Present embodiments relate generally to gas turbine engines. More particularly, but not by way of limitation, present embodiments relate to resistive temperature detectors for exhaust gas temperature measurement in a gas turbine engine.
In turbine engines, air is pressurized in a compressor and mixed with fuel in a combustor for generating hot combustion gas which flow downstream through turbine stages. These turbine stages extract energy from the combustion gas. A high pressure turbine includes a first stage nozzle and a rotor assembly including a disk and a plurality of turbine blades. The turbine engine may include a number of stages of static airfoils, commonly referred to as vanes, interspaced in the engine axial direction between rotating airfoils commonly referred to as blades. The high pressure turbine first receives the hot combustion gas from the combustor and includes a first stage stator nozzle that directs the combustion gas downstream through a row of high pressure turbine rotor blades extending radially outwardly from a first rotor disk. In a two stage turbine for example, a second stage stator nozzle is positioned downstream of the first stage blades followed in turn by a row of second stage turbine blades extending radially outwardly from a second rotor disk. The stator nozzles direct the hot combustion gas in a manner to maximize extraction at the adjacent downstream turbine blades.
The first and second rotor disks are joined to the high pressure compressor by a corresponding rotor shaft for powering the compressor during operation. A multi-stage low pressure turbine follows the two stage high pressure turbine and is typically joined by a second shaft to a fan or low pressure compressor disposed upstream from the high pressure compressor in a typical turbofan aircraft engine configuration for powering an aircraft in flight.
As the combustion gas flows downstream through the turbine stages, energy is extracted therefrom and the pressure of the combustion gas is reduced. The combustion gas is used to power the compressors as well as a turbine output shaft for power and marine use or provide thrust in aviation usage. In this way, fuel energy is converted to mechanical energy of the rotating shaft to power the compressor and supply compressed air needed to continue the process.
During the operation of the gas turbine engine, it is necessary to obtain temperature readings at different locations in the engine. This data is utilized by the engine control logic to properly operate the engine and provide maximum performance at the highest efficiency. One such temperature probe which is utilized at the exhaust area of the combustor, it is known as an Exhaust Gas Temperature probe or EGT probe or sensor. These probes utilize type-K thermocouples typically having dissimilar metals to create a differential which may be then input to the engine control logic to optimize performance.
Resistance temperature detectors (RTD) are also utilized in probe assemblies to measure operating temperatures. RTDs utilize variable resistant material at a position where a temperature is to be measured with leads connected to an instrument which measures an amount of varying voltage when power is supplied to a sensor. Since resistance changes with temperature, the temperature may be determined by applying a constant current to the resistor and measuring the voltage drop to determine the resistance and resultant temperature.
Various metals may be used which provide differing resistances upon exposure to heat. One problem with use at high operating temperatures is that materials suffer from oxidation, ionic migration wire alpha shifts and weakened strength. This can result in decreased life as well as temperature measurement drift. For operation in high temperature environments, typically at or above 1832 degrees Fahrenheit, operating conditions are limited to specialized RTD constructions using platinum, wire wound or thin film constructions. However, even these constructions are still limited generally for short durations of temperature exposure above 1832 degrees Fahrenheit which severely limits applicability in various industries.
Current designs cannot withstand temperatures at the combustor exit or high pressure turbine entrance for extended periods of time. Accordingly, temperatures must be taken near the low pressure turbine and extrapolated to a position at the combustor exit. This however can lead to error. Additional problems occur such as decreases in engine management efficiency due to the extrapolation, as opposed to obtaining an actual reading. Moreover, time delays in optimization of engine conditions may further result in less than maximum engine performance when engine operating conditions change, for example ambient air temperature changes. For these reasons, a compromise is struck between positioning too close to the combustor, which may result in early failure of the detector, and placing further from the combustor which may result in less accurate temperature readings at the combustor exit.
As may be seen from the foregoing, there is a need to optimize the engine management by providing a temperature reading closer to the combustor. There is a further need to optimize temperature detectors so that the temperature detector can withstand temperatures typically occurring at the combustor and high pressure turbine and inhibiting degradation, drift and failure at high temperatures for extended periods of time.
Some embodiments of the present disclosure relate to a high temperature resistance temperature detector for exhaust gas temperature measurement in, for example, a gas turbine.
