The present invention relates to thermoelectric modules and especially to high temperature thermoelectric modules.
The Seebeck coefficient of a thermoelectric material is defined as the open circuit voltage produced between two points on a conductor, where a uniform temperature difference of 1 K exists between those points.
The figure-of-merit of a thermoelectric material is defined as:
where α is the Seebeck coefficient of the material, σ is the electrical conductivity of the material and λ is the total thermal conductivity of the material.
A large number of semiconductor materials were being investigated by the late 1950's and early 1960's, several of which emerged with Z values significantly higher than in metals or metal alloys. As expected no single compound semiconductor evolved that exhibited a uniform high figure-of-merit over a wide temperature range, so research focused on developing materials with high figure-of-merit values over relatively narrow temperature ranges. Of the great number of materials investigated, those based on bismuth telluride and lead telluride alloys emerged as the best for operating in various temperature ranges up to 600° C. Much research has been done to improve the thermoelectric properties of the above thermoelectric materials. For example n-type Bi2Te3 typically contains 5 to 15 percent Bi2Se3 and p-type Bi2Te3 typically contains 75 to 80 Mol percent Sb2Te3. Lead telluride is typically doped with Na and Te for P type behavior and Pb and I (iodine) for N type behavior.
The temperature at which a thermoelectric alloy is most efficient can usually be shifted to higher or lower temperatures by varying the doping levels and additives. Some of the more common variations with PbTe alloys are designated in the thermoelectric industry as 3N and 2N for N type and 2P and 3P for P type. An in depth discussion of PbTe alloys and their respective doping compositions is given in the book edited by Cadoff and Miller, Chapter 10 “Lead Telluride Alloys and Junctions.” For further understanding of Bi2Te3 based alloys and their doping, see two books edited by D. M. Rowe “CRC Handbook of Thermoelectrics, especially Chapter 19 and Thermoelectrics Handbook “Macro to Nano, Chapter 27. In this specification and in the claims the term PbTe is meant to include any lead and telluride semi-conductor alloy when both the lead and telluride Mol percentage is greater than 20 percent. This includes intrinsic or doped N or P type PbTe, PbSnMnTe and PbSnTe alloys, PbTe doped with Thallium, or AgTe2.
Thermoelectric materials can be divided into three categories: low, mid-range and high temperature.
Commercially available low temperature materials are commonly based on Bi2Te3 alloys. When operated in air these materials can not exceed 250° C. on a continuous basis. These alloys are mainly used for cooling although there are a number of waste heat recovery applications based on these alloys. When used as a power source, Bi2Te3 alloys rarely exceed 5% efficiency.
Mid-range materials are normally based on the use of PbTe & TAGS. PbTe and can operate up to about 560° C. and TAGS can operate at about 450° C. Some Skutterudite based thermoelectric alloys (which are cobalt based alloys) are being investigated that also fall into this category but they exhibit high vaporization rates which must be contained for long life. All mid-range thermoelectric alloys known to Applicants will oxidize in air and must be hermetically sealed. Prior art PbTe alloys rarely exceed about 7 percent efficiency.
High temperature thermoelectric materials are normally based on SiGe and Zintl alloys and can operate near 1,000° C. Modules based on these alloys are difficult to fabricate, expensive and are normally used only in space applications. These prior art high temperature materials can achieve as much as 9 percent efficiency in some applications but they are not commercially viable. The reason 9% appears achievable is because of the large temperature difference that can be achieved with these alloys, which in turn increases efficiency.
A segmented thermoelectric leg preferably utilizes high temperature materials on the hot side of the leg and a low temperature material on the cold side of the legs. This arrangement improves the overall efficiency of the legs.
Some of the high temperature thermoelectric materials tend to experience high free vaporization rates (such as 50% loss in 300 hours). These modules can be sealed in a metal package referred to as a can. The process is called canning. Alternately, one fabricator has contained the material in Aerogel insulation in an attempt to suppress the evaporation. In another vapor suppression approach the sample was coated with 10 μm of titanium. Metal coatings can contribute to significant electrical and thermal shorting, if they remain un-reacted. Even if reacted, the coatings can still contribute to thermoelectric degradation.
