The field of art to which this invention generally pertains is methods and apparatus for making use of electrical energy to affect chemical changes.
There are many processes that can be used and have been used over the years to produce carbon black. The energy sources used to produce such carbon blacks over the years have, in large part, been closely connected to the raw materials used to convert hydrocarbon containing materials into carbon black. Residual refinery oils and natural gas have long been a resource for the production of carbon black. Energy sources have evolved over time in chemical processes such as carbon black production from simple flame, to oil furnace, to plasma, to name a few. As in all manufacturing, there is a constant search for more efficient and effective ways to produce such products. Varying flow rates and other conditions of energy sources, varying flow rates and other conditions of raw materials, increasing speed of production, increasing yields, reducing manufacturing equipment wear characteristics, etc. have all been, and continue to be, part of this search over the years.
The systems described herein meet the challenges described above, and additionally attain more efficient and effective manufacturing process.
A heat exchanger particularly adapted for use in a plasma carbon black generating process is described, including a block of high temperature stable material, containing at least one first and at least one second independent fluid flow passageways through the material, and wherein the material can withstand sustained temperatures generated in a plasma carbon black generating process.
Additional embodiments include: the heat exchanger described above where the at least one first passage way has a diameter larger than that of the at least one second passage way; the heat exchanger described above where the material can withstand sustained temperatures of at least 1200° C.; the heat exchanger described above including multiple blocks of material integrally connected and stacked one on top of the other, where the at least one first passageway in each block of material is in fluid flow communication with the at least one first passageway in the other blocks of material, and the at least one second passageway in each block of material is in fluid flow communication with the at least one second passageway in the other blocks of material, and wherein the blocks of material are sealed so as to prevent any substantial loss of fluid between the individual blocks of material during use; the heat exchanger described above where the block of material comprises at least one of graphite, silicon carbide, a refractory metal, or high temperature ceramic material; the heat exchanger described above where the at least one first passageway has a diameter of at least 3 inches; the heat exchanger described above further contained in a insulated shell material; the heat exchanger described above where the blocks are compressed together by one or more vessel expansion joints; the heat exchanger described above where the block of material includes at least one material unable to withstand an oxidant containing stream at the sustained temperatures.
A method of making carbon black is also described, including reacting a carbon black forming feedstock with a hydrogen containing gas in a plasma reactor to produce effluent gas containing carbon black hydrogen and other constituents of the feedstock and plasma gas, recovering heat from the effluent gas for further processing, and recycling a portion of the hydrogen and other constituents of the feedstock and plasma gas back into the carbon black forming process, where the recycled portion of the hydrogen and other constituents of the feedstock and plasma gas are pre-heated in a heat exchanger to a temperature up to the reaction temperature before returning to the carbon black forming reactor.
Additional embodiments include: the method described above where the recycled hydrogen containing gas is preheated to a temperature of at least 1200° C.; the method described above where the recycled hydrogen is preheated to a temperature up to about 2500° C.; the method described above where the recycled hydrogen containing gas is preheated in the heat exchanger with effluent gas; the method described above where the heat exchanger additionally cools the effluent gas down to a temperature of 1000° C. or less; the method described above where the effluent gas is cooled in the heat exchanger by the hydrogen containing gas being recycled; the method described above where in the heat exchanger the hydrogen containing gas is at a higher pressure than the effluent gas; the method described above where in the heat exchanger the effluent gas flows in a direction opposite or counter current to that of the hydrogen containing gas; the method described above where in the heat exchanger the effluent gas flows in a direction cross-flow to that of the hydrogen containing gas; the method described above where the amount of hydrogen gas introduced into the heat exchanger is in excess of that required for heating and/or cracking the feedstock.
These and additional embodiments are further described below.
The particulars shown herein are by way of example and for purposes of illustrative discussion of the various embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
The present invention will now be described by reference to more detailed embodiments. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety.
Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The system and processes described herein use a heat exchanger constructed of a high temperature stable materials, for example, non-metallic materials, such as graphite, silicon carbide, or high temperature ceramics such as alumina, and/or a refractory metal, such as tungsten, which can pre-heat recycled hydrogen containing gas in the plasma based carbon black process up to temperatures approaching reaction temperature in the reactor, specifically 1200° C. or higher, significantly reducing the electrical production load—MWh (mega-watt hours)/metric ton produced—of the process, as well as significantly reducing the size and capital expenses of downstream equipment in the recycle loop, including the product cooler, main unit filter, blower/compressor, and/or gas cleanup membrane system. This represents a significant integration of a high temperature stable material heat exchanger in a carbon black process with reactor gas effluent inlet temperatures above 1200° C. The system described herein can utilize inlet temperatures up to about 2500° C., with the sublimation or melting temperature of the heat exchanger material being the only limitation.
In typical furnace black production (shown in
With the plasma design systems and methods described herein, recycled hydrogen can use the same plasma system described above, or could heat the hydrogen with the reactor effluent. These systems, using conventional metal heat exchangers, would still only deliver at most the same 950° C. preheat temperature used in the furnace process, rather than the up to 2500° C. that the heat exchangers as described herein may achieve.
As an additional benefit, the volume of gas required to be recirculated can be significantly reduced with the system described herein. The current plasma design referenced above uses recycled process gas (205) to quench the carbon black and hydrogen flow as it exits the reactor, reducing its temperature to within the inlet temperature limits (1050° C.) of conventional product coolers (202). Typically this quench flow is 1.5 times greater than the volume of plasma gas required. This volume of gas is then required to be cooled along with the products in the product cooler (202), filtered in the main unit filter (206), and compressed by the blower (207), increasing the size and power requirements of all of those downstream pieces of equipment.
Due to the dependency on electricity usage in heating hydrogen, pre-heating of the hydrogen is a strong lever to reducing total cost of production in the electric/natural gas production process. Previous efforts stopped short of doing a full heat integration, instead electing to reduce the exiting carbon black and hydrogen temperature with water cooling, boilers or gas quenches, matching the limitations of the traditional furnace process. The processes and systems described herein, instead takes advantage of the lack of oxidants in this plasma process which enables the use of unconventional materials that cannot survive an oxidant containing gas stream, such as ceramics like graphite, silicon carbide and refractory metals (tungsten, niobium, chrome etc). It also enables the use of materials with less than perfect sealing. In the furnace process this would result in air leaking into the tail gas and could create a destructive fire in the heat exchanger. Leaking the hydrogen containing plasma gas into the reactor effluent gasses creates no fire and so enables the use of materials which would otherwise have such sealing problems—for example alumina, magnesia, and chromium based refractories.
By using materials with a sufficiently high melting or sublimation point, for example graphite, the electric heating only needs to provide the enthalpy required to crack the natural gas, rather than that required to heat the plasma gas to the reaction temperature from the temperature required to compress or filter the plasma gas. In an ideal system for producing carbon black from natural gas, only the bond dissociation energy of methane would be required. However, to produce target grades of carbon black, the methane must be heated up to target reaction temperatures in excess of 1200° C. The closer this high temperature heat recovery (HTHR) system gets to re-heating the hydrogen to the reaction temperature required to make the desired carbon black quality, the closer the system gets to being that ideal system.
As described above, the HTHR system also either eliminates or significantly reduces the need for a quench gas at the outlet of the reactor. The required cooling load for the product cooler is also reduced by up to approximately 50%. Similarly, the required surface area sizing of the main unit filter (303, for example) is also reduced by up to approximately 50% and the required flow rate through the blower/compressor/gas cleaning system downstream of the filter is also reduced by a similar amount.
Two important requirements for the heat exchanger that cools the carbon black conveyed in the gas stream are (1) large diameter flow paths for the carbon black stream to prevent blockage and build up; and (2) low temperature differential between the material walls and the carbon black stream to prevent thermophoresis. While any diameter and temperature differential for the carbon black channels in the heat exchanger may be used which prevent blockage and carbon black build up in use, diameters of at least 3 inches and temperature differences between material and fluid of 300° C. or less have been found to be particularly useful. And while the carbon black channels can be the same size as the cooling channels, or even smaller, having the carbon black conveying channels of a larger diameter enables those channels to run cooler than if they were the same size as the cooling channels. In running cooler they should foul less and so enable a higher heat flux and smaller heat exchanger for a given heat duty. The diameter of the coolant fluid channel selected will of course depend on such things as relative fluid flow rates, material selected etc, so as to maintain a warm enough tube wall temperature in the carbon black fluid channels so as to eliminate or reduce the thermophoretic fouling from the presence of the carbon black particles. Representative diameters could be for example, 4 inches, 3 inches 2 inches, one inch, 0.5 inch, etc.
Similarly, the overall length and diameter of the heat exchangers used will depend on the size or scale of the process. Its internal surface area would be proportional to the production rate. For example, for small reactors as few as 30 carbon black flow channels could be sufficient, whereas commercial size units may require 144 carbon black flow channels or more.
