The disclosure relates to a linerless engine block and to a method of forming the linerless engine block.
Engines, such as internal combustion engines, generally include a metal cylinder block that defines one or more cylindrical bores, and a respective number of metal pistons that slideably translate within the bores during operation of the engine. Such engines are often operated at high temperatures and pressures, and the pistons may reversibly translate within the respective bores at a high speed. The pistons are generally fit to the bores at tight tolerances, and any deviation from tolerance may contribute to metal-to-metal contact between the piston and the bore. Such metal-to-metal contact may damage the bore and/or the piston. For example, the metal piston may scuff, scratch, and/or burnish the cylindrical bore. Damage from metal-to-metal contact may also be exacerbated when the piston and bore are formed from like materials, and/or when the engine is operated at extreme ambient temperatures.
To minimize such metal-to-metal contact between the piston and the comparatively softer metal of the cylinder block, liners or sleeves are often disposed between the piston and the respective bore by casting the cylinder block around the liners or sleeves. The liners or sleeves may be formed from a hard, durable material that does not degrade or become damaged upon contact with the metal of the piston. However, such liners may increase a weight of the engine, contribute to increased material and handling costs, and may complicate cylinder block casting and machining processes.
A linerless engine block includes a polymer matrix composite having an internal surface that defines a bore. The polymer matrix composite has a first thermal conductivity at the internal surface of at least 5 W/m·° C. The linerless engine block also includes a first bond coating disposed on the internal surface within the bore, and a second wear-resistant coating disposed on the first bond coating within the bore such that the second wear-resistant coating is adhered to the polymer matrix composite by the first bond coating.
In one aspect, the first thermal conductivity may be from 5 W/m·° C. to 15 W/m·° C.
In another aspect, the polymer matrix composite may include a matrix component, a fiber component, a thermally-conductive component, and an additive component. The matrix component may include at least one of an epoxy, a phenolic, a plybismaleimide, a polyimide, a polyamine-imide, a benzoxizine, a polyaryletherketone, a polyetheretherketone, a polyetherketoneketone, a polyphthalamide, a polyphenylene sulfide, a polyamide, and combinations thereof. The fiber component may include a plurality of fibers formed from at least one of carbon, glass, graphite, boron, basalt, metal, ceramic, and combinations thereof. The additive component may include at least one of ceramic particles, graphene, nanotubes, nanoparticles, metallic particles, and combinations thereof. The thermally-conductive component may include fibers arranged in a radial direction, graphene, z-pins, nanoparticles, and combinations thereof.
In a further aspect, the first bond coating may be formed from at least one of zinc, aluminum, selenium, copper, nickel, and alloys thereof.
In yet another aspect, the second wear-resistant coating may be formed from a ceramic or a metal. The second wear-resistant coating may be formed from at least one of titanium dioxide, zirconia, yttria-stabilized zirconia, aluminum oxide, spinels, perovskites, carbides, steel, bronze alloys, aluminum-silicon alloys, nickel alloys, and combinations thereof.
In an additional aspect, the second wear-resistant coating may have a porous microstructure defining a plurality of pores therein.
In one aspect, the polymer matrix composite may have a first thickness of from 1 mm to 10 mm at the bore.
In another aspect, the polymer matrix composite may further define a plurality of bores spaced apart from one another by a first distance that is less than two times the first thickness.
In a further aspect, the first bond coating may have a second thickness of from 0.01 mm to 0.2 mm and a second thermal conductivity of from 50 W/m·° C. to 400 W/m·° C.
In yet another aspect, the second wear-resistant coating may have a third thickness of from 0.1 mm to 1 mm and a third thermal conductivity of from 0.5 W/m·° C. to 3 W/m·° C.
In an additional aspect, the polymer matrix composite may not be formed from any of aluminum and iron.
In one aspect, the linerless engine block may be free from a liner formed from iron and disposed within the bore.
A method of forming a linerless engine block includes forming a polymer matrix composite having an internal surface that defines a bore. The polymer matrix composite has a first thermal conductivity at the internal surface of at least 5 W/m·° C. The method also includes depositing a first bond coating on the internal surface within the bore, and depositing a second wear-resistant coating on the first bond coating within the bore such that the second wear-resistant coating is adhered to the polymer matrix composite by the first bond coating. The method further includes machining the second wear-resistant coating to thereby form the linerless engine block.
In one aspect, forming the polymer matrix composite may include at least one of pultrusion, braiding, filament winding, resin transfer molding, and combinations thereof.
In another aspect, depositing the first bond coating may include applying the first bond coating by at least one of twin wire arc deposition, high velocity oxy fuel deposition, cold spraying, kinetic spraying, plating, and combinations thereof.
