The present disclosure relates generally to devices and methods for particle focusing, entrapment, manipulation, and separation, including high throughput acoustic particle separation.
Efficient separation of particles and cells is essential to many biological and medical applications, particularly for diagnosis and prognosis of cancers and viral infections. Isolation of cells with a relatively low abundance (monocytes in whole blood) or extreme rarity (circulating tumor cells in blood or pathogenic bacteria in water samples) is a significant challenge. Due to the dimensional similarity of cells (˜1-10 s of μm) and typical microchannels (˜10 s to 100 s of μm), microfluidics is well-suited to isolation, enrichment, and analysis of cells and cell-like objects, exploiting minute differences in their inherent physical characteristics (size, shape, density, deformability, compressibility, electrical polarizability, magnetic susceptibility, and refractive index) to manipulate targeted cells of a larger population. For example, particles suspended in a liquid rapidly migrate to pressure minima (nodes)/maxima (antinodes) when subjected to a spatially varying acoustic field.
Acoustophoresis is continuous-flow particle separation in spatially varying acoustic fields. Attractive or repulsive acoustic radiation forces (ARFs) arise due to differences in the acoustic properties of suspended particles and surrounding medium (acoustic contrast, Φ), as well as the particle size and shape. Because the magnitude and direction of these forces are functions of particle size and a material-dependent contrast factor, this phenomenon can be utilized to trap objects locally over an ultrasonic transducer, to concentrate them within a fluidic channel, and to align, sort or separate different types of objects. These attributes have proven beneficial in a number of biomedical and life sciences applications, from particle trapping to enhance bead-based bioanalytic assays to simple medium exchange to separation of lipid particles from blood during cardiopulmonary bypass surgery. Blood is particularly well-suited to acoustophoretic separation of its various components due to particle size restrictions (˜1-20 μm for typical ultrasound frequencies in the low MHz range) and the relative gentleness of acoustophoresis, which has been shown to elicit minimal immediate or long-term changes in cell viability or proliferation.
The magnitude of the ARF is directly proportional to the acoustic contrast factor Φ
The ratios of particle/media density and compressibility, {tilde over (ρ)}=ρp/ρo and {tilde over (κ)}=κp/κo, respectively, prescribe the sign of Φ, which dictates whether particles migrate to the nodes (positive contrast particles) or antinodes (negative contrast particles) of a pressure wave. Glass, polystyrene and poly(methyl methacrylate) (PMMA) beads, and biological cells in aqueous media are examples of positive contrast particles. Gas filled beads and silicone rubber (PDMS) have negative contrast.
Separation of blood components is a critical step for most blood-based diagnostic procedures. The need for simple, portable, and low cost point-of-care (POC) diagnostics has heightened interest in microfluidic approaches to blood separations including size exclusion, sedimentation, inertial forces, micro-filtration, and acoustic forces. Among these several techniques, acoustophoretic separation offers excellent biocompatibility and requires no modification of the cells or cell culture/separation media, enabling separation of blood components in their native states. Further, only acoustophoresis allows different blood cell types from the same sample to be isolated by dynamically adjusting the acoustic radiation force. Although these advantages have been demonstrated in controlled laboratory settings using representative samples (e.g., cultured cancer cells (CTCs) from white blood cells (WBCs)), separation of whole blood from patients has proven difficult due to insufficient throughput and poor long-term operational stability in existing devices based on two-dimensional (2D) separation channels.
In describing a pressure wave (or field), the orientation/direction of the wave is defined as the direction in which one moves from a maximum to a minimum to a maximum (etc.) in amplitude. In typical free-flow acoustophoresis, the wave is perpendicular to the flow direction. That is, in existing acoustophoretic systems, the nodes (or nodal planes) of the acoustic field are parallel to the direction of flow. For a parallel wave, separation occurs perpendicular to the field orientation (because nodal/antinodal planes are positioned perpendicular to the flow direction).
The disclosure provides for devices and methods for particle focusing, entrapment, manipulation, and particularly high throughput separation. A device for high throughput separation may include a channel or reservoir for receiving a fluid comprising an array of openings on at least one side of the channel or reservoir, a transducer or actuator for generating a pressure field not perpendicular to the flow of the fluid through the channel or reservoir, wherein at least one node and at least one antinode of the pressure field are within the reservoir, an acoustic coupling layer, and an isolation layer. A method of high throughput separation of a plurality of objects may include receiving a suspension of objects in a fluid into a channel or reservoir comprising perforated walls for fluid entry and/or exit in a flow direction, generating a pressure field between the walls of the channel or reservoir, wherein at least one node and at least one antinode of the pressure field are within the reservoir, separating the plurality of objects within the fluid, wherein at least a first object is retained within the reservoir and at least a second object is passed from the channel or reservoir through the array of openings. The objects may be selected from the group consisting of particles, cells, and microorganisms. The pressure field may be an acoustic field. The pressure field may be non-perpendicular, or in some embodiments parallel, to the bulk flow of fluid.