Electric power generating thermoelectric modules are well known. These modules produce electricity directly from a temperature differential utilizing the thermoelectric effect. The modules include P-type thermoelectric semiconductor elements and N-type thermoelectric semiconductor elements. These thermoelectric elements are called N-legs and P-legs. The effect is that a voltage differential of a few millivolts is created in each leg in the presence of a temperature difference of a few hundred degrees. Since the voltage differential is small, many of these elements (such as about 100 elements) are typically positioned in parallel between a hot surface and a cold surface and are connected electrically in series to produce potentials of a few volts. Thermoelectric modules are well suited to recover energy from a variety of waste heat applications because they are:
For example Hi-Z Technology, Inc., with offices in San Diego Calif., offers a Model HZ-14 thermoelectric bismuth telluride thermoelectric module designed to produce about 14 watts at a load potential of 1.66 volts with a 200° C. temperature differential. Its open circuit potential is 3.5 volts. The module contains 49 N legs and 49 P legs connected electrically in series. It is a 0.5 cm thick square module with 6.27 cm sides. The legs are P-type and N-type bismuth telluride semiconductor legs and are positioned in an egg-crate type structure that insulates the legs from each other except where they are intentionally connected in series at the top and bottom surfaces of the module. That egg-crate structure which has spaces for the 98 legs is described in U.S. Pat. No. 5,875,098 which is hereby incorporated herein by reference. The egg-crate is injection molded in a process described in detail in the patent. This egg-crate has greatly reduced the fabrication cost of these modules and improved performance for reasons explained in the patent.
The egg-crates for the above described Bi2Te3 modules are injection molded using a thermoplastic supplied by Dupont under the trade name “Zenite”. Zenite melts at a temperature of about 350° C. The thermoelectric properties of Bi2Te3 peak at about 100° C. and are greatly reduced at about 250° C. For both of these reasons, uses of these modules are limited to applications where the hot side temperatures are lower than about 250° C.
Many different thermoelectric materials are available. These include bismuth telluride, lead telluride, silicon germanium, silicon carbide, boron carbide and many others. In these materials relative abundance can make huge differences in the thermoelectric properties. Much experimental data regarding these materials and their properties is available in the thermoelectric literature such as the CRC Handbook referenced above. Each of these materials is rated by their “figure of merit” which in all cases is very temperature dependent. Despite the fact that there exists a great need for non-polluting electric power and the fact that there exists a very wide variety of un-tapped heat sources; thermoelectric electric power generation in the United States and other countries is minimal as compared to other sources of electric power. The reason primarily is that thermoelectric efficiencies are typically low compared to other technologies for electric power generation and the cost of thermoelectric systems per watt generated is high relative to other power generating sources. Generally the efficiencies of thermoelectric power generating systems are in the range of about 5 percent.
Lead telluride thermoelectric modules are also known in the prior art. A prior art example is the PbTe thermoelectric module described in U.S. Pat. No. 4,611,089 issued many years ago to two of the present inventors. This patent is hereby incorporated herein by reference. That module utilized lead telluride thermoelectric alloys with an excess of lead for the N legs and lead telluride with an excess of tellurium for the P legs. The thermoelectric properties of the heavily doped lead telluride thermoelectric alloys peak in the range of about 425° C. The egg-crate for the module described in the above patent was fabricated using a technique similar to the technique used many years ago for making chicken egg crates using cardboard spacers. For the thermoelectric egg-crate the spacers were mica which was selected for its electrical insulating properties at high temperatures. Mica, however, is marginal in strength and cracks easily. A more rugged egg-crate material is needed.
That lead telluride module was suited for operation in temperature ranges in excess of 500° C. But the cost of fabrication of this prior art module is greatly in excess of the bismuth telluride module described above. Also, after a period of operation of about 1000 hours some evaporation of the P legs and the N legs at the hot side would produce cross contamination of all of the legs which would result in degraded performance.