In a further aspect, depositing the second wear-resistant coating may include applying the second wear-resistant coating by at least one of twin wire arc deposition, rotation single wire deposition, plasma transferred wire arc deposition, air plasma spraying, high velocity oxy fuel deposition, plating, and combinations thereof.
The above features and advantages and other features and advantages of the present disclosure will be readily apparent from the following detailed description of the preferred embodiments and best modes for carrying out the present disclosure when taken in connection with the accompanying drawings and appended claims.
Referring to the Figures, wherein like reference numerals refer to like elements, a linerless engine block is shown generally at 10 in
Referring now to
Referring again to
Referring again to
The matrix component may include at least one of an epoxy, a phenolic, a polybismaleimide, a polyimide, a polyamide-imide, a benzoxizine, a polyaryletherketone, a polyetheretherketone, a polyetherketoneketone, a polyphthalamide, a polyphenylene sulfide, a polyamide, and combinations thereof. The fiber component may include a plurality of fibers formed from at least one of carbon, glass, graphite, boron, basalt, metal, ceramic, and combinations thereof. Further, the additive component may include at least one of ceramic particles, graphene, nanotubes, nanoparticles, metallic particles, and combinations thereof. The thermally-conductive component may include fibers arranged in a radial direction, graphene, z-pins, nanoparticles, and combinations thereof.
The polymer matrix composite 14 may have a first thickness 22 (
To achieve this excellent first thermal conductivity, the fiber component or the thermally-conductive component may be selected to have a high radial thermal conductivity, such as fibers commercially available under the tradenames P100 from 3M of Maplewood, Minn. and K1100 from Hexcel® of Stamford, Conn. Alternatively or additionally, the fiber component or the thermally-conductive component may include from 5 parts by volume to 10 parts by volume based on 100 parts by volume of the fibers arranged in a radial direction. As another example, the thermally-conductive component may include z-pins having high thermal conductivity that may be inserted into the polymer matrix composite 14. Further, the thermally-conductive component may include high thermally-conductive additives such as graphene or nano-metallic powders.
Referring again to
The first bond coating 18 may also have a comparatively high thermal conductivity. In particular, the first bond coating 18 may have a second thickness 24 of from 0.01 mm to 0.2 mm and a second thermal conductivity of from 50 W/m·° C. to 400 W/m·° C. For example, the second thickness 24 may be from 0.03 mm to 0.1 mm or from 0.05 mm to 0.075 mm. Further, the second thermal conductivity may be from 100 W/m·° C. to 350 W/m·° C. or from 150 W/m·° C. to 300 W/m·° C. or from 200 W/m·° C. to 250 W/m·° C. Further, the first bond coating 18 may have a comparatively dense microstructure. As such, the first bond coating 18 may increase a thermal conductivity of the bore 16.
Referring again to
The second wear-resistant coating 20 may be formed from a ceramic or a metal to provide the second wear-resistant coating 20 and the linerless engine block 10 with excellent scuff-resistance, durability, and strength within the bore 16. For example, the second wear-resistant coating 20 may be formed from at least one of titanium dioxide, zirconia, yttria-stabilized zirconia, aluminum oxide, spinels, perovskites, carbides, steel, bronze alloys, aluminum-silicon alloys, nickel alloys, and combinations thereof. In one embodiment, the second wear-resistant coating 20 may be formed from steel or a ceramic oxide and may be thermally sprayed onto the internal surface 12. As such, the first bond coating 18 may bond two dissimilar materials to increase adhesion between the polymer matrix composite 14 and the ceramic or metal of the second wear-resistant coating 20 without damaging the polymer matrix composite 14.
Further, the second wear-resistant coating 20 may have a porous microstructure (illustrated generally at 26 in
The second wear-resistant coating 20 may also have a comparatively high thermal conductivity. In particular, the second wear-resistant coating 20 may have a third thickness 32 of from 0.1 mm to 1 mm and a third thermal conductivity of from 0.5 W/m·° C. to 3 W/m·° C. For example, the third thickness 32 may be from 0.3 mm to 0.7 mm, or 0.5 mm. Further, the third thermal conductivity may be from 1 W/m·° C. to 2.5 W/m·° C., or from 1.5 W/m·° C. to 2 W/m·° C., or 1.75 W/m·° C.