One embodiment of the present disclosure describes a device comprising a reservoir for receiving a fluid in a flow direction and a transducer for generating a pressure field that is not perpendicular to the flow direction of the fluid through the reservoir.
Another embodiment of the present disclosure describes a method of high throughput separation of a plurality of objects. The method comprises receiving a fluid in a flow direction into a reservoir comprising an array of openings on at least one side of the channel or reservoir; generating a pressure field that is not perpendicular to the flow of the fluid through the reservoir, wherein at least one node and at least one antinode of the pressure field are within the reservoir; and separating the plurality of objects within the fluid, wherein at least a first object is retained within the reservoir and at least a second object is passed from the reservoir through the array of openings.
Yet another embodiment of the present disclosure describes a device for high throughput separation comprising a reservoir for receiving a fluid in a flow direction comprising an array of openings on at least one side of the channel or reservoir; at least one acoustic reflective wall located within the reservoir, wherein the wall is not parallel to the flow direction and wherein the wall is perforated to allow fluid flow through the wall in the flow direction; and a transducer configured to generate a pressure field that is not perpendicular to the flow direction of the fluid through the reservoir, wherein at least one node and at least one antinode of the pressure field are within the reservoir.
Additional embodiments, aspects, and features are set forth in part in the description that follows, and will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the disclosed subject matter. A further understanding of the nature and advantages of the disclosure may be realized by reference to the remaining portions of the specification and the drawings, which form a part of this disclosure.
The disclosure will be better understood, and features, aspects, and advantages other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such detailed description makes reference to the following drawings, wherein:
The disclosure may be understood by reference to the following detailed description, taken in conjunction with the drawings as described below. It is noted that, for purposes of illustrative clarity, certain elements in various drawings may not be drawn to scale.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure belongs. Although any methods and materials similar to or equivalent to those described herein can be used in the practice or testing of the present disclosure, the preferred methods and materials are described below.
Provided herein are high throughput acoustophoretic methods and devices for the focusing, retention and separation of particles and/or cells in continuous flow through the device.
The Electrosonic Actuation Microarray (EAM) device was originally conceived to impose an identical and carefully controlled electromechanical environment on individual cells of a larger population to promote cell membrane poration and DNA delivery into cells as they are ejected one-by-one through cell-sized orifices.
Under certain operating conditions, the concentration of cells in the collected sample may be significantly lower than that of the sample loaded into the reservoir of the EAM. Cells become trapped in the standing acoustic pressure field that is used to drive ejection from the orifices of the microarray. Acoustic particle retention is detrimental to the cell treatment performance of the EAM. For this reason, various approaches to minimize particle trapping have been evaluated including frequency modulation (e.g., to switch between “focusing” and “dispersive” pressure fields), use of a back pressure to drive flow from the nozzles at a lower pressure field amplitude (e.g., to reduce the focusing force while maintaining flow from the nozzles), and use of sample additives to reduce the acoustic contrast between cells and cell media. Of these potential solutions, only modification of the media properties has appreciably improved the collection efficiency at certain operating conditions. Addition of ˜10% v/v sucrose to increase the density of the media to that of the cells resulted in almost 100% collection. Unfortunately, at high sucrose concentrations, cells do not fully recover from treatment by the EAM.
In conventional microscale acoustofluidic particle manipulation, particles are manipulated by traveling or standing waves (in both cases, primary acoustic radiation force (ARF) drives particle motion) or acoustic streaming (acoustic waves generate motion in a fluid, which then “pulls” particles along due to drag). The high throughput acoustophoresis device provided herein uses standing wave manipulation of particles using ARF. Acoustic radiation force (for spherical particles in standing plane waves) is directly proportional to the acoustic contrast factor (which is a function of the density and compressibility ratios of the particles and fluid). ARF is also proportional to the particle volume (or radius to the third power, a3) and the acoustic energy density, Eac, which is a function of the acoustic pressure amplitude (larger for larger pressure amplitude), and ARF is inversely (directly) proportional to the wavelength (frequency) of the plane wave. For particles of different sizes and properties, the differences in the magnitude and direction of the ARF are due to the different particle sizes, densities, and compressibilities. For a given particle (fixed size and properties), the magnitude of the ARF (and thus the driving and holding force for acoustic particle separation) can be increased by increasing the frequency of operation (subject to limitations on available frequencies of operation) and by increasing the amplitude of the pressure field, for example, by modifying material properties of the structure to increase the acoustic impedance mismatch between the microchannel walls and the fluid or changing the geometry to enhance constructive interference of acoustic waves within the fluid. In some embodiments, the pyramidal nozzle array of the EAM may focus acoustic waves to generate a higher pressure amplitude for driving ejection of fluid. Therefore, geometry may be used to dictate frequencies of operation or to enhance the separation through geometric focusing of acoustic waves (e.g., use of various acoustic horn shapes).