What is needed is a low cost, high temperature, high efficiency thermoelectric module designed for operation at hot side temperatures in excess of 500° C. preferably with thermoelectric properties substantially in excess of prior art high-temperature thermoelectric modules.
The present invention provides a long life, low cost, high-temperature, high efficiency thermoelectric module. Preferred embodiments include a two-part (a high temperature part and a low temperature part) egg-crate and segmented N legs and P legs. In preferred embodiments the legs are segmented into two or three segments. In preferred embodiments three segments are chosen for their chemical compatibility and/or their figure of merit in the various temperature ranges between the hot side and the cold side of the module. The legs include metal meshes partially embedded in thermoelectric segments to help maintain electrical contacts notwithstanding substantial differences in thermal expansions. In preferred embodiments a two-part molded egg-crate holds in place and provides insulation and electrical connections for the thermoelectric N legs and P legs. The high temperature part of the egg-crate is comprised of a ceramic material capable of operation at temperatures in excess of 500° C. and the low temperature part is comprised of a liquid crystal polymer material having very low thermal conductivity. In preferred embodiments the high temperature ceramic is zirconium oxide and the liquid crystal polymer material is a DuPont Zenite available from DuPont in the form of a liquid crystal polymer resin. Preferably the module is sealed in an insulating capsule.
In preferred embodiments the high and intermediate temperature thermoelectric materials for the N legs are two types of lead telluride thermoelectric material (3N and 2N, respectively) and the low-temperature material is bismuth telluride. The high and intermediate temperature materials for the P legs are also lead telluride (3P and 2P, respectively). And the low temperature material is bismuth telluride. In preferred embodiments low temperature contacts are provided by thermally sprayed molybdenum-aluminum which provides excellent electrical contacts between the N and P legs. Iron metal mesh spacers are provided at the hot side to maintain electrical contact notwithstanding substantial thermal expansion variations. These mesh spacers may also be inserted between the lead telluride material and the bismuth telluride and/or between the different types of lead telluride material. These mesh spacers are flexible and maintain good contact and prevent or minimize cracking in the legs despite the expansion and contraction of the legs due to thermal cycling.
A preferred embodiment is a thermoelectric module with approximately 16 percent conversion efficiency at a hot side temperature of 560° C. and a cold side of 50° C. This module amalgamates numerous recent thermoelectric materials advances achieved by different groups with novel techniques developed by Applicants. This 16 percent efficiency is approximately double the efficiency presently available commercially. Adding a recently upgraded Bi2Te3 cold side segment to the PbTe legs increases the module efficiency by about 3 percentage points from about 8 percent as described in the background section to about 11 percent. An additional 5 digit increase in efficiency can be achieved by applying nano-grained technology as described below. The thermoelectric legs of preferred embodiments are fabricated using low-cost powder metallurgy. Segmented prefabricated legs may be bonded using a spot welding technique.
While adding a Bi2Te3 segment to the P leg is straight forward (PbTe powder is applied on top of Bi2Te3 material and the leg is cold pressed and sintered or hot pressed); fabricating a segmented PbTe/Bi2Te3 N-type leg poses a very special challenge because of anisotropy in the electrical conductivity of N-type Bi2Te3. If prepared by powder metallurgical processing, the Bi2Te3 leg will have five times the electrical resistivity in the pressing direction as compared to the resistivity in the direction perpendicular to the pressing direction. This eliminates all the most straight-forward fabrication processes from consideration, such as two layer conventional cold-press and sinter, or conventional diffusion bonding of hot-pressed materials. This is one of the principal reasons why N type PbTe/Bi2Te3 segmented leg technology has never been commercialized. Applicants have identified a processing route that achieves the required control of Bi2Te3 grain orientation while also producing a compatible diffusion bond between segments.