To take advantage of the system described herein, at least a portion of the carbon black laden gas coming out of the reactor, and in most cases all of the carbon black laden gas coming out of the reactor, will be channeled through the heat exchangers described herein, which will then exchange heat with one or more other streams to preheat the other materials used in the process, or other fluid streams that utilize energy in the plant such as making steam, generating electricity, drying the product or other systems that can utilize heat.
The HTHR system described herein (see, for example,
Using a counter flow arrangement will achieve minimum approach temperature of the rH2 to the CBH2 stream and minimum exit temperature of the CBH2 stream, but other flow arrangements, such as cross flow, would also work.
With the system and methods described herein, multiple identical blocks (404) can be stacked on top of one another with a keyed fit and with a graphite gasket (405) or other high temperature material gasket sealing the mating surfaces. Due to the similar chemical composition of each stream even an imperfect seal would be sufficient. The individual blocks would be aligned (406) so as to provide continuous fluid flow from the holes or channels from one block to the next.
The rH2 stream would be held at higher pressure than the CBH2 stream, ensuring that if any leakage or communication did occur between the streams, it would be with clean rH2 going into the CBH2 stream, which would have negligible impact on the process conditions and maintain the rH2 system free of carbon black.
As described herein, the heat exchanger block stack could be contained (see, for example,
The thermal mass of reactor effluent will always exceed that of the recycled hydrogen, as the reactor generates black and additional hydrogen. Consequently, the system as described herein, will always result in a larger temperature increase in the rH2 stream than the drop in the CBH2 stream. The result of this is that the cold end of the heat exchanger will have a larger temperature difference than the hot end.
In one embodiment, flowing more rH2 than is needed by the process can eliminate this increasing temperature difference, and serve as a variable to maintain a constant temperature difference along the length of the exchanger, and in doing so minimize thermophoretic fouling. The plasma gas temperature will depend on the discharge temperature of the blower. The hot temperature will depend on the materials of the heat exchanger. The higher the hot temperature and the lower the blower discharge temperature the less the % of flow increase. Preferably the additional hydrogen will form a separate stream that can then realize value from the additional heat when the surplus stream gets sold as a fuel, or used to heat something else. Even if the heat gets rejected to atmosphere the benefit in terms of the heat exchanger operation and the impact on fouling should make this feature valuable.
Thus, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
The present application claims priority of U.S. Provisional Application No. 62/209,017 filed Aug. 24, 2015, which may relate to subject matter disclosed in U.S. patent application Ser. No. 14/591,476, filed Jan. 7, 2015, which application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/933,497 filed Jan. 30, 2014. The entirety of each of the aforementioned applications is specifically incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
709868 | Bradley et al. | Sep 1902 | A |
1339225 | Rose | May 1920 | A |
1536612 | Lewis | May 1925 | A |
1597277 | Jakowsky | Aug 1926 | A |
2062358 | Frolich | Sep 1932 | A |
1931800 | Jakosky et al. | Oct 1933 | A |
2002003 | Eisenhut et al. | May 1935 | A |
2039312 | Goldman et al. | May 1936 | A |
2393106 | Johnson et al. | Jan 1946 | A |
2557143 | Royster et al. | Jun 1951 | A |
2572851 | Gardner et al. | Oct 1951 | A |
2603669 | Chappell | Jul 1952 | A |
2616842 | Sheer et al. | Nov 1952 | A |
2785964 | Pollock | Mar 1957 | A |
2850403 | Day | Sep 1958 | A |
2851403 | Hale et al. | Sep 1958 | A |
2897071 | Gilbert et al. | Jul 1959 | A |
2897869 | Polmanteer | Aug 1959 | A |
2951143 | Anderson et al. | Aug 1960 | A |
3009783 | Sheer et al. | Nov 1961 | A |
3073769 | Doukas | Jan 1963 | A |
3127536 | McLane | Mar 1964 | A |
3253890 | De et al. | May 1966 | A |
3288696 | Orbach | Nov 1966 | A |
3307923 | Ruble | Mar 1967 | A |
3308164 | Shepard | Mar 1967 | A |
3309780 | Goins | Mar 1967 | A |
3331664 | Jordan | Jul 1967 | A |
3342554 | Jordan et al. | Sep 1967 | A |
3344051 | Latham, Jr. | Sep 1967 | A |
3408164 | Johnson | Oct 1968 | A |
3409403 | Bjornson et al. | Nov 1968 | A |
3420632 | Ryan | Jan 1969 | A |
3431074 | Jordan | Mar 1969 | A |
3453488 | Cann et al. | Jul 1969 | A |
3464793 | Jordan et al. | Sep 1969 | A |
3619138 | Gunnell | Nov 1971 | A |
3619140 | Morgan et al. | Nov 1971 | A |
3637974 | Tajbl et al. | Jan 1972 | A |
3673375 | Camacho et al. | Jun 1972 | A |
3725103 | Jordan et al. | Apr 1973 | A |
3852399 | Rothbuhr et al. | Dec 1974 | A |
3922335 | Jordan et al. | Nov 1975 | A |
3959008 | Warner et al. | May 1976 | A |
3981654 | Rood et al. | Sep 1976 | A |
3981659 | Myers | Sep 1976 | A |
3984743 | Horie | Oct 1976 | A |
3998934 | Vanderveen | Dec 1976 | A |
4019896 | Appleby | Apr 1977 | A |
4028072 | Braun et al. | Jun 1977 | A |
4035336 | Jordan et al. | Jul 1977 | A |
4057396 | Matovich | Nov 1977 | A |
4075160 | Mills et al. | Feb 1978 | A |
4088741 | Takewell | May 1978 | A |
4101639 | Surovikin et al. | Jul 1978 | A |
4138471 | Lamond et al. | Feb 1979 | A |
4199545 | Matovich | Apr 1980 | A |
4282199 | Lamond et al. | Aug 1981 | A |
4289949 | Raaness et al. | Sep 1981 | A |
4292291 | Rothbuhr | Sep 1981 | A |
4317001 | Silver et al. | Feb 1982 | A |
4372937 | Johnson | Feb 1983 | A |
4404178 | Johnson et al. | Sep 1983 | A |
4452771 | Hunt | Jun 1984 | A |
4460558 | Johnson | Jul 1984 | A |
4431624 | Casperson | Aug 1984 | A |
4472172 | Sheer et al. | Sep 1984 | A |
4543470 | Santen et al. | Sep 1985 | A |
4553981 | Fuderer | Nov 1985 | A |
4577461 | Cann | Mar 1986 | A |
4597776 | Ullman | Jul 1986 | A |
4601887 | Dorn et al. | Jul 1986 | A |
4678888 | Camacho et al. | Jul 1987 | A |
4689199 | Eckert et al. | Aug 1987 | A |
4755371 | Dickerson | Jul 1988 | A |
4765964 | Gravley et al. | Aug 1988 | A |
4766287 | Morrisroe et al. | Aug 1988 | A |
4787320 | Raaness et al. | Nov 1988 | A |
4864096 | Wolf et al. | Sep 1989 | A |
4977305 | Severance, Jr. | Dec 1990 | A |
5039312 | Hollis, Jr. et al. | Aug 1991 | A |
5045667 | Iceland et al. | Sep 1991 | A |
5046145 | Drouet | Sep 1991 | A |
5105123 | Ballou | Apr 1992 | A |
5138959 | Kulkarni | Aug 1992 | A |
5147998 | Tsantrizos et al. | Sep 1992 | A |
5206880 | Olsson | Apr 1993 | A |
5222448 | Morgenthaler et al. | Jun 1993 | A |
