particles 11. For samples which have been examined, the composition of which has proved to be advantageous, the particle size ratio of the heterogeneous grain structure is in the range between 2:1 and 5:1; in this arrangement the NiO particles have an average grain size d50 in the range of 0.5 to 2 μm. The quantity ratio between the first and the second part phase lies—in per cent by weight—in the range from 50:50 to 25:75, preferably at approximately 40:60.
In a particularly advantageous sample the length of the double arrow 17 has practically disappeared in the diagram of
Outside the anode layer 1a the micro-pores and macro-pores of the carrier structure are uniformly distributed. For the macro-pores the volume ratio amounts to 15-35, preferably more than 20% by volume; for the micropores it preferably amounts to less than 10% by volume. The average diameters of the macro-pores have values between 3 and 25 μm, while those of the micro-pores have values between 1 and 3 μm. The carrier structure 1 has a layer thickness of 0.3 to 2 mm, preferably 0.6 to 1 mm. The thickness of the electrolyte layer is smaller than 30 μm, preferably smaller than 15 μm.
In a method for the manufacture of the fuel cell in accordance with the invention the metal for the second phase is used in oxidised form in the production of a blank for the carrier structure. The material for the solid electrolytes is applied as a slurry to the said blank by means of a thin layer process for example. Subsequently the coated blank is sintered. One of the following part methods can be used for the production of the carrier structure for example: foil casting, roll pressing, wet pressing or isostatic pressing. The thin layer electrolyte can be applied by other methods: screen printing, spraying or casting of slurry, slurry casting in a vacuum (vacuum slip casting) or reactive metallization.
Number | Date | Country | Kind |
---|---|---|---|
03405649.9 | Sep 2003 | EP | regional |