With a Bi2Te3 segment on the cold side of the PbTe leg it is possible to use Applicants' employer's standard prior art Bi2Te3 contacting methods as described in U.S. Pat. No. 5,856,200, especially
Applicants have embedded iron mesh contacts into the PbTe to make a compliant thermal and electrical connection to an iron connector. This has several advantages. By embedding an iron mesh (or other compatible material) into PbTe the surface area of the contact can be much larger than the simple prior art planar contact of an iron shoe. In addition to the larger contact area, an embedded contact is held in place by mechanical forces as well as a metallurgical bond. The iron mesh is spot welded to the iron shoe. These metal meshes permit the modules to be utilized without the normally required compression between the hot and cold surfaces.
The most efficient P-type PbTe alloys known to Applicants are slightly tellurium excess. The excess Te acts as a P-type dopant. Te excess alloys however are not compatible with iron and are more reactive and volatile than PbTe alloys with excess tin and/or manganese. For these reasons in preferred embodiments the hot side segment in contact with the Fe shoe will contain a PbSnMnTe or PbSnTe alloy with a deficiency or no excess of tellurium.
A significant amount of work has been recently performed to create nano-sized thermoelectric material. Nano-sized materials have a large number of grain boundaries that impede the propagation of phonons through the material resulting in reduced thermal conductivity and increased ZT. To ensure a nano-sized structure, an inert fine material is added to the alloy that is in the form of nano-sized particulates. The fine additive results in prevention of grain growth and also impedes phonon propagation. This technique has been used with P type Bi2Te3 alloys. Applicants have demonstrated that similar reductions in thermal conductivity can be achievable in PbTe by fabricating it with nano-sized grains. Nano-sized grains can be achieved by ball milling, mechanical alloying, chemical processing and other techniques. Applicants have added nano-size alumina powder to nano-sized PbTe powder. These experiments indicated increased efficiencies and successfully inhibited grain growth at 800° C. This approach mimics the commercial oxide dispersion strengthened (ODS) alloys in which the micron sized oxides are added to prevent grain growth, greatly reduces creep and increases strength.
A first preferred embodiment of the present invention can be described by reference to
Egg-crate 70 is injection molded using a technique similar to that described in U.S. Pat. No. 5,875,098. However, the molding process in substantially more complicated. The egg-crate comes in two molded together sections. It includes a high temperature section (which will lie adjacent to a hot side) molded from stabilized zirconium oxide (ZrO2). ZrO2 has a very high melting point of 2715° C. and a very low thermal conductivity for an oxide. The egg-crate also includes a lower temperature section (which will lie adjacent to a cold side) molded from Zenite Model 7130 available from DuPont that has a melting point of 350° C. and has a very low thermal conductivity.
The ZrO2 portion of the egg-crate is fabricated by injection molding of the ZrO2 powders with two different binder materials. Some of the binder material is removed by leaching prior to sintering. The ZrO2 portion is then sintered to remove the second binder and produce a part with good density and high temperature strength. The ZrO2 portion will typically shrink about 20 percent during sintering. This sintered section is then placed in a second mold and a subsequent injection molding of the Zenite portion of the egg-crate is then performed, thereby bonding the Zenite to the ZrO2. While the thermal conductivity of the ZrO2 is among the lowest of any known oxide, its thermal conductivity of 2 W/mK is much higher than the thermal conductivity of Zenite which is 0.27 W/mK. An objective of the present invention is to minimize any loss of heat through the egg-crate material. Also the Zenite is flexible and will allow the two-section egg-crate to endure significant rough handling. The mica of the prior art patent is a relatively weak material that cracks easily.
Lead Telluride thermoelectric alloys allow thermoelectric modules to operate at higher temperatures than do modules based on bismuth telluride alloys and so have the potential to be much more efficient than bismuth telluride modules. Unlike bismuth telluride however, lead telluride is less ductile and cracks more readily than does bismuth telluride. This makes it difficult to build a bonded module and so most lead telluride modules are made by assembling many individual components that are subsequently held in compression with pressures as high as 1,000 psi. The high compressive force allows a bond to form between the lead telluride and the contact materials but these bonds break if the module is thermally cycled. The present invention provides a method of forming permanent bonds on both the hot and cold side of the module which eliminates the need for high compressive forces and permits thermally cycling without the substantial risk of breakage. This method includes the use in the legs of a mesh of conducting material such as an iron mesh. Details are provided in the sections that follow.