5352289 | Weaver et al. | Oct 1994 | A |
5399957 | Vierboom et al. | Mar 1995 | A |
5427762 | Steinberg | Jun 1995 | A |
5476826 | Greenwald et al. | Dec 1995 | A |
5481080 | Lynum et al. | Jan 1996 | A |
5486674 | Lynum et al. | Jan 1996 | A |
5500501 | Lynum et al. | Mar 1996 | A |
5527518 | Lynum et al. | Jun 1996 | A |
5578647 | Li et al. | Nov 1996 | A |
5593644 | Norman et al. | Jan 1997 | A |
5602298 | Levin | Feb 1997 | A |
5604424 | Shuttleworth | Feb 1997 | A |
5611947 | Vavruska | Mar 1997 | A |
5673285 | Wittle et al. | Sep 1997 | A |
5717293 | Sellers | Feb 1998 | A |
5725616 | Lynum et al. | Mar 1998 | A |
5749937 | Detering et al. | May 1998 | A |
5935293 | Detering et al. | Aug 1999 | A |
5951960 | Lynum et al. | Sep 1999 | A |
5989512 | Lynum et al. | Nov 1999 | A |
5997837 | Lynum et al. | Dec 1999 | A |
6042643 | Belmont et al. | Mar 2000 | A |
6058133 | Bowman et al. | May 2000 | A |
6068827 | Lynum et al. | May 2000 | A |
6099696 | Schwob et al. | Aug 2000 | A |
6188187 | Harlan | Feb 2001 | B1 |
6197274 | Mahmud et al. | Mar 2001 | B1 |
6277350 | Gerspacher | Aug 2001 | B1 |
6358375 | Schwob | Mar 2002 | B1 |
6380507 | Childs | Apr 2002 | B1 |
6395197 | Detering et al. | May 2002 | B1 |
6403697 | Mitsunaga et al. | Jun 2002 | B1 |
6441084 | Lee et al. | Aug 2002 | B1 |
6442950 | Tung | Sep 2002 | B1 |
6444727 | Yamada et al. | Sep 2002 | B1 |
6471937 | Anderson et al. | Oct 2002 | B1 |
6602920 | Hall et al. | Aug 2003 | B2 |
6703580 | Brunet et al. | Mar 2004 | B2 |
6773689 | Lynum et al. | Aug 2004 | B1 |
6955707 | Ezell et al. | Oct 2005 | B2 |
7167240 | Stagg | Jan 2007 | B2 |
7294314 | Graham | Nov 2007 | B2 |
7312415 | Ohmi et al. | Dec 2007 | B2 |
7360309 | Vaidyanathan | Apr 2008 | B2 |
7431909 | Rumpf | Oct 2008 | B1 |
7452514 | Fabry et al. | Nov 2008 | B2 |
7462343 | Lynum et al. | Dec 2008 | B2 |
7563525 | Ennis | Jul 2009 | B2 |
7582184 | Tomita et al. | Sep 2009 | B2 |
7623340 | Song et al. | Nov 2009 | B1 |
7635824 | Miki et al. | Dec 2009 | B2 |
7655209 | Rumpf et al. | Feb 2010 | B2 |
7777151 | Kuo | Aug 2010 | B2 |
7847009 | Wong et al. | Dec 2010 | B2 |
7931712 | Zubrin et al. | Apr 2011 | B2 |
7968191 | Hampden-Smith et al. | Jun 2011 | B2 |
8147765 | Muradov et al. | Apr 2012 | B2 |
8221689 | Boutot et al. | Jul 2012 | B2 |
8257452 | Menzel | Sep 2012 | B2 |
8277739 | Monsen et al. | Oct 2012 | B2 |
8323793 | Hamby et al. | Dec 2012 | B2 |
8443741 | Chapman et al. | May 2013 | B2 |
8471170 | Li et al. | Jun 2013 | B2 |
8486364 | Vanier et al. | Jul 2013 | B2 |
8501148 | Belmont et al. | Aug 2013 | B2 |
8581147 | Kooken et al. | Nov 2013 | B2 |
8710136 | Yurovskaya et al. | Apr 2014 | B2 |
8771386 | Licht et al. | Jul 2014 | B2 |
8784617 | Novoselov et al. | Jul 2014 | B2 |
8850826 | Ennis | Oct 2014 | B2 |
8871173 | Nester et al. | Oct 2014 | B2 |
8911596 | Vancina | Dec 2014 | B2 |
8945434 | Krause et al. | Feb 2015 | B2 |
9095835 | Skoptsov et al. | Aug 2015 | B2 |
9229396 | Wu | Jan 2016 | B1 |
9315735 | Cole et al. | Apr 2016 | B2 |
9388300 | Dikan et al. | Jul 2016 | B2 |
9445488 | Foret | Sep 2016 | B2 |
9574086 | Johnson et al. | Feb 2017 | B2 |
9679750 | Choi et al. | Jun 2017 | B2 |
10100200 | Johnson et al. | Oct 2018 | B2 |
10138378 | Hoermman et al. | Nov 2018 | B2 |
10370539 | Johnson et al. | Aug 2019 | B2 |
10808097 | Hardman et al. | Oct 2020 | B2 |
11453784 | Hardman et al. | Sep 2022 | B2 |
11492496 | Hoermann et al. | Nov 2022 | B2 |
11665808 | Moss et al. | May 2023 | B2 |
20010029888 | Sindarrajan et al. | Oct 2001 | A1 |
20010039797 | Cheng | Nov 2001 | A1 |
20020000085 | Hall et al. | Jan 2002 | A1 |
20020021430 | Koshelev et al. | Feb 2002 | A1 |
20020050323 | Moisan et al. | May 2002 | A1 |
20020051903 | Masuko et al. | May 2002 | A1 |
20020141476 | Varela | Oct 2002 | A1 |
20020157559 | Brunet et al. | Oct 2002 | A1 |
20030103858 | Baran et al. | Jun 2003 | A1 |
20030136661 | Kong et al. | Jul 2003 | A1 |
20030152184 | Shehane et al. | Aug 2003 | A1 |
20040045808 | Fabry et al. | Mar 2004 | A1 |
20040047779 | Denison | Mar 2004 | A1 |
20040071626 | Smith et al. | Apr 2004 | A1 |
20040081609 | Green et al. | Apr 2004 | A1 |
20040081862 | Herman | Apr 2004 | A1 |
20040148860 | Fletcher | Aug 2004 | A1 |
20040168904 | Anazawa et al. | Sep 2004 | A1 |
20040211760 | Delzenne et al. | Oct 2004 | A1 |
20040213728 | Kopietz et al. | Oct 2004 | A1 |
20040216559 | Kim et al. | Nov 2004 | A1 |
20040247509 | Newby | Dec 2004 | A1 |
20050063892 | Tandon et al. | Mar 2005 | A1 |
20050063893 | Ayala et al. | Mar 2005 | A1 |
20050079119 | Kawakami et al. | Apr 2005 | A1 |
20050230240 | Dubrovsky et al. | Oct 2005 | A1 |
20060034748 | Lewis et al. | Feb 2006 | A1 |
20060037244 | Clawson | Feb 2006 | A1 |
20060068987 | Bollepalli et al. | Mar 2006 | A1 |
20060107789 | Deegan et al. | May 2006 | A1 |
20060155157 | Zarrinpashne et al. | Jul 2006 | A1 |
20060226538 | Kawata | Oct 2006 | A1 |
20060228290 | Green | Oct 2006 | A1 |
20060239890 | Chang et al. | Oct 2006 | A1 |
20070140004 | Marotta et al. | Jun 2007 | A1 |
20070183959 | Charlier et al. | Aug 2007 | A1 |
20070270511 | Melnichuk et al. | Nov 2007 | A1 |
20070293405 | Zhang et al. | Dec 2007 | A1 |
20080041829 | Blutke et al. | Feb 2008 | A1 |
20080121624 | Belashchenko et al. | May 2008 | A1 |
20080159947 | Yurovskaya et al. | Jul 2008 | A1 |
20080169183 | Hertel et al. | Jul 2008 | A1 |
20080182298 | Day | Jul 2008 | A1 |
20080226538 | Rumpf et al. | Sep 2008 | A1 |
20080233402 | Carlson et al. | Sep 2008 | A1 |
20080263954 | Hammel et al. | Oct 2008 | A1 |
20080279749 | Probst et al. | Nov 2008 | A1 |
20080292533 | Belmont et al. | Nov 2008 | A1 |
20090014423 | Li et al. | Jan 2009 | A1 |
20090035469 | Sue et al. | Feb 2009 | A1 |
20090090282 | Gold et al. | Apr 2009 | A1 |
20090142250 | Fabry et al. | Jun 2009 | A1 |
20090155157 | Stenger et al. | Jun 2009 | A1 |
20090173252 | Nakata et al. | Jul 2009 | A1 |
20090208751 | Green et al. | Aug 2009 | A1 |
20090230098 | Salsich et al. | Sep 2009 | A1 |
20100055017 | Vanier et al. | Mar 2010 | A1 |
20100147188 | Mamak et al. | Jun 2010 | A1 |
20100249353 | MacIntosh et al. | Sep 2010 | A1 |
20110036014 | Tsangaris et al. | Feb 2011 | A1 |
20110071692 | D'Amato et al. | Mar 2011 | A1 |
20110071962 | Lim | Mar 2011 | A1 |
20110076608 | Bergemann et al. | Mar 2011 | A1 |
20110089115 | Lu | Apr 2011 | A1 |
20110120137 | Ennis | May 2011 | A1 |
20110138766 | Elkady et al. | Jun 2011 | A1 |
20110150756 | Adams et al. | Jun 2011 | A1 |
20110155703 | Winn | Jun 2011 | A1 |
20110180513 | Luhrs et al. | Jul 2011 | A1 |
20110214425 | Lang et al. | Sep 2011 | A1 |
20110217229 | Inomata et al. | Sep 2011 | A1 |
20110236816 | Stanyschofsky et al. | Sep 2011 | A1 |
20110239542 | Liu et al. | Oct 2011 | A1 |
20120018402 | Carducci et al. | Jan 2012 | A1 |