According to some embodiments, a high temperature resistance temperature detector is provided which utilizes an insulating carrier and a resistive element. The RTD further comprises leads formed of grain stabilized platinum. The detector will provide for usage at higher temperature for longer steady state conditions and limit external electromagnetic interference noise.
All of the above outlined features are to be understood as exemplary only and many more features and objectives of the method may be gleaned from the disclosure herein. Therefore, no limiting interpretation of this summary is to be understood without further reading of the entire specification, claims, and drawings included herewith.
The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and the resistance temperature detector will be better understood by reference to the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
Reference now will be made in detail to embodiments provided, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation, not limitation of the disclosed embodiments. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present embodiments without departing from the scope or spirit of the disclosure. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to still yield further embodiments. Thus it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Present embodiments provide structure for detecting high temperatures of gas flow within a gas turbine engine. The high temperature (RTD) utilizes an insulating material and a resistive material disposed on or about the resistive material. Leads extend from the insulating material and detector element is positioned within a housing.
The terms fore and aft are used with respect to the engine axis and generally mean toward the front of the turbine engine or the rear of the turbine engine in the direction of the engine axis, respectively. As used herein, the term “software” and “firmware” are interchangeable including any computer programs stored in memory for execution by processor, including RAM memory, ROM memory, EPROM memory, EEPROM memory and non-volatile RAM (NVRAM) memory. The memory types are exemplary only and thus are not limiting as to the types of memory useful for storage in the computer program. As will be appreciated on the foregoing specification, the above described embodiments of the disclosure may be implemented using computer programming or engineering techniques including computer software, phoneware, hardware, or any combination of subset thereof, wherein the technical effect is for sensing a process parameter using a process sensor where slow response time may introduce errors into the value of the sensing parameter in input to the processor or control logic for the avionics system. Any such resulting program, having computer-readable code means, may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the discussed embodiments of the disclosure. The computer-readable media may be, for example, but is not limited to, a fixed “hard” drive diskette, optical disk, magnetic tape, semi-conductor memory such as read-only memory (ROM) and that and/or any transmitting/receiving media such as the Internet or other communication network. The article of manufacture contains a computer code. The computer code may be made and/or used by executing the code directly from one medium, by copying the code from one medium to another medium or by transmitting the code of the network.
Referring now to
Referring initially to
The axis-symmetrical shaft 24 extends through the turbine engine 10, from the forward end to an aft end. The shaft 24 is supported by bearings along its length. The shaft 24 may be hollow to allow rotation of a low pressure turbine shaft 28 therein. Both shafts 24, 28 may rotate about a centerline 26 of the engine. During operation the shafts 24, 28 rotate along with other structures connected to the shafts such as the rotor assemblies of the turbine 20 and compressor 14 in order to create power or thrust depending on the area of use, for example power, industrial or aviation.
Referring still to
Referring now to
Extending through the cable 32 are wires 38, which are exposed at an end of the cable 32. The wires 38 extend from the insulation 36 and provide an interconnect for a junction with leads 42 which connect to a resistance temperature detector element 40. The cable 32 may have multiple wires 38 within the insulation 36. In the depicted example, the cable 32 includes four wires, wherein pairs of the wires 38 are joined to form two U-shaped conductors. The number of wires provided within the cable 32 will be dependent upon the circuit being formed and may vary. The wires 38 may be formed of grain stabilized platinum or zirconia grain stabilized platinum, for example in order to limit joining of grain at elevated temperature. It is desirable that the detector element 40 fail prior to failure of the cable 32 to preclude foreign object damage within the engine core.