Important features of this first preferred embodiment of the present invention are shown in
Bismuth telluride works best below about 250° C. Bismuth telluride thermoelectric material is available form Marlow Industries with offices in Dallas, Tex. Several successful methods are available for fabrication of PbTe materials and are described in “Lead Telluride Alloys and Junctions” of Thermoelectric Materials and Devices, Cadoff and Miller, published by Reinhold Publishing Corporation of New York. The bismuth telluride segments 72b and 74b are respectively doped with 0.1 Mol percent iodoform (CH1S) to create the lower temperature N-type material and 0.1 part per million Pb to create lower temperature P-type material.
Making the thermoelectric legs for the second version of the first preferred embodiment is straight forward. P type Bi2Te3 powder can be simply cold pressed simultaneously with the lead telluride powders as shown in
This method consists of the following steps:
And alternative to this method would be to:
During the pressing operation, N type Bi2Te3 grains become oriented in the plane perpendicular to the pressing direction. To make a useful pressed N type Bi2Te3 leg, the leg must be used so that the temperature gradient is perpendicular to the pressing direction of the element was pressed in. While this is simple to do with an un-segmented leg it is difficult to do this with a segmented leg because the powders from the two segments will tend to mix in the die and an accurate segment line will be difficult to achieve. The proposed method consists of pressing the two segments into low density blocks that contain the proper amount of material for the desired final segments and then inserting these pre-pressed blocks into a die that will be subsequently pressed perpendicular to the expected temperature gradient. The Bi2Te3 segment and the PbTe segment may be two separate pieces as shown in
Steps 2, 3 and 4 can be replaced with a spot welding procedure. An Fe mesh or PbTe power may also be placed between the thermoelectric PbTe and BiTe segments and then spot welded in a process similar to spark sintering. In this process a current is sent through the segments and then the purposely placed interfacing resistance preferentially heats up and forms a low contact resistance point. The process time is less than one second.
Other module components are shown in
The variation shown in
A second preferred embodiment of the present invention is shown in
As indicated in the background section life testing by Applicants of PbTe modules has shown that some degradation of the module occurs after approximately 1,000 hours of operation. Applicants have discovered that the degradation can be attributed to “cross-talk” between the N legs and the P legs near the hot junction caused by evaporation of tellurium from the P leg contaminating the N-leg. (As explained in the background section an excess of lead in the n-leg is what provides the n-leg with its thermoelectric doping properties.) The problem is prevented in preferred embodiments with two techniques: First, as shown in
The thermoelectric module of preferred embodiments will typically be placed between a hot surface of about 600° C. and a cold surface of about 50° C. In many applications these temperatures may vary widely with temperature differentials swinging from 0° C. to 550° C. Therefore the module and its components should be able to withstand these temperatures and these changes in temperature which will produce huge stresses on the module and its components. Both of the above versions of this embodiment is designed to meet these challenges.
Preferred embodiments shown in
After being put in service the N and P type PbTe legs are creeping or pushing up towards the Fe hot shoe. A load of 1,000 psi is initially used and this load can be reduced to 500 psi after the module is operated for approximately 100 hours and proper seating of the module is obtained. After this time a lower load of 50 to 100 psi can be used to maintain the low contact resistance joints. The same spot welding technique diesribed above can be applied to joining the Fe shoe/mesh to PbTe.