20120025693 | Wang et al. | Feb 2012 | A1 |
20120177531 | Chuang et al. | Jul 2012 | A1 |
20120201266 | Boulos et al. | Aug 2012 | A1 |
20120232173 | Juranitch et al. | Sep 2012 | A1 |
20120292794 | Prabhu et al. | Nov 2012 | A1 |
20130039841 | Nester et al. | Feb 2013 | A1 |
20130062195 | Samaranayake et al. | Mar 2013 | A1 |
20130062196 | Sin | Mar 2013 | A1 |
20130092525 | Li et al. | Apr 2013 | A1 |
20130105739 | Bingue et al. | May 2013 | A1 |
20130194840 | Huselstein et al. | Aug 2013 | A1 |
20130292363 | Hwang et al. | Nov 2013 | A1 |
20130323614 | Chapman et al. | Dec 2013 | A1 |
20130340651 | Wampler et al. | Dec 2013 | A1 |
20140000488 | Sekiyama et al. | Jan 2014 | A1 |
20140057166 | Yokoyama et al. | Feb 2014 | A1 |
20140131324 | Shipulski et al. | May 2014 | A1 |
20140151601 | Hyde et al. | Jun 2014 | A1 |
20140166496 | Lin et al. | Jun 2014 | A1 |
20140190179 | Barker et al. | Jul 2014 | A1 |
20140224706 | Do et al. | Aug 2014 | A1 |
20140227165 | Hung et al. | Aug 2014 | A1 |
20140248442 | Luizi et al. | Sep 2014 | A1 |
20140290532 | Rodriguez et al. | Oct 2014 | A1 |
20140294716 | Susekov et al. | Oct 2014 | A1 |
20140339478 | Probst et al. | Nov 2014 | A1 |
20140345828 | Ehmann et al. | Nov 2014 | A1 |
20140357092 | Singh | Dec 2014 | A1 |
20140373752 | Hassinen et al. | Dec 2014 | A2 |
20150004516 | Kim et al. | Jan 2015 | A1 |
20150044105 | Novoselov | Feb 2015 | A1 |
20150044516 | Kyrlidis et al. | Feb 2015 | A1 |
20150056127 | Chavan et al. | Feb 2015 | A1 |
20150056516 | Hellring et al. | Feb 2015 | A1 |
20150064099 | Nester et al. | Mar 2015 | A1 |
20150087764 | Sanchez Garcia et al. | Mar 2015 | A1 |
20150180346 | Yuzurihara et al. | Jun 2015 | A1 |
20150210856 | Johnson et al. | Jul 2015 | A1 |
20150210857 | Johnson et al. | Jul 2015 | A1 |
20150210858 | Hoermann et al. | Jul 2015 | A1 |
20150211378 | Johnson et al. | Jul 2015 | A1 |
20150217940 | Si et al. | Aug 2015 | A1 |
20150218383 | Johnson et al. | Aug 2015 | A1 |
20150223314 | Hoermann et al. | Aug 2015 | A1 |
20150252168 | Schuck et al. | Sep 2015 | A1 |
20150259211 | Hung et al. | Sep 2015 | A9 |
20150307351 | Mabrouk et al. | Oct 2015 | A1 |
20160030856 | Kaplan et al. | Feb 2016 | A1 |
20160152469 | Chakravarti et al. | Jun 2016 | A1 |
20160210856 | Assenbaum et al. | Jul 2016 | A1 |
20160243518 | Spitzl | Aug 2016 | A1 |
20160293959 | Blizanac et al. | Oct 2016 | A1 |
20160296905 | Kuhl | Oct 2016 | A1 |
20160319110 | Matheu et al. | Nov 2016 | A1 |
20170034898 | Moss et al. | Feb 2017 | A1 |
20170037253 | Hardman et al. | Feb 2017 | A1 |
20170058128 | Johnson et al. | Mar 2017 | A1 |
20170066923 | Hardman et al. | Mar 2017 | A1 |
20170073522 | Hardman et al. | Mar 2017 | A1 |
20170117538 | Bendimerad et al. | Apr 2017 | A1 |
20170349758 | Johnson et al. | Dec 2017 | A1 |
20180015438 | Taylor et al. | Jan 2018 | A1 |
20180016441 | Taylor et al. | Jan 2018 | A1 |
20180022925 | Hardman et al. | Jan 2018 | A1 |
20180340074 | Wittmann et al. | Nov 2018 | A1 |
20180366734 | Korchev et al. | Dec 2018 | A1 |
20190048200 | Johnson et al. | Feb 2019 | A1 |
20190100658 | Taylor et al. | Apr 2019 | A1 |
20200239697 | Wittmann et al. | Jul 2020 | A1 |
20200291237 | Hardman et al. | Sep 2020 | A1 |
20210017025 | Hardman | Jan 2021 | A1 |
20210017031 | Hardman et al. | Jan 2021 | A1 |
20210020947 | Hardman et al. | Jan 2021 | A1 |
20210071007 | Hardman et al. | Mar 2021 | A1 |
20210261417 | Cardinal et al. | Aug 2021 | A1 |
20220272826 | Hoermann et al. | Aug 2022 | A1 |
20220274046 | Johnson et al. | Sep 2022 | A1 |
20220339595 | Taylor et al. | Oct 2022 | A1 |
20230136364 | Johnson et al. | May 2023 | A1 |
20230154640 | Ned et al. | May 2023 | A1 |
20230212401 | Hardman et al. | Jul 2023 | A1 |
Number | Date | Country |
---|---|---|
2897071 | Nov 1972 | AU |
98848 | May 1995 | BG |
830378 | Dec 1969 | CA |
964405 | Jan 1997 | CA |
2 353 752 | Jan 2003 | CA |
2 621 749 | Aug 2009 | CA |
85201622 | Jul 1986 | CN |
86104761 | Feb 1987 | CN |
85109166 | Apr 1987 | CN |
1059541 | Mar 1992 | CN |
1076206 | Sep 1993 | CN |
1077329 | Oct 1993 | CN |
1078727 | Nov 1993 | CN |
1082571 | Feb 1994 | CN |
1086527 | May 1994 | CN |
1196032 | Oct 1998 | CN |
1398780 | Feb 2003 | CN |
1458966 | Nov 2003 | CN |
1491740 | Apr 2004 | CN |
1644650 | Jul 2005 | CN |
1656632 | Aug 2005 | CN |
1825531 | Aug 2006 | CN |
1833313 | Sep 2006 | CN |
101092691 | Dec 2007 | CN |
101143296 | Mar 2008 | CN |
101193817 | Jun 2008 | CN |
101198442 | Jun 2008 | CN |
201087175 | Jul 2008 | CN |
201143494 | Nov 2008 | CN |
101368010 | Feb 2009 | CN |
101529606 | Sep 2009 | CN |
101534930 | Sep 2009 | CN |
101657283 | Feb 2010 | CN |
101734620 | Jun 2010 | CN |
101946080 | Jan 2011 | CN |
101958221 | Jan 2011 | CN |
102007186 | Apr 2011 | CN |
102060281 | May 2011 | CN |
102108216 | Jun 2011 | CN |
102186767 | Sep 2011 | CN |
102350506 | Feb 2012 | CN |
102612549 | Jul 2012 | CN |
102666686 | Sep 2012 | CN |
102702801 | Oct 2012 | CN |
202610344 | Dec 2012 | CN |
102869730 | Jan 2013 | CN |
102993788 | Mar 2013 | CN |
103108831 | May 2013 | CN |
103160149 | Jun 2013 | CN |
103391678 | Nov 2013 | CN |
203269847 | Nov 2013 | CN |
203415580 | Jan 2014 | CN |
204301483 | Apr 2015 | CN |
104798228 | Jul 2015 | CN |
105070518 | Nov 2015 | CN |
105073906 | Nov 2015 | CN |
105308775 | Feb 2016 | CN |
205472672 | Aug 2016 | CN |
107709474 | Feb 2018 | CN |
211457 | Jul 1984 | DE |
198 07 224 | Aug 1999 | DE |
19807224 | Aug 1999 | DE |
200300389 | Dec 2003 | EA |
200300389 | Dec 2003 | EA |
0315442 | May 1989 | EP |
0 325 689 | Aug 1989 | EP |
0 616 600 | Sep 1994 | EP |
0 635 044 | Feb 1996 | EP |
0 635 043 | Jun 1996 | EP |
0 861 300 | Sep 1998 | EP |
0982378 | Mar 2000 | EP |
1017622 | Jul 2000 | EP |
1 188 801 | Mar 2002 | EP |
1 088 854 | Apr 2010 | EP |
3099397 | Dec 2016 | EP |
3100597 | Dec 2016 | EP |
3253826 | Dec 2017 | EP |
3253827 | Dec 2017 | EP |
3253904 | Dec 2017 | EP |
3331821 | Jun 2018 | EP |
3347306 | Jul 2018 | EP |
3350855 | Jul 2018 | EP |
3448553 | Mar 2019 | EP |
3448936 | Mar 2019 | EP |
3592810 | Jan 2020 | EP |
3612600 | Feb 2020 | EP |
3676220 | Jul 2020 | EP |
3676335 | Jul 2020 | EP |
3676901 | Jul 2020 | EP |
3700980 | Sep 2020 | EP |
3774020 | Feb 2021 | EP |
4225698 | Aug 2023 | EP |
1249094 | Dec 1960 | FR |
2 891 434 | Mar 2007 | FR |
2 937 029 | Apr 2010 | FR |
395 893 | Jul 1933 | GB |
987498 | Mar 1965 | GB |
1068519 | May 1967 | GB |
1291487 | Oct 1972 | GB |
1 400 266 | Jul 1975 | GB |
1 492 346 | Nov 1977 | GB |
2419883 | May 2006 | GB |
S5021983 | Jul 1975 | JP |
S5987800 | May 1984 | JP |
S6411074 | Jan 1989 | JP |
4-228270 | Aug 1992 | JP |
H05226096 | Sep 1993 | JP |
H06302527 | Oct 1994 | JP |
6-322615 | Nov 1994 | JP |
H07500695 | Jan 1995 | JP |
H07307165 | Nov 1995 | JP |
H08176463 | Jul 1996 | JP |
H08319552 | Dec 1996 | JP |
9-316645 | Dec 1997 | JP |
11-123562 | May 1999 | JP |