Extending from the wires 38 and in conductive communication therewith are first and second leads 42. The leads 42 provide a circuit connection with the wires 38 and extend an opposite end to the remaining portion of the resistance temperature detector element 40. According to one exemplary embodiment two leads 42 are utilized in the depicted construction. However this is merely exemplary as alternate constructions may be utilized. The leads 42 may be formed of grain stabilized or zirconia grain stabilized platinum. Similarly, the wire 38 are a grain stabilized wire or zirconia grain stabilized platinum as well. Grain growth within the structure is the process by which these grains effectively combine and hence grow in size during exposure to elevated temperatures. This may result in various problems and therefore grain stabilized wire would be desirable. Similar material is utilized in the wire 38 in the leads 42 in order to limit problems with dissimilar metals and differential thermal expansion and contraction. However, these materials are exemplary and one skilled in the art should recognize that alternate embodiments are within the scope of the present disclosure. According to one embodiment, the leads 42 may have a diameter of 0.010 inch but may be within the range of between about 0.003 and about 0.03 inch and more preferably about 0.0007 inch to about 0.015 inch. As shown in
The resistance temperature detector element 40 may take various forms to be discussed further herein. The element 40 may have an insulated portion, substrate or carrier 50 and a resistive element 56 utilize therein and wherein the resistive element is in electric communication with the leads 42. A housing or seal element 46 may be positioned over the element 40 and additionally covering the connection between the leads 42 and the wires 38. The housing 46 may be formed of HA 230, platinum or Platinum alloys such as Platinum 20% Rhodium and may be a single piece construction or may be formed a tube 46 with an end cap 48 which are joined together. The housing 46 may be metallic, a glazed ceramic or may be glass-based and may be welded or otherwise joined to the cable 32. One exemplary embodiment utilizes a hermetic compression glass seal at the transition of the lead wire from the hard lead wires 38. The coefficients of thermal expansion of all materials must be closely matched for device longevity at elevated temperatures. Tungsten sealing glasses may be used to encase the elements. The interior of the housing 46 may include a powder filled alumina or hafnium for purpose of insulation according to some embodiments. According to other embodiments, the interior may be a hermetic environment, may be evacuated and/or or may be filled with an inert gas, such as for example high purity Argon or Nitrogen. Other gasses may be utilized. According to some embodiments, the housing 46 may be powder filled and evacuated then backfilled with an inert non-oxygen atmosphere and hermetically sealed all of which surround the element in a mechanically supported non-oxidizing atmosphere.
For normal operation, it would be desirable for the RTD 30 to operate properly within the following ranges. The operating temperature range of about 1500 to about 3000 degrees Fahrenheit and more particularly about 1850 to about 2201 degrees Fahrenheit. The element resistance should be about 12 ohms at 32 degrees Fahrenheit with a resistance dynamic range of 5 Ohms to about 40 Ohms. The sensor 30 should be accurate to greater of +/−0.4% of point or about +/−8 degrees Fahrenheit. The excitation current (nominal) may be desirably be about 100 ma and (fault) at about 300 ma. This represents one embodiment of element parameter but should not be considered limiting as other parameters may be utilized.
Referring now to
According to the exemplary embodiment, the resistive element 56 includes a network of series and parallel circuit paths 57 which define a “thin-film” resistive device. Once formed, the resistive element 56 may be tuned to a desired resistivity by trimming or cutting the paths 57 to a circuit which provides the desired resistance. The thin-film circuit further comprises circuit pads 58 on the insulating substrate 50 and which are in conductive communication with lead wire 42. Extending from the pads 58 by, for example, weld or brazed connection are the leads 42 which extend to the wires 38 of the cable 32 (
One skilled in the art should also recognize that although the insulating substrate 50 is shown to be formed in a rectangle shape, other geometric shapes such circular, oval, or polygonal shapes may be utilized rather than the rectangular shape of the exemplary depiction. Additionally, one skilled in the art should realize that while a single layer is shown for the RTD element 40, it is within the scope of this disclosure that multiple substrates 50 and resistive elements may be insulated from one another so as to allow stacking or laminating multiple of these circuits.
Referring now too
Referring now to
Referring now to
Referring to
Referring to
Referring to
Like the embodiment discussed with
Referring to
Referring now to
While multiple inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the invent of embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
Examples are used to disclose the embodiments, including the best mode, and also to enable any person skilled in the art to practice the apparatus and/or method, including making and using any devices or systems and performing any incorporated methods. These examples are not intended to be exhaustive or to limit the disclosure to the precise steps and/or forms disclosed, and many modifications and variations are possible in light of the above teaching. Features described herein may be combined in any combination. Steps of a method described herein may be performed in any sequence that is physically possible.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms. The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Furthermore, references to one embodiment are not intended to be interpreted as excluding the existence of additional embodiments that may also incorporate the recited feature.