Solid iron hot shoes are formed that are sized appropriately to connect the hot side of the P leg to the hot side of the N leg. Tellurium excess formulations available in the industry such as 2P will react with iron. A suitable PbTe formulation is an alloy of PbTe and SnTe. MnTe may or may not be added. One example of a suitable P type element to contact the iron shoe is a thin hot side segment of 3P (a combination of PbTe, MnTe and SnTe), a segment of 2P (Te excess PbTe) below the 3P segment as shown in
The hot shoes are then positioned on top of the lead telluride elements that are in the egg-crate as shown in
The module is specifically designed to endure considerable thermal cycling or steady state behavior. The hot and cold side joints are free to slide and relieve thermal stresses. If the spot welded bonding method is not used the module initially needs to be held in compression at approximately 1,000 psi after it reaches its design operating temperatures so the thermoelectric materials can creep into the Fe mesh. Once this “seat-in” operation is complete the module is well suited for reduced compression at about 50-100 psi to ensure good heat transfer. The finished module is also well suited for “radiation coupled” heat sources with minimal or no mechanical connection to the module is made.
Lead telluride based alloys have been used since the 1960s and the alloys and recommended doping levels were documented above. Their thermoelectric properties versus temperature are given in many publications such as Chapter 10, “Lead Telluride Alloys and Junctions” of Thermoelectric Materials and Devices, Cadoff and Miller, published by Reinhold Publishing Corporation of New York.
In the past four years newer PbTe based alloys have evolved that have better properties than the conventional PbTe based alloys noted above. For example a Jul. 25, 2008 article in Science Daily reported on a lead telluride material developed at Ohio State University having substantial improvements in efficiency over prior art lead telluride materials. This new material is doped with thallium instead of sodium. The article suggests that the efficiency of the new material may be twice the efficiency of prior art lead telluride. Other experimenters have developed a new N type PbTe which is doped with Ti and iodine and has a ZT of 1.7 (PbTe is typically about 1.0). The P type alloy is Pb7Te3 and doped with AgTe. While it has the same ZT as PbTe 2P its advantage is that it can be used with Fe hot shoes segmented to Bi2Te3 alloys.
Applicants are seeking to prepare bulk lead telluride thermoelectric material with a finer grain size than has previously been achieved. Fine grain size is expected to lower the thermal conductivity of the material without significant impact on resistivity or Seebeck coefficient, thus raising its ZT and efficiency. In previous attempts others have made to produce a fine-grained PbTe, the grain size was observed to coarsen rapidly, even near room temperature, so the benefit of small grain size could not be retained. In this study, Applicants seek to preserve a fine grain structure by additions of very fine alumina powder, which is expected to produce a grain boundary pinning effect, thus stabilizing the fine grain size. Applicants' recent results indicate that the PbTe grain size can indeed be held below 2 μm, even with processing at 800° C.
Some of the techniques described herein can be utilized in modules where the entire legs are comprised of only lead telluride thermoelectric alloys. Preferably, the lead telluride alloy or alloys are one or more of the newer very high efficient alloys.
The high-temperature module of the preferred embodiment requires encapsulation to prevent oxidation of the N and P alloys with an accompanying decrease in thermoelectric properties. An example of encapsulating PbTe modules would be the 1 kW generator for diesel trucks shown at 16 in
The casting of the support structure has two flanges 24 and 26, one large and one small which are perpendicular to the main part of the support structure. The large flange 24 is about 10 inches in diameter while the small flange 26 is about 8 inches in diameter.
The large flange contains feed-throughs for both the two electrical connections and four water connections. The two electric feed-throughs 28 are electrically isolated with alumina insulators from the support structure. Both the large and small flange will contain a weld preparation so a metal dust cover 30 can be welded in position.
The four water feed-through elements 32 consists of one inch diameter tubes that are welded into the flange. The inside portion of the water tubes are welded to a wire reinforced metal bellows hose with the other end connected to the heat sink by a compression fitting or a stainless to aluminum bimetallic joint. Two of the tubes are inlets and the other two tubes are outlets for the cooling water.
Once the generator is assembled and the flanges between the support structure and the dust cover are welded as shown at 34, the interior volume will be evacuated and back filled with an inert gas such as Argon through a small ⅜ inch diameter tube 36 in the dust cover to about 75% of one atmosphere when at normal room temperature (˜20° c.). Once filled, the fill tube will be pinched off and welded.