Any multiple of half the wavelength λ of a standing wave can be equated to the distance, d (i.e., (2d)/1, (2d)/2, (2d)/3 . . . ), between two surfaces (acoustic reflectors, or pseudo surfaces/acoustic reflectors). The denominator of the expression for wavelength as a function of distance is the mode, n, of the resonating geometry. The actuation frequencies, f, available to generate a standing acoustic wave between the two surfaces are then dictated by these wavelengths and the speed of sound, c, within the fluid as f=c/λ=nc/(2d).
Typical separations are performed in water or water-like fluids, or blood and blood-like fluids with c˜1500 m/s. The threshold frequency for microfluidic separation of a 10 μm particle (representative of cells and cell-like objects) in water is about 1 MHz. Below 1 MHz, the ARF may be not large enough to overcome viscous drag (which acts against ARF), and particles move only very slowly toward nodes/antinodes of the acoustic field. For smaller particles, higher frequency pressure fields are required to effect good focusing; however, high frequency (short wavelength) acoustic waves are subject to significant attenuation over short distances. For example, the larger the number of wavelengths of an acoustic field present between the geometric boundaries (walls) of a microchannel, the greater the attenuation of the amplitude of the pressure wave, which leads to a decrease in the ARF. For this reason, the number of wavelengths (mode number) of the acoustic field is typically limited to less than about 3 wavelengths. For cell-like objects suspended in water-like fluids, separations are typically carried out in the frequency range of about 1 MHz to about 20 MHz, which corresponds to a first mode half-wavelength of about 0.75-0.04 mm, or if limited to n<6, d must be less than approximately 0.25 to 4.5 mm. Separation of larger particles or particles with larger acoustic contrast may be performed with larger inter-reflector distances at lower frequencies. However, separation may be less effective for distances of above 10 mm in width or below 100 kHz for any particles of interest. The minimum distance between reflectors is based on attenuation in the fluid, but also on the size of the particles to be separated. In general, the wavelength of the acoustic field should be “large” (>about 5-10 times the diameter of a particle, a) compared to the size of the particles, so use of inter-reflector distances of less than half of 10 a or 50 μm for 10 μm diameter particles may be less effective.
Conventional separations are performed in single or parallel arrays of two-dimensional microchannels (see
High throughput separations can be achieved by orienting the acoustic field parallel to the direction of flow (see
The high throughput acoustophoretic device may include an actuator and a channel or reservoir. In some embodiments, the channel or reservoir may have high acoustic impedance relative to the fluid and may be suitable for geometric arrangement for the development/maintenance of a standing pressure field suitable for trapping objects. The actuator may generate a standing pressure field. In some embodiments, the actuator may generate an ultrasonic wave. The actuator may include, but is not limited to, a piezoelectric actuator, a capacitive actuator, or an array of interdigitated electrodes. The device may further include acoustic coupling layer and an isolation layer. In some embodiments, the acoustic coupling layer may be an aluminum coupling layer. In some embodiments, the isolation layer may be a silicon isolation layer. In some embodiments, the high throughput acoustophoretic device may be an EAM device.
Depending on the embodiment, the reservoir may include an array of openings on a side opposite to the actuator. In some embodiments, nodal/antinodal planes may be established between solid and/or perforated surfaces in the reservoir. For example, the piezoelectric actuator surface may be the solid surface and a nozzle array may be the perforated surface. The ultrasound transducer may be a piezoelectric transducer in some embodiments. High-throughput separations may also be performed in a reflector arrangement where one of the perforated reflectors may be replaced by a solid reflector (see
Flow may be driven by any source of pressure differential including, but not limited to an acoustic pressure source such as an ultrasound transducer, a pressure pump, a gas cylinder, a compressor, a vacuum pump, a syringe (manual or syringe pump), a peristaltic pump, a pipette, a piston, a capillary actor, any mechanical device, and gravity. It is not necessary that the fluid motion is driven by acoustic waves. In some embodiments, fluid may be pumped through the orifices of the nozzle plate using pressure; however, the reflectors (1 solid and 1 perforated pseudo wall) need to meet the requirements provided herein. In some embodiments, the device may include 2 perforated reflectors, and may not have limitations on flow rate.
