The present invention generally relates to the field of textile material characterization. In particular, the invention relates to high throughput fabric handle screening.
Fabric handle refers to the tactile sensations associated with fabrics. Fabric handle is a combination of various fabric characteristics such as smoothness, firmness, fullness, crispness and hardness. The textile industry is very interested in assessing fabric handle for their products because it has a strong impact on consumer preference for a particular textile product. Historically, fabric handle has been assessed by individuals using their own physical senses. In an effort to avoid errors associated with the subjectivity involved in such assessment, objective assessment methods and instruments have been introduced to measure the mechanical properties associated to fabric handle such as bending modulus, shear stiffness, compression, friction, and extensibility. Studies have shown that there is a good correlation of these mechanical properties with human tactile response. See Kim, J. O. and Slaten, B. L., “Objective Assessment of Fabric Handle in Fabrics Treated With Flame Retardants,” Journal of Testing and Evaluation, JTEVA, Vol. 24, No. 4, July 1996, pp. 223-228; G. Grover, Sultan, M. A., and Spivak, S. M., “A Screening Technique for Fabric Handle”, J. Text Inst, 1993, 84 No. J. Textile Institute, pp. 486-494. Nevertheless, these objective assessment methods and instruments present a multitude of challenges. They are time consuming in that they lack the ability to screen the mechanical properties associated with fabric handle of several fabric materials in rapid succession or in parallel. Thus, challenges are presented for forming systems that can quickly process and screen (either in parallel or in serial succession) mechanical properties associated with fabric handle of many fabric materials.
The present invention provides methods for high throughput fabric handle screening that address many of the challenges encountered when using conventional methods and instruments. For example, the disclosed methods can screen for the mechanical properties associated with fabric handle of an array of fabric samples in parallel and/or rapid serial and can perform screens on small samples of fabric materials. Thus, the present invention provides methods of screening the mechanical properties associated with fabric handle of a plurality of fabric samples (e.g., assembled together in an array).
In accordance with one preferred embodiment of the present invention, an array of fabric samples is provided and all or at least two of the samples are protruded simultaneously. The responses of each of the samples to the protrusions are monitored for gathering information related to its mechanical properties associated with fabric handle such as its bending modulus, shear stiffness, compression, friction, and extensibility, or the like.
In another preferred embodiment, an array of fabric samples is provided and the samples are protruded one at a time in a rapid serial fashion. The responses of each of the samples to the protrusions are monitored for gathering information relating to its mechanical properties associated with fabric handle such as its bending modulus, shear stiffness, compression, friction, and extensibility or the like.
The present invention comprises methods for high throughput screening of a plurality of fabric samples for mechanical properties generally associated with fabric handle, by measuring the responses of individual array samples to protrusions. In a preferred embodiment, a plurality of fabric samples is assembled together to define an array of fabric samples. The fabric samples materials in the array can be the same or different materials. The array can be supported on a single common support or a plurality of assembled supports. A further detailed description of the array of fabric samples is provided below in the section titled “Preparation of an Array of Fabric Samples”.
As used herein, the term “protrusions” generally refers to controlled forces or displacements applied by a probe, or device to a fabric sample for causing at least a portion of the fabric sample to be forced through an opening defined in a plane of a sample support member. Preferably a protrusion as used herein will be of sufficient magnitude for effecting such sample manipulation without piercing the sample. In some embodiments, however, it is contemplated that piercing will or desirably should occur.
In accordance with effectuating one type of preferred protrusion, as the sample is passed through the opening (i.e., pushed out of the normal plane of the opening), it is expected to become folded, sheared, bent, compressed, elongated, or rubbed against the interior wall of the support member defining the opening. Responses to the protrusions are measured and recorded as a load-displacement curve as shown in FIG. 1. The load displacement curve yields the mechanical properties associated with or bearing upon fabric handle such as bending modulus, shear stiffness, compression, friction, and extensibility, or the like.
Preparation of an Array of Fabric Samples
The number of fabric samples in an array may vary depending on the embodiment being practiced. In some embodiments, an array