2001164053 | Jun 2001 | JP |
2001253974 | Sep 2001 | JP |
2002121422 | Apr 2002 | JP |
2004-300334 | Oct 2004 | JP |
3636623 | Apr 2005 | JP |
2005-235709 | Sep 2005 | JP |
2005-243410 | Sep 2005 | JP |
5226096 | Jul 2013 | JP |
20030046455 | Jun 2003 | KR |
10-2008-105344 | Dec 2008 | KR |
2014-0075261 | Jun 2014 | KR |
20150121142 | Oct 2015 | KR |
20170031061 | Mar 2017 | KR |
2425795 | Aug 2011 | RU |
2425795 | Aug 2011 | RU |
2488984 | Jul 2013 | RU |
2488984 | Jul 2013 | RU |
200418933 | Oct 2004 | TW |
WO-9004852 | May 1990 | WO |
WO-9204415 | Mar 1992 | WO |
9312031 | Jun 1993 | WO |
WO-9312030 | Jun 1993 | WO |
WO-9312633 | Jun 1993 | WO |
9318094 | Sep 1993 | WO |
WO-9318094 | Sep 1993 | WO |
9320153 | Oct 1993 | WO |
WO-9320152 | Oct 1993 | WO |
9323331 | Nov 1993 | WO |
1994008747 | Apr 1994 | WO |
WO-9618688 | Jun 1996 | WO |
9703133 | Jan 1997 | WO |
9813428 | Apr 1998 | WO |
WO-0018682 | Apr 2000 | WO |
WO-0224819 | Mar 2002 | WO |
03014018 | Feb 2003 | WO |
WO-2004083119 | Sep 2004 | WO |
WO-2005054378 | Jun 2005 | WO |
WO-2007016418 | Feb 2007 | WO |
WO-2009143576 | Dec 2009 | WO |
WO-2010040840 | Apr 2010 | WO |
WO-2010059225 | May 2010 | WO |
2012015313 | Feb 2012 | WO |
2012067546 | May 2012 | WO |
2012094743 | Jul 2012 | WO |
2012149170 | Nov 2012 | WO |
2013134093 | Sep 2013 | WO |
WO-2013134093 | Sep 2013 | WO |
2013184074 | Dec 2013 | WO |
2013185219 | Dec 2013 | WO |
2014000108 | Jan 2014 | WO |
2014012169 | Jan 2014 | WO |
WO-2014149455 | Sep 2014 | WO |
2015049008 | Apr 2015 | WO |
WO-2015051893 | Apr 2015 | WO |
WO-2015051898 | Apr 2015 | WO |
2015093947 | Jun 2015 | WO |
2015116797 | Aug 2015 | WO |
2015116798 | Aug 2015 | WO |
2015116800 | Aug 2015 | WO |
2015116807 | Aug 2015 | WO |
2015116811 | Aug 2015 | WO |
2015116943 | Aug 2015 | WO |
2016012367 | Jan 2016 | WO |
2016014641 | Aug 2016 | WO |
2016126598 | Aug 2016 | WO |
2016126599 | Aug 2016 | WO |
2016126600 | Aug 2016 | WO |
2017019683 | Feb 2017 | WO |
2017027385 | Feb 2017 | WO |
2017034980 | Mar 2017 | WO |
2017044594 | Mar 2017 | WO |
2017048621 | Mar 2017 | WO |
WO-2017034980 | Mar 2017 | WO |
WO-2017044594 | Mar 2017 | WO |
WO-2017048621 | Mar 2017 | WO |
2017190015 | Nov 2017 | WO |
2017190045 | Nov 2017 | WO |
WO-2017190015 | Nov 2017 | WO |
WO-2017190045 | Nov 2017 | WO |
20180165483 | Sep 2018 | WO |
2018195460 | Oct 2018 | WO |
WO-2019046320 | Mar 2019 | WO |
WO-2019046322 | Mar 2019 | WO |
WO-2019046324 | Mar 2019 | WO |
WO-2019084200 | May 2019 | WO |
WO-2019195461 | Oct 2019 | WO |
WO-2022076306 | Apr 2022 | WO |
WO-2023059520 | Apr 2023 | WO |
WO-2023137120 | Jul 2023 | WO |
Entry |
---|
Non-Final Office Action dated May 2, 2017 in U.S. Appl. No. 14/610,299. |
Ex Parte Quayle Action mailed May 19, 2017 in U.S. Appl. No. 14/601,761. |
Extended European Search Report from EP Application No. 15742910.1 dated Jul. 18, 2017. |
Supplementary Partial European Search Report from EP Application No. 15743214.7 dated Sep. 12, 2017. |
ISR and Written Opinion from PCT/US2017/030139, dated Jul. 19, 2017. |
ISR and Written Opinion from PCT/US2017/030179, dated Jul. 27, 2017. |
Reese, J. (2017). Resurgence in American manufacturing will be led by the rubber and tire industry. Rubber World. 255. 18-21 and 23. |
Non-Final Office Action dated Feb. 27, 2017 in U.S. Appl. No. 14/591,476. |
Extended European Search Report from EP Application No. 15743214.7 dated Jan. 16, 2018. |
Chiesa P, Lozza G, Mazzocchi L. Using Hydrogen as Gas Turbine Fuel. ASME. J. Eng. Gas Turbines Power. 2005;127(1):73-80. doi:10.1115/1.1787513. |
Tsujikawa, Y., and T. Sawada. “Analysis of a gas turbine and steam turbine combined cycle with liquefied hydrogen as fuel.” International Journal of Hydrogen Energy 7.6 (1982): 499-505. |
Search report from RU2016135213, dated Feb. 12, 2018. |
Non-Final Office Action dated Jan. 16, 2018 in U.S. Appl. No. 14/591,528. |
Bakken, Jon Arne, et al. “Thermal plasma process development in Norway.” Pure and applied Chemistry 70.6 (1998): 1223-1228. |
Polman, E. A., J. C. De Laat, and M. Crowther. “Reduction of CO2 emissions by adding hydrogen to natural gas.” IEA Green House Gas R&D programme (2003). |
Verfondern, K., “Nuclear Energy for Hydrogen Production”, Schriften des Forschungzentrum Julich, vol. 58, 2007. |
U.S. Environmental Protection Agency, “Guide to Industrial Assessments for Pollution Prevention and Energy Efficiency,” EPA 625/R-99/003, 1999. |
Breeze, P. “Raising steam plant efficiency-Pushing the steam cycle boundaries.” PEI Magazine 20.4 (2012). |
Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 14/591,476. |
Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 14/591,541. |
Notice of Allowance dated Jan. 18, 2018 in U.S. Appl. No. 14/601,761. |
Correced Notice of Allowance dated Feb. 9, 2018 in U.S. Appl. No. 14/601,761. |
Final Office Action dated Sep. 19, 2017 in U.S. Appl. No. 15/221,088. |
Non-Final Office Action dated Jan. 9, 2018 in U.S. Appl. No. 15/259,884. |
Russian Official Notification of Application No. 2016135213 from Russia dated Feb. 12, 2018. |
Non-Final Office Action dated Mar. 16, 2016 in U.S. Appl. No. 14/591,476. |
Final Office Action dated Jul. 11, 2016 in in U.S. Appl. No. 14/591,476. |
Non-Final Office Action dated Mar. 16, 2016 in U.S. Appl. No. 14/591,541. |
Final Office Action dated Jul. 14, 2016 in U.S. Appl. No. 14/591,541. |
Non-Final Office Action dated Apr. 14, 2016 in U.S. Appl. No. 14/601,761. |
Final Office Action dated Oct. 19, 2016 in U.S. Appl. No. 14/601,761. |
Non-Final Office Action dated Apr. 13, 2016 in U.S. Appl. No. 14/601,793. |
Final Office Action dated Aug. 3, 2016 in U.S. Appl. No. 14/601,793. |
Notice of Allowance dated Oct. 7, 2016 in U.S. Appl. No. 14/601,793. |
Non-Final Office Action dated Dec. 23, 2016 in U.S. Appl. No. 15/221,088. |
Non-Final Office Action dated Apr. 20, 2018 in U.S. Appl. No. 15/221,088. |
ISR and Written Opinion from PCT/US2015/013482, dated Jun. 17, 2015. |
ISR and Written Opinion from PCT/US2015/013505, dated May 11, 2015. |
ISR and Written Opinion from PCT/US2015/013487, dated Jun. 16, 2015. |
Donnet, Basal and Wang, “Carbon Black”, New York: Marcel Dekker, 1993 pp. 46, 47 and 54. |
Boehm, HP, “Some Aspects of Surface Chemistry of Carbon Blacks and Other Carbons”, Carbon 1994, p. 759. |
“Carbon Black Elastomer Interaction” Rubber Chemistry and Technology, 1991, pp. 19-39. |
“The Impact of a Fullerene-Like Concept in Carbon Black Science”, Carbon, 2002, pp. 157-162. |
ISR and Written Opinion from PCT/US2015/013510, dated Apr. 22, 2015. |
ISR and Written Opinion from PCT/US2016/015939, dated Jun. 3, 2016. |
ISR and Written Opinion from PCT/US2016/015941, dated Feb. 22, 2016. |
ISR and Written Opinion from PCT/US2016/015942, dated Apr. 11, 2016. |
ISR and Written Opinion from PCT/US2016/044039, dated Oct. 6, 2016. |