In general, the material of the acoustic coupling layer and any isolation layers should have a low ultrasonic acoustic attenuation. The coupling layer and isolation layers may be made of materials such as, but not limited to, single crystal silicon (e.g., oriented in the (100), (010), or (001) direction), metals (e.g., aluminum, copper, stainless steel and/or brass), plastics, silicon oxide, quartz, glass, silicon nitride, and combinations thereof.
In general, the material that the channel structure is made of may have substantially higher acoustic impedance as compared to the fluid. The channel may be made of materials such as, but not limited to, single crystal silicon (e.g., oriented in the (100), (010), or (001) direction), metals (e.g., aluminum, copper, stainless steel and/or brass), plastics, silicon oxide, quartz, glass, silicon nitride, and combinations thereof.
In some embodiments, an actuator may produce a resonant ultrasonic wave within the reservoir and fluid. The resonant ultrasonic wave couples to and transmits through the liquid and is focused by ejector structures. The high-pressure gradient accelerates fluid out of the ejector structure to produce droplets. The droplets are produced due to break up of a continuous jet or discretely in a drop-on-demand manner. The frequency at which the droplets are formed is a function of the drive cycle applied to the actuators as well as the fluid, reservoir and ejector structure, and the ejector nozzle.
An alternating voltage is applied to the actuator to cause the actuator to produce the resonant ultrasonic wave. The actuator can operate at about 100 kHz to 100 MHz, 500 kHz to 15 MHz, and 800 kHz to 5 MHz. A direct current (DC) bias voltage can also be applied to the actuator in addition to the alternating voltage. In embodiments where the actuator is piezoelectric, this bias voltage can be used to prevent depolarization of the actuator and can also generate an optimum ambient pressure in the reservoir. In embodiments where the actuator is electrostatic, the bias voltage is needed for efficient and linear operation of the actuator. Operation of the actuator is optimized within these frequency ranges in order to match the cavity resonances, and depends on the dimensions of and the materials used for fabrication of the reservoirs and the array structure as well the acoustic properties of the operating fluid.
The dimensions of the coupling and isolation layers, if present, are chosen such that the thicknesses of the coupling and isolation layers are approximately multiples of half the wavelengths of longitudinal waves in the coupling and isolation layers at the frequency of operation. Therefore for typical coupling materials like quartz, aluminum and silicon, the dimensions of the coupling and isolation layers are from 100 micrometers to 50 centimeters in width, 10 micrometers to 50 centimeters in thickness, and 100 micrometers to 50 centimeters in length. In addition, the dimensions of the coupling and isolation layers are from 100 micrometers to 2 centimeters in width, 10 micrometers to 10 millimeters in thickness, and 100 micrometers to 2 centimeters in length. Further, the dimensions of the coupling and isolation layers are from 100 micrometers to 1 centimeters in width, 10 micrometers to 2 millimeters in thickness, and 100 micrometers to 1 centimeter in length.
The dimensions of the actuator may depend on the type of actuator used. In some embodiments, where the actuator is a piezoelectric actuator, the thickness of the actuator is determined, at least in part, by the frequency of operation and the type of the piezoelectric material. The thickness of the piezoelectric actuator is chosen such that the thickness of the actuator is about half the wavelength of longitudinal waves in the piezoelectric material at the frequency of operation. Therefore, in the case of a piezoelectric actuator, the dimensions of the actuator are from 100 micrometers to 4 centimeters in width, 10 micrometers to 1 centimeter in thickness, and 100 micrometers to 4 centimeters in length. In addition, the dimensions of the actuator are from 100 micrometers to 2 centimeters in width, 10 micrometers to 5 millimeters in thickness, and 100 micrometers to 2 centimeters in length. Further, the dimensions of the actuator are from 100 micrometers to 1 centimeters in width, 10 micrometers to 2 millimeters in thickness, and 100 micrometers to 1 centimeter in length.