In a preferred embodiment nine thermoelectric modules 20 of the first preferred embodiment are mounted on each of the eight sides of the hexagonal structure for a total of 96 modules. Applicants estimate a total electrical output of about 1.1 kilowatts. This estimate is based on prior performance with the structure described in the U.S. Pat. No. 5,625,245 patent, utilizing modules of the first preferred embodiment and assuming an exhaust hot side temperature of about 550° C. and cold side cooling water temperature of about 100° C.
An alternative to encapsulation the entire generator, as shown in
Thermoelectric egg-crates serve several functions. They hold the elements in the correct location, define the pattern of the cold side connectors and locates the hot side connectors. Egg-crates can be assembled from mica as described in U.S. Pat. No. 4,611,089, injection molded plastic as described in patent (gapless egg-crate) as described in U.S. Pat. No. 5,875,098 or injection molded ceramic or injection molded plastic and ceramic as described in parent application Ser. No. 12/317,170.
An alternative method of fabricating the egg-crate is proposed below:
Unlike the gapless egg-crate modules described in U.S. Pat. No. 5,875,098, only the cold side of the segmented module is connected in this manner. With the module held firmly to prevent warping, the deposited coating (MoAl or zinc) is sanded to expose the egg-crate walls which thereby define the cold side electrical connectors as described in U.S. Pat. No. 5,875,098. The module is then lapped to a suitable finish and the bottom (cold side) will appear as shown at 88 in
Using a slightly different mold design, a high temperature mold material could be used for the hot side of the module and a low thermal conductivity material could be used for the cold side as suggested by the dashed line in
Following are techniques for fabricating the module:
1. Slice and dice castings of the N and P portions of the PbTe and Bi2Te3 materials. Alternately, fabricate the leg portions by powder metallurgy techniques.
2. Join the PbTe and Bi2Te3 portions of the segmented legs by spot welding or plasma spark sintering.
3. Assemble legs in a thermoplastic molded egg-crate similar to the prior art egg-crate shown in
4. Thermal spray the cold side of the module with Zinc.
5. Lap down the Zinc deposit to form a smooth surface and electrically isolate the N and P legs except where they need to be connected. At this point the N and P legs are joined on the cold side and the legs extend out of the egg-crate on the hot side. The top of the eggcrate is expected to operate at less than 250° C.
6. To insulate and strengthen the extended N and P legs for use at 560° C., mica layers are stacked up around the extending N and P legs. Between the mica sheets are thin layers of opacified quartz paper. The mica sheets are stacked high enough to contain the Fe shoes. Each of the Fe shoes as described above have two layers of Fe mesh spot welded to the surface that engages the PbTe legs.
7. The module is operated at 560° C. under compression for several hours to permit the iron mesh to partially bind to the PbTe. This firmly connects the PbTe legs to the iron shoes. The module can then be operated under compression or can be heated by radiation under no compressive load. Alternately, the Fe shoe and mesh can be spot welded to the N and P PbTe legs.
An example of a module that incorporates the features described above will have the following properties:
40 P type legs—each P leg is 6.3 mm long, 5.7 mm wide and 5.7 mm deep. The bottom (cold side) 2.2 mm is bismuth telluride and the top 1 mm is 3P.
N type legs—each N leg is 6.3 mm long, 5.7 mm wide and 5.7 mm deep. The bottom (cold side) 1.6 mm is bismuth telluride and the top 1.3 mm is 3P.