In combination, the polymer matrix composite 14, first bond coating 18, and second wear-resistant coating 20 may provide the linerless engine block 10 with excellent temperature- and wear-resistance. Further, each respective thickness 22, 24, 32 and thermal conductivity of the polymer matrix composite 14, first bond coating 18, and second wear-resistant coating 20 may be selected, tuned, or tailored to specific operating conditions of the linerless engine block 10. For example, during operation of the linerless engine block 10, although a combustion temperature can reach 2,500° C. or more for a mere instant, an average combustion gas temperature (denoted generally at 68 in
Referring now to
In greater detail, forming 36 the polymer matrix composite 14 may include at least one of pultrusion, braiding 136, filament winding, resin transfer molding, and combinations thereof. For example, the polymer matrix composite 14 may be formed via a process that ensures the comparatively high first thermal conductivity of at least 5 W/m·° C. That is, the polymer matrix composite 14 may be formed by a process that prevents damage to the polymer matrix composite 14 and allows for comparatively fast quenching and heat release that may minimize residual stress and delamination of the first bond coating 18 and the second wear-resistant coating 20 on the internal surface 12 at the bore 16.
Although dependent upon the desired application of the linerless engine block 10, the polymer matrix composite 14 may be formed by a suitable process that includes solidifying the matrix component, the fiber component, and the additive component from a fluid state to a solid state. Further, the formation process may include heat treatment to enhance mechanical properties of the polymer matrix composite 14. After the polymer matrix composite 14 is formed to define the bore 16 or bores 116, 216, 316, the polymer matrix composite 14 may also be washed, machined, and/or finished. For example, the polymer matrix composite 14 may be washed to minimize debris present in the bore 16 to prevent scuffing and/or wear of components of the linerless engine block 10 during operation.
In one non-limiting embodiment described with reference to
Referring again to
Referring again to
The method 34 also includes machining 66 the second wear-resistant coating 20 to thereby form the linerless engine block 10. That is, machining 66 may include shaping the second wear-resistant coating 20 to required tolerances, e.g., to match a diameter of a piston that is slideably disposable within the bore 16. Machining 66 may include shaping the second wear-resistant coating 20 by, for example, cutting, grinding, honing, polishing, and combinations thereof.
Therefore, the linerless engine block 10 and method 34 may be useful for applications requiring lightweight, linerless engine blocks 10 that are suitable for high-temperature and high-wear operating environments. Further, the linerless engine block 10 may reduce noise and heat-up time for an engine. In particular, the second wear-resistant coating 20 provides the linerless engine block 10 with excellent temperature- and wear-resistance and the first bond coating 18 ensures an excellent bond between the polymer matrix composite 14 and the second wear-resistant coating 20, even though the polymer matrix composite 14 and the second wear-resistant coating 20 are formed from dissimilar materials. Further, since the polymer matrix composite 14 is lightweight compared to a castable metal alloy such as aluminum or iron, and since the first bond coating 18 and the second wear-resistant coating 20 eliminate the need for a liner disposed within the bore 16, the linerless engine block 10 is also lightweight. Therefore, the linerless engine block 10 and method 34 are cost-effective.
While the best modes for carrying out the disclosure have been described in detail, those familiar with the art to which this disclosure relates will recognize various alternative designs and embodiments for practicing the disclosure within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4848292 | Holtzberg | Jul 1989 | A |
5636821 | Davies | Jun 1997 | A |
9644568 | Maki | May 2017 | B2 |
20170260926 | Maki | Sep 2017 | A1 |
20180030922 | Kia et al. | Feb 2018 | A1 |
20190170082 | Coppola et al. | Jun 2019 | A1 |
20190170086 | Coppola et al. | Jun 2019 | A1 |
20200131615 | Crawmer | Apr 2020 | A1 |
20200400093 | Elie | Dec 2020 | A1 |
Entry |
---|
Thermalspray Coatings/A&A Coatings, Using A Bonding Layer To Create Thermal Barrier Coatings, Mar. 24, 2018, pp. 1,3 (Year: 2018). |
Sharp, Bogdanovich, Schuster, Heider; Through-thickness thermal conductivity in composites based on 3-D fiber architectures; SAE Technical Paper Series, Sep. 17-20, 2007;2007-01-3931; ISSN 0148-7191. |
He, Ma, Wang, Yong, Chen, Xu; Tribological behaviors of internal plasma sprayed TiO2-based ceramic coating on engine cylinder under lubricated conditions; Tribology International; 102; (2016) 407-418. |
Jogur, Khan, Das, Mahajan, Alagirusamy; Impact properties of thermoplastic composites; Textile Progress; 2018, vol. 50, No. 3; 109-183; ISSN: 0040-5167. |
Anonymous; Integrated hybrid materials gears; Research Disclosure; Jan. 2019; Research Disclosure database No. 657002; ISSN: 0374-4353. |
Number | Date | Country | |
---|---|---|---|
20210047980 A1 | Feb 2021 | US |