The high throughput acoustophoresis device may be used for isolation of particles, microorganisms, and/or cells including, but not limited to immune cells, circulating tumor cells (CTCs), bacterial cells, macromolecules, nanoparticles, viruses, microparticles (polymeric, metallic, etc.), or any mammalian or non-mammalian cell. In some embodiments, the high throughput acoustophoretic device may isolate cells with relatively low abundance from whole blood or other bodily fluids. The standing pressure field formed in the sample reservoir at particular resonant frequencies is also conducive to separation and isolation of cell-sized (˜1-50 μm) and sub-cellular (<1 μm) particles. In some embodiments, the resonant frequency may be 0.1 to 100 MHz. Stratification of nodal (zero pressure) and antinodal (maximum pressure amplitude) planes perpendicular, or at least not parallel, to the direction of bulk flow (i.e., the direction of sample ejection from the orifices of the microarray) offers a means of preferentially focusing (and thus retaining) cells of a particular size, shape, density or compressibility from a larger cell population.
An embodiment of a high-throughput acoustic particle separation method/device is shown in
The high throughput acoustophoresis device may be used for isolation of rare cells from whole blood. Under an operating frequency of about 1 MHz, the particle size threshold for effective separation is ˜10 μm (diameter) as the primary acoustic radiation force scales with the cube of the particle radius. Particles of smaller diameter (e.g., red blood cells (RBCs) and platelets) may be unaffected by the acoustic field, passing unimpeded through the sample reservoir and exiting from the nozzle orifices. In some embodiments, there may be preferential recovery of polystyrene beads with a diameter of about 5 μm (˜100%) versus about 10 μm (<40%) during EAM ejection of a heterogeneous bead mixture. Isolation of specific targeted immune cells from a white blood cell population, where size differentials are less pronounced, may require characterization and optimization of EAM operating parameters. In some embodiments, separating particles with similar acoustic contrast may require sequential separation in the high throughput acoustophoresis device. Due to the inherent scalability of the planar microarray format, the three-dimensional (3D) high throughput acoustophoresis device addresses throughput limitations of traditional 2D microchannel acoustophoresis devices, not only enabling use of acoustic separations in a diagnostic tool, but potentially enabling therapeutic applications where high-throughput separation is essential.
Having described several embodiments, it will be recognized by those skilled in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the invention. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Preliminary investigations were conducted of particle focusing in EAM-like geometries using a simplified 2D model and microfluidic chips that allowed visualization of particle migration under the action of an applied acoustic field. The acoustic simulation package of the commercial software ANSYS was used to predict how geometric parameters and material properties affect focusing performance.
Single inlet, single outlet reservoirs designed to represent cross-sections of an injection-molded EAM cartridge were micro-machined into silicon and bonded to glass providing visual access to the “ejection” chamber (see experimental setup,
The ANSYS model was used to predict focusing behavior for thirty six cases covering the combinations of geometric parameters listed in
Separation of heterogeneous particle mixtures was demonstrated using suspensions of polystyrene beads (5 μm and 20 μm diameter at 5×105 and 2×106 per ml DI water, respectively; density 1.06 g cm−3; Phosphorex) and hollow glass spheres (10 μm nominal diameter; Dantec Dynamics) decorated with fluorescent polyclonal secondary antibodies (rabbit anti-goat IgG Alexa Fluor 488; Abcam), which were synthesized in house. Separations microchannels with two different enrichment structures were etched into 1.5 mm thick soda lime/chromium blanks to a depth of ˜60 μm using 49% (w/w) HF:69% (w/w) HNO3:DI water at a ratio of 2:1:6 (see
For each enrichment structure, the acoustic response of a two-dimensional (2D) representation of the glass channel was first predicted using a frequency domain harmonic response analysis in COMSOL Multiphysics. Potential frequencies of operation were identified for parallel arrays of either slanted (angle of inclination, θp=75°) or lamellar pillars. Nominally, both geometries were designed to support single pressure field nodal lines perpendicular to the flow direction at a frequency of 500 kHz (i.e., the gap width between the parallel pillar arrays, Lx=1.25-1.5 mm, see
In experiments, inlet/outlet compression ports were used for static loading of particle suspensions. Separations channel chip assemblies were placed in a custom stage insert of an inverted microscope (Axio Observer z.1, Zeiss) for observation of acoustic particle migration. Enrichment frequencies were identified by sweeping transducer actuation over a 50 kHz range about model predicted resonances of interest (33522A, Agilent; 2100L, ENI).
Those skilled in the art will appreciate that the presently disclosed embodiments teach by way of example and not by limitation. Therefore, the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall therebetween.
This application claims priority benefit of U.S. Provisional Patent Application Ser. No. 62/308,547, filed on Mar. 15, 2016, which is hereby incorporated by reference in its entirety.
This invention was made with government support under grants 2R44RR025713-02 and 9R44GM112398-03 awarded by the National Institutes of Health. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/022484 | 3/15/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62308547 | Mar 2016 | US |