ISR and Written Opinion from PCT/US2016/045793, dated Oct. 18, 2016. |
ISR and Written Opinion from PCT/US2016/050728, dated Nov. 18, 2016. |
ISR and Written Opinion from PCT/US2016/051261, dated Nov. 18, 2016. |
ISR and Written Opinion from PCT/US2015/013484, dated Apr. 22, 2015. |
AP 42, Fifth Edition, vol. I, Chapter 6: Organic Chemical Process Industry, Section 6.1: Carbon Black. |
Fulcheri, et al. “Plasma processing: a step towards the production of new grades of carbon black. ” Carbon 40.2 (2002): 169-176. |
Grivei, et al. A clean process for carbon nanoparticles and hydrogen production from plasma hydrocarbon cracking. Publishable Report, European Commission Joule III Programme, Project No. JOE3-CT97-0057, circa 2000. |
Fabry, et al. “Carbon black processing by thermal plasma. Analysis of the particle formation mechanism.” Chemical Engineering Science 56.6 (2001): 2123-2132. |
Pristavita, et al. “Carbon nanoparticle production by inductively coupled thermal plasmas: controlling the thermal history of particle nucleation.” Plasma Chemistry and Plasma Processing 31.6 (2011): 851-866. |
Cho, et al. “Conversion of natural gas to hydrogen and carbon black by plasma and application of plasma black.” Symposia—American Chemical Society, Div. Fuel Chem. vol. 49. 2004. |
Pristavita, et al. “Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology.” Plasma Chemistry and Plasma Processing 30.2 (2010): 267-279. |
Pristavita, et al. “Volatile Compounds Present in Carbon Blacks Produced by Thermal Plasmas.” Plasma Chemistry and Plasma Processing 31.6 (2011): 839-850. |
Garberg, et al. “A transmission electron microscope and electron diffraction study of carbon nanodisks.” Carbon 46.12 (2008): 1535-1543. |
Knaapila, et al. “Directed assembly of carbon nanocones into wires with an epoxy coating in thin films by a combination of electric field alignment and subsequent pyrolysis.” Carbon 49.10 (2011): 3171-3178. |
Krishnan, et al. “Graphitic cones and the nucleation of curved carbon surfaces.” Nature 388.6641 (1997): 451-454. |
Høyer, et al. “Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a silicone elastomer matrix.” Journal of Applied Physics 112.9 (2012): 094324. |
Naess, Stine Nalum, et al. “Carbon nanocones: wall structure and morphology.” Science and Technology of advanced materials (2016), 7 pages. |
Fulcheri, et al. “From methane to hydrogen, carbon black and water.” International journal of hydrogen energy 20.3 (1995): 197-202. |
ISR and Written Opinion from PCT/US2016/047769, dated Dec. 30, 2016. |
D.L. Sun, F. Wang, R.Y. Hong, C.R. Xie, Preparation of carbon black via arc discharge plasma enhanced by thermal pyrolysis, Diamond & Related Materials (2015), doi: 10.1016/j.diamond.2015.11.004, 47 pages. |
ISR and Written Opinion from PCT/US2015/013794, dated Jun. 19, 2015. |
Donnet et al. “Observation of Plasma-Treated Carbon Black Surfaces by Scanning Tunnelling Microscopy,” Carbon (1994) 32(2):199-206. |
Larouche et al. “Nitrogen Functionalization of Carbon Black in a Thermo-Convective Plasma Reactor,” Plasma Chem Plasma Process (2011) 31:635-647. |
Reynolds, “Electrode Resistance: How Important is Surface Area” Oct. 10, 2016. p. 3 ¶[0001]; Fig. 3; Retrieved from http://electrofishing.net/2016/10/10/electrode-resistance-how-important-is-surface-area/ on Aug. 5, 2018. |
Wikipedia “Heating Element” Oct. 14, 2016. Page 1 para[0001]. Retrieved from https://en.wikipedia.org/w/index.php?title=Heating_element&oldid=744277540 on May 9, 2018. |
Wikipedia “Joule Heating” Jan. 15, 2017. Page 1 para[0002]. Retrieved from https://en.wikipedia.org/w/index.php?title=Joule_heating&oldid=760136650 on May 9, 2018. |
Extended European Search Report from EP Application No. 16747055.8 dated Jun. 27, 2018. |
Extended European Search Report from EP Application No. 16747056.6 dated Jun. 27, 2018. |
Extended European Search Report from EP Application No. 16747057.4 dated Oct. 9, 2018. |
Extended European Search Report from EP Application No. 16835697.0 dated Nov. 28, 2018. |
Final Office Action from U.S. Appl. No. 15/259,884, dated Oct. 11, 2018. |
Invitation to Pay Additional Fees dated Jun. 18, 2018 in PCT/US2018/028619. |
IPRP from PCT/US2015/013482, dated Aug. 2, 2016. |
IPRP from PCT/US2017/030139 dated Oct. 30, 2018. |
IPRP from PCT/US2017/030179 dated Oct. 30, 2018. |
ISR and Written Opinion for PCT/US2018/048374 dated Nov. 26, 2018. |
ISR and Written Opinion for PCT/US2018/048378 dated Dec. 20, 2018. |
ISR and Written Opinion for PCT/US2018/048381 dated Dec. 14, 2018. |
ISR and Written Opinion from PCT/US2018/021627, dated May 31, 2018. |
ISR and Written Opinion from PCT/US2018/028619, dated Aug. 9, 2018. |
Non-Final Office Action dated Jun. 1, 2018 in U.S. Appl. No. 15/262,539. |
Non-Final Office Action dated Jun. 7, 2018 in U.S. Appl. No. 14/591,476. |
Non-Final Office Action dated Jun. 7, 2018 in U.S. Appl. No. 15/410,283. |
Non-Final Office Action from U.S. Appl. No. 15/548,352 dated Oct. 10, 2018. |
Notice of Allowance dated Jun. 19, 2018 in U.S. Appl. No. 14/601,761. |
Notice of Allowance dated Jun. 7, 2018 in U.S. Appl. No. 14/591,541. |
Final Office Action for U.S. Appl. No. 15/262,539 dated Jan. 4, 2019. |
Gago et al., “Growth mechanisms and structure of fullerene-like carbon-based thin films: superelastic materials for tribological applications,” Trends in Fullerene Research, Published by Nova Science Publishers, Inc. (2007), pp. 1-46. |
Co-pending U.S. Appl. No. 16/807,550, filed Mar. 3, 2020. |
EP17790549.4 Extended European Search Report dated Nov. 26, 2019. |
EP17790570.0 Extended European Search Report dated Nov. 8, 2019. |
Medalia, et al., Tinting Strength of Carbon Black. Journal of Colloid and Interface Science 40.2. (1972). |
U.S. Appl. No. 15/548,346 Office Action dated Oct. 22, 2019. |
U.S. Appl. No. 14/591,528 Office Action dated Oct. 28, 2019. |
U.S. Appl. No. 14/610,299 Notice of Allowance dated Feb. 20, 2020. |
U.S. Appl. No. 15/221,088 Office Action dated Dec. 4, 2019. |
U.S. Appl. No. 15/229,608 Office Action dated Oct. 25, 2019. |
U.S. Appl. No. 15/259,884 Office Action dated Feb. 25, 2020. |
U.S. Appl. No. 15/259,884 Office Action dated Jan. 9, 2018. |
U.S. Appl. No. 15/262,539 Office Action dated Sep. 19, 2019. |
U.S. Appl. No. 15/410,283 Office Action dated Jan. 16, 2020. |
U.S. Appl. No. 15/548,348 Notice of Allowance dated Dec. 12, 2019. |
U.S. Appl. No. 15/548,352 Office Action dated Jan. 31, 2020. |
U.S. Appl. No. 16/159,144 Office Action dated Mar. 26, 2020. |
U.S. Appl. No. 15/548,348 Office Action dated Apr. 25, 2019. |
U.S. Appl. No. 14/591,541 Notice of Allowance dated Sep. 17, 2018. |
Bakken, et al., Thermal plasma process development in Norway. Pure and Applied Chemistry 70.6 (1998): 1223-1228. |
Biscoe, et al., An X-ray study of carbon black. Journal of Applied physics, 1942; 13: 364-371. |