Knowing the thermal conductivity of the thermoelectric alloys and how it changes with temperature gradient along the length of the leg is calculated and the segment line for each thermoelectric alloy is positioned as indicated in
Performance specifications are as follows:
While the above description contains many specificities, the reader should not construe these as limitations on the scope of the invention, but merely as exemplifications of preferred embodiments thereof. For example:
Some of the other thermoelectric alloys that are attractive over high-temperature ranges are:
All of these bulk alloys and others under development can be used in the new ZrO2/Zenite egg-crate design shown in
The egg-crates of the present invention could be utilized with thin film quantum well thermoelectric P and N legs of the type described in detail in U.S. Pat. No. 5,550,387 which is incorporated herein by reference. That patent describes N and P thermoelectric legs that are fabricated using alternating layers 10 nanometers thick of Si/Si0.8Ge0.2 layers grown on silicon substrates. In applications with temperatures above 500° C. these legs would be used on the cold side. That patent and U.S. Pat. No. 6,828,579 also disclose high temperature lattices comprised of thin layers of B4C/B9C and Si/SiC can be operated at very high temperatures up to about 1100° C. Details for fabricating B4C/B9C thermoelectric legs are provided in U.S. Pat. No. 6,828,579 (assigned to Applicants' employer) which is also incorporated herein by reference. See especially Col. 3 where high temperature performance is discussed. These B4C/B9C and Si/SiC materials could also be used alone to make thermoelectric legs which could be used in the egg-crate of the present invention or on the hot side of the legs along with bismuth telluride or quantum well Si/SiGe for the cold side.
A large number of 10 nm quantum well layers are built up on a compatible substrate that has a low thermal conductivity to produce quantum well thermoelectric film. Kapton is a good substitute candidate if the temperature is not too high. For higher temperature operation silicon is a preferred choice of substrate material as described in Col. 11 of U.S. Pat. No. 6,828,579. Other substrate materials are discussed in Col. 7. A good substrate material not disclosed in the patent is porous silicon. Porous silicon can survive very high temperatures and has extremely low thermal conductivity. The pores can be produced in silicon film such as 5 micron thick film from one side to extend to within a fraction of a micron of the other side. The pores can be produced either before the thermoelectric layers are laid down or after they are laid down.
The quantum well thermoelectric film is cut and combined to make n and p type legs of the appropriate size and each leg is loaded into one opening of the
Separate portions of the segmented legs can be readily bonded together by passing a current through both using a spot welding machine sometimes also referred to as spark sintering. As the current passes through the samples, the interface, which is purposely made to have a high resistance, reach a temperature at which bonding takes place. Sometimes a liquid phase is formed. The spot welding time is only a fraction of a second. To form a consistent bond, wire mesh has been used. The mesh preferentially heats up and imbeds itself in both materials. The N type Bi2Te3, which must be used in the correct orientation, retained its crystalline orientation and was successfully bonded to N type PbTe. The contact resistance between the two components was less than 100 μΩ/cm2 and the bond was strong. This bonding technique was also successful for bonding the P leg PbTe and Bi2Te3 segments.
The PbTe portions of the p-legs can also be cold pressed and sintered separately from the Bi2Te3 portions. When they are subject to hot operating conditions they will diffusion bond. The same applies to the n-legs.
Another option is to hot press the thermoelectric materials in bulk then slice and dice them into legs.
In one variation, an aerogel material is used to fill all unoccupied spaces in the egg-crate. A module assembly will be sent to an aerogel fabrication laboratory. They will immerse it in silica sol immediately after dropping the pH of the sol. The sol converts to silica gel over the next few days. It is then subjected to a supercritical drying process of tightly controlled temperature and pressure condition in a bath of supercritical liquid CO2. This process removes all the water in the gel and replaces it with gaseous CO2. The Aerogel serves multiple functions: (1) helping to hold the module together, (2) reducing the sublimation rate of the PbTe and (3) providing thermal and electrical insulation around the legs.
In another variation, an egg-crate made of non-woven refractory oxide fiber material, possibly with a fugitive polymer binder, and having the consistency of stiff paper or card stock is used. After assembly, the binder is burned away, leaving a porous fiber structure that is them infiltrated with Aerogel. The fiber reinforcement of the aerogel gives added strength and toughness.
Those skilled in the art will envision many other possible variations within its scope. Accordingly, the reader is requested to determine the scope of the invention by the appended claims and their legal equivalents, and not by the examples which have been given.
The present invention is a continuation-in-part of Ser. No. 12/317,170 filed Dec. 19, 2008.
Number | Date | Country | |
---|---|---|---|
Parent | 12317170 | Dec 2008 | US |
Child | 12590653 | US |