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
Number | Name | Date | Kind |
---|---|---|---|
2780703 | MacIntyre | Feb 1957 | A |
3509320 | Werner et al. | Apr 1970 | A |
3579022 | Hennig et al. | May 1971 | A |
3607447 | Davis et al. | Sep 1971 | A |
3665766 | Johnston | May 1972 | A |
3725837 | Fullager | Apr 1973 | A |
3761857 | Carlson et al. | Sep 1973 | A |
3798760 | Carlson et al. | Mar 1974 | A |
3833410 | Ang et al. | Sep 1974 | A |
3939557 | Rendle | Feb 1976 | A |
3960604 | Heitzinger et al. | Jun 1976 | A |
4321827 | Anderson | Mar 1982 | A |
4406154 | Zarchy | Sep 1983 | A |
4808009 | Sittler et al. | Feb 1989 | A |
4836012 | Doty et al. | Jun 1989 | A |
4843277 | Winkler et al. | Jun 1989 | A |
4906965 | Murata et al. | Mar 1990 | A |
4916715 | Adiutori | Apr 1990 | A |
4929092 | Taguchi et al. | May 1990 | A |
5369993 | Hagan | Dec 1994 | A |
5520461 | Curry et al. | May 1996 | A |
5653538 | Phillips | Aug 1997 | A |
5708326 | Mizohata et al. | Jan 1998 | A |
5731507 | Hagen et al. | Mar 1998 | A |
5772325 | Hopson et al. | Jun 1998 | A |
5864282 | Hannigan et al. | Jan 1999 | A |
5999081 | Hannigan et al. | Dec 1999 | A |
6040519 | Kita et al. | Mar 2000 | A |
6071556 | Beele | Jun 2000 | A |
6081182 | Tomozawa et al. | Jun 2000 | A |
6127915 | Gam et al. | Oct 2000 | A |
6151771 | Tzeng et al. | Nov 2000 | A |
6162552 | Bewlay et al. | Dec 2000 | A |
6190038 | Kita et al. | Feb 2001 | B1 |
6203752 | Bewlay et al. | Mar 2001 | B1 |
6280083 | Kita et al. | Aug 2001 | B2 |
6354736 | Cole et al. | Mar 2002 | B1 |
6472240 | Akram et al. | Oct 2002 | B2 |
6597107 | Meszaros et al. | Jul 2003 | B1 |
6607302 | Lyle | Aug 2003 | B2 |
6609825 | Ice et al. | Aug 2003 | B2 |
6624577 | Meszaros et al. | Sep 2003 | B2 |
6632018 | Isshiki et al. | Oct 2003 | B2 |
6709878 | Akram et al. | Mar 2004 | B2 |
6744346 | Akram et al. | Jun 2004 | B1 |
6881932 | Giterman | Apr 2005 | B2 |
7004626 | Giberson et al. | Feb 2006 | B1 |
7026908 | Habboosh | Apr 2006 | B2 |
7026909 | Glozman et al. | Apr 2006 | B2 |
7031871 | Severson et al. | Apr 2006 | B2 |
7061364 | Habboosh | Jun 2006 | B2 |
7102534 | Ha | Sep 2006 | B2 |
7104685 | Hanzawa et al. | Sep 2006 | B2 |
7611280 | Habboosh | Nov 2009 | B2 |
8201992 | Horovitz et al. | Jun 2012 | B2 |
20020145373 | Meszaros et al. | Oct 2002 | A1 |
20030005779 | Bernard | Jan 2003 | A1 |
20030058919 | Ice et al. | Mar 2003 | A1 |
20030132707 | Meszaros et al. | Jul 2003 | A1 |
20030207151 | Stamm | Nov 2003 | A1 |
20040070487 | Zitzmann | Apr 2004 | A1 |
20040086730 | Shipton et al. | May 2004 | A1 |
20050064229 | Stamm | Mar 2005 | A1 |
20050104713 | Habboosh | May 2005 | A1 |
20050115329 | Gregory et al. | Jun 2005 | A1 |
20050124154 | Park et al. | Jun 2005 | A1 |
20050129565 | Ohriner et al. | Jun 2005 | A1 |
20060202792 | Habboosh | Sep 2006 | A1 |
20060219330 | Hu et al. | Oct 2006 | A1 |
20090066472 | Kondo | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
1571431 | Sep 2005 | EP |
Entry |
---|
US 6,391,663, 05/2002, Akram et al. (withdrawn) |
Number | Date | Country | |
---|---|---|---|
20140247106 A1 | Sep 2014 | US |