Breeze, Raising steam plant efficiency-Pushing the steam cycle boundaries.PEI Magazine 20.4 (2012) 12 pages. |
Chiesa, et al., Using Hydrogen as Gas Turbine Fuel. ASME. J. Eng. Gas Turbines Power 127.1. (2005):73-80. doi:10.1115/1.1787513. |
Co-pending U.S. Appl. No. 16/097,035, filed Oct. 26, 2018. |
Co-pending U.S. Appl. No. 16/180,635, filed Nov. 5, 2018. |
Co-pending U.S. Appl. No. 16/445,727, filed Jun. 19, 2019. |
Co-pending U.S. Appl. No. 16/563,008, filed Sep. 6, 2019. |
EP16845031.0 Extended European Search Report dated Mar. 18, 2019. |
EP16847102.7 Extended European Search Report dated Jul. 5, 2019. |
Extended European Search Report for EP Application No. 15742910.1 dated Jul. 18, 2017. |
Extended European Search Report for EP Application No. 15743214.7 dated Jan. 16, 2018. |
Garberg, et al., A transmission electron microscope and electron diffraction study of carbon nanodisks. Carbon 46 (2008) 1535-1543. |
Hernandez, et al. Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites. Scripta Materialia 58 (2008) 69-72. |
International Preliminary Report on Patentability for Application No. PCT/US2015/013484 dated Aug. 2, 2016. |
International Preliminary Report on Patentability for Application No. PCT/US2015/013487 dated Aug. 2, 2016. |
International Preliminary Report on Patentability for Application No. PCT/US2015/013505 dated Aug. 2, 2016. |
International Preliminary Report on Patentability for Application No. PCT/US2015/013510 dated Aug. 2, 2016. |
International Search Report and Written Opinion for Application No. PCT/US2017/030139 dated Jul. 19, 2017. |
International Search Report and Written Opinion for Application No. PCT/US2017/030179 dated Jul. 27, 2017. |
International Search Report for Application No. PCT/US2015/13482 dated Jun. 17, 2015. |
International Search Report for Application No. PCT/US2015/13487 dated Jun. 16, 2015. |
PCT/US2018/021627 International Search Report and Written Opinion dated May 31, 2018. |
PCT/US2018/028619 International Search Report and Written Opinion dated Aug. 9, 2018. |
PCT/US2018/048374 International Search Report and Written Opinion dated Nov. 21, 2018. |
PCT/US2018/048378 International Search Report and Written Opinion dated Dec. 20, 2018. |
PCT/US2018/048381 International Search Report and Written Opinion dated Dec. 14, 2018. |
PCT/US2018/057401 International Search Report and Written Opinion dated Feb. 15, 2019. |
PCT/US2018/064538 International Search Report and Written Opinion dated Feb. 19, 2019. |
PCT/US2019/025632 International Search Report and Written Opinion dated Jun. 24, 2019. |
Polman, et al., Reduction of CO2 emissions by adding hydrogen to natural gas. IEA Green House Gas R&D programme (2003): 1-98. |
Reese, Resurgence in American manufacturing will be led by the rubber and tire industry. Rubber World. 255. (2017): 18-21 and 23. |
Supplementary Partial European Search Report for EP Application No. 15743214.7 dated Sep. 12, 2017. |
Tsujikawa, et al., Analysis of a gas turbine and steam turbine combined cycle with liquefied hydrogen as fuel. International Journal of Hydrogen Energy 7.6 (1982): 499-505. |
U.S. Environmental Protection Agency, Guide to Industrial Assessments for Pollution Prevention and Energy Efficiency. EPA 625/R-99/003 (1999): 474 pages. |
U.S. Appl. No. 14/591,528 Office Action dated Jan. 17, 2019. |
U.S. Appl. No. 14/591,476 Notice of Allowance dated Mar. 20, 2019. |
U.S. Appl. No. 14/591,476 Office Action dated Feb. 27, 2017. |
U.S. Appl. No. 14/591,476 Office Action dated Oct. 13, 2017. |
U.S. Appl. No. 14/591,528 Office Action dated Jan. 16, 2018. |
U.S. Appl. No. 14/591,541 Office Action dated Feb. 22, 2017. |
U.S. Appl. No. 14/591,541 Office Action dated Oct. 13, 2017. |
U.S. Appl. No. 14/601,761 Corrected Notice of Allowance dated Feb. 9, 2018. |
U.S. Appl. No. 14/601,761 Ex Parte Quayle Actionn dated May 19, 2017. |
U.S. Appl. No. 14/601,761 Notice of Allowance dated Feb. 9, 2018. |
U.S. Appl. No. 14/601,761 Notice of Allowance dated Jan. 18, 2018. |
U.S. Appl. No. 14/601,761 Notice of Allowance dated Oct. 11, 2018. |
U.S. Appl. No. 14/601,761 Notice of Allowance dated Sep. 17, 2018. |
U.S. Appl. No. 14/610,299 Office Action dated May 2, 2017. |
U.S. Appl. No. 14/610,299 Office Action dated Sep. 25, 2018. |
U.S. Appl. No. 15/221,088 Office Action dated Mar. 7, 2019. |
U.S. Appl. No. 15/229,608 Office Action dated Apr. 8, 2019. |
U.S. Appl. No. 15/241,771 Office Action dated Mar. 13, 2019. |
U.S. Appl. No. 15/259,884 Office Action dated May 31, 2019. |
U.S. Appl. No. 15/410,283 Office Action dated Mar. 12, 2019. |
U.S. Appl. No. 15/410,283 Office Action dated Jun. 7, 2018. |
U.S. Appl. No. 15/548,352 Office Action dated May 9, 2019. |
Verfondern, Nuclear Energy for Hydrogen Production. Schriften des Forschungzentrum Julich 58 (2007): 4 pages. |
PCT/US2023/024148 International Search Report and Written Opinion dated Sep. 27, 2023. |
U.S. Appl. No. 16/802,174 Office Action dated Oct. 4, 2023. |
U.S. Appl. No. 17/819,075 Office Action dated Oct. 5, 2023. |
U.S. Appl. No. 17/938,591 Office Action dated Sep. 25, 2023. |
ASTM International Designation: D6556-14. Standard Test Method for Carbon Black—Total and External Surface Area by Nitrogen Adsorption1, 2014. 5 Pages. |
ASTM International: Standard Test Method for Carbon Black—Morphological Characterization of Carbon Black Using Electron Microscopy, D3849-07 (2011); 7 Pages. |
Carmer, et al., Formation of silicon carbide particles behind shock waves. Appl. Phys. Lett. 54 (15), Apr. 10, 1989. 1430-1432. |
Co-pending U.S. Appl. No. 17/021,197, inventors Hardman; Ned J. et al., filed on Sep. 15, 2020. |
Co-pending U.S. Appl. No. 17/031,484, inventors Johnson; Peter L. et al., filed on Sep. 24, 2020. |
Co-pending U.S. Appl. No. 17/072,416, inventors Taylor; Roscoe W. et al., filed on Oct. 16, 2020. |
Co-pending U.S. Appl. No. 17/239,041, inventors Hardmanned; J. et al., filed on Apr. 23, 2021. |
Co-pending U.S. Appl. No. 17/245,296, inventors Johnsonpeter; L. et al., filed on Apr. 30, 2021. |
Co-pending U.S. Appl. No. 17/329,532, inventors Taylorroscoe; W. et al., filed on May 25, 2021. |
Co-pending U.S. Appl. No. 17/412,913, inventors Johnson; Peter L. et al., filed on Aug. 26, 2021. |
Co-pending U.S. Appl. No. 17/473,106, inventors Taylorroscoe; W. et al., filed on Sep. 13, 2021. |
Co-pending U.S. Appl. No. 17/487,982, inventors Hoermannalexander; F. et al., filed on Sep. 28, 2021. |
Co-pending U.S. Appl. No. 17/529,928, inventors Hardmanned; J. et al., filed on Nov. 18, 2021. |
Co-pending U.S. Appl. No. 17/741,161, inventors Hoermann; Alexander F. et al., filed on May 10, 2022. |
Co-pending U.S. Appl. No. 17/862,242, inventors Hardman; Ned J. et al., filed on Jul. 11, 2022. |
Co-pending U.S. Appl. No. 17/938,304, inventors Roscoe; W. Taylor et al., filed on Oct. 5, 2022. |
Co-pending U.S. Appl. No. 17/938,591, inventors Alexander; F. Hoermann et al., filed on Oct. 6, 2022. |
Co-pending U.S. Appl. No. 18/066,929, inventor Alexander; F. Hoermann, filed on Dec. 15, 2022. |
Co-pending U.S. Appl. No. 18/137,918, inventors John; Jared Moss et al., filed on Apr. 21, 2023. |
Co-pending U.S. Appl. No. 18/172,835, inventor Ned; J. Hardman, filed on Feb. 22, 2023. |
Co-pending U.S. Appl. No. 18/205,384, inventors Ned; J. Hardman et al., filed on Jun. 2, 2023. |
Co-pending U.S. Application No. 18/233, 129, inventors Alexander; F. Hoermann et al., filed on Aug. 11, 2023. |
Co-pending U.S. Appl. No. 18/295,584, inventors Robert; J. Hanson et al., filed on Apr. 4, 2023. |
Database WPI, Week 200323, 2017 Clarivate Analytics. Thomson Scientific, London, GB; Database accession No. 2003-239603, XP002781693. |
EP18764428.1 Extended European Search Report dated Jan. 11, 2021. |
EP18788086.9 Extended European Search Report dated Jan. 11, 2021. |
EP18850029.2 Extended European Search Report dated Apr. 29, 2021. |
EP18850502.8 Extended European Search Report dated Feb. 25, 2021. |
EP18851605.8 Extended European Search Report dated Feb. 25, 2021. |
EP18869902.9 Extended European Search Report dated Mar. 19, 2021. |
EP19780959.3 Extended European Search Report dated Dec. 21, 2021. |
Frenklach, et al., Silicon carbide and the origin of interstellar carbon grains. Nature, vol. 339; May 18, 1989: 196-198. |
Gomez-Pozuelo, et al., Hydrogen production by catalytic methane decomposition over rice husk derived silica. Fuel, Dec. 15, 2021; 306: 121697. |
Invitation to Pay Additional Fees in PCT/US2018/028619 dated Jun. 18, 2018. |
Invitation to Pay Additional Fees in PCT/US2018/048378 dated Oct. 26, 2018. |
Invitation to Pay Additional Fees in PCT/US2018/048381 dated Oct. 9, 2018. |
Invitation to Pay Additional Fees in PCT/US2018/057401 dated Dec. 19, 2018. |
Lee, et al., Application of Thermal Plasma for Production of Hydrogen and Carbon Black from Direct Decomposition of Hydrocarbon, Appl. Chem. Eng., vol. 18, No. 1, Feb. 2007, pp. 84-89. |
Long C. M., et al., “Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions”, Environmental Pollution, 2013, 181, pp. 271-286. https://doi.org/10.1016/j.envpol.2013.06.009. |
PCT/US2021/053371 International Search Report and Written Opinion dated Feb. 17, 2022. |
PCT/US2022/045451 International Search Report and Wrtitten Opinion dated Feb. 17, 2023. |
PCT/US2023/010695 International Search Report and Written Opinion dated Jun. 22, 2023. |
Separation of Flow. (2005). Aerospace, Mechanical & Mechatronic Engg. Retrieved Jul. 16, 2020, from http://www-mdp.eng.cam.ac.uk/web/library/enginfo/aerothermal_dvd_only/aero/fprops/introvisc/node9.html. |
U.S. Appl. No. 16/657,386 Notice of Allowance dated May 20, 2022. |
U.S. Appl. No. 14/591,528 Office Action dated Sep. 11, 2020. |
U.S. Appl. No. 14/610,299 Notice of Allowance dated Dec. 13, 2021. |
U.S. Appl. No. 14/610,299 Notice of Allowance dated Nov. 16, 2021. |
U.S. Appl. No. 14/610,299 Office Action dated Feb. 17, 2021. |
U.S. Appl. No. 15/229,608 Office Action dated Apr. 4, 2022. |
U.S. Appl. No. 15/229,608 Office Action dated Feb. 1, 2021. |
U.S. Appl. No. 15/229,608 Office Action dated Jun. 29, 2023. |
U.S. Appl. No. 15/229,608 Office Action dated May 15, 2020. |
U.S. Appl. No. 15/229,608 Office Action dated Nov. 28, 2022. |
U.S. Appl. No. 15/259,884 Office Action dated Jun. 18, 2021. |
U.S. Appl. No. 15/259,884 Office Action dated Mar. 4, 2022. |
U.S. Appl. No. 15/262,539 Notice of Allowance dated Jul. 23, 2020. |
U.S. Appl. No. 15/262,539 Notice of Allowance dated Jun. 18, 2020. |
U.S. Appl. No. 15/410,283 Office Action dated Jul. 31, 2020. |
U.S. Appl. No. 15/548,346 Office Action dated Jul. 16, 2021. |
U.S. Appl. No. 15/548,346 Office Action dated Jun. 5, 2023. |
U.S. Appl. No. 15/548,346 Office Action dated Mar. 18, 2022. |
U.S. Appl. No. 15/548,346 Office Action dated May 4, 2020. |
U.S. Appl. No. 15/548,346 Office Action dated Oct. 3, 2022. |
U.S. Appl. No. 15/548,352 Office Action dated Apr. 7, 2022. |
U.S. Appl. No. 15/548,352 Office Action dated Aug. 11, 2020. |
U.S. Appl. No. 15/548,352 Office Action dated Sep. 21, 2021. |
U.S. Appl. No. 16/097,035 Notice of Allowance dated Jul. 7, 2022. |
U.S. Appl. No. 16/097,035 Notice of Allowance dated Mar. 24, 2022. |
U.S. Appl. No. 16/097,035 Office Action dated May 10, 2021. |
U.S. Appl. No. 16/097,035 Office Action dated Oct. 30, 2020. |
U.S. Appl. No. 16/097,039 Notice of Allowance dated Jun. 14, 2021. |
U.S. Appl. No. 16/097,039 Office Action dated Nov. 18, 2020. |
U.S. Appl. No. 16/180,635 Notice of Allowance dated Jul. 8, 2021. |
U.S. Appl. No. 16/180,635 Notice of Allowance dated Jun. 29, 2021. |
U.S. Appl. No. 16/180,635 Office Action dated Dec. 15, 2020. |
U.S. Appl. No. 16/445,727 Notice of Allowance dated Feb. 2, 2023. |
U.S. Appl. No. 16/445,727 Notice of Allowance dated Oct. 26, 2022. |
U.S. Appl. No. 16/445,727 Office Action dated Apr. 15, 2022. |
U.S. Appl. No. 16/445,727 Office Action dated Aug. 17, 2021. |
U.S. Appl. No. 16/563,008 Office Action dated Jul. 25, 2022. |
U.S. Appl. No. 16/563,008 Office Action dated Mar. 16, 2023. |
U.S. Appl. No. 16/657,386 Notice of Allowance dated Mar. 10, 2023. |
U.S. Appl. No. 16/657,386 Office Action dated Nov. 12, 2021. |
U.S. Appl. No. 16/657,386 Office Action dated Sep. 16, 2022. |
U.S. Appl. No. 16/802,174 Office Action dated Aug. 31, 2022. |
U.S. Serial No. 16/802, 174 Office Action dated Feb. 16, 2022. |
U.S. Serial No. 16/802, 190 Office Action dated Apr. 19, 2023. |
U.S. Serial No. 16/802, 190 Office Action dated Oct. 5, 2022. |
U.S. Appl. No. 16/802,212 Office Action dated Jul. 17, 2023. |
U.S. Appl. No. 16/802,212 Office Action dated Sep. 16, 2022. |
U.S. Appl. No. 16/855,276 Notice of Allowance dated May 11, 2022. |
U.S. Appl. No. 16/855,276 Office Action dated Apr. 5, 2021. |
U.S. Appl. No. 16/855,276 Office Action dated Oct. 25, 2021. |
U.S. Appl. No. 16/892,199 Notice of Allowance dated Jan. 23, 2023. |
U.S. Appl. No. 16/892,199 Notice of Allowance dated Jan. 31, 2023. |
U.S. Appl. No. 16/892,199 Office Action dated Jun. 27, 2022. |
U.S. Appl. No. 17/062,075 Office Action dated Jun. 14, 2023. |
U.S. Appl. No. 17/498,693 Office Action dated Apr. 3, 2023. |
U.S. Appl. No. 17/565,864 Office Action dated Aug. 15, 2023. |
U.S. Appl. No. 17/669,183 Office Action dated Aug. 23, 2023. |
U.S. Appl. No. 17/817,482 Office Action dated Mar. 29, 2023. |
U.S. Appl. No. 18/046,723 Notice of Allowance dated Apr. 12, 2023. |
U.S. Appl. No. 18/046,723 Notice of Allowance dated Apr. 19, 2023. |
U.S. Appl. No. 18/046,723 Notice of Allowance dated Aug. 7, 2023. |
U.S. Appl. No. 16/802,190 Office Action dated Jan. 31, 2022. |
What is Carbon Black, Orion Engineered Carbons, (Year: 2015). |
Number | Date | Country | |
---|---|---|---|
20170058128 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62209017 | Aug 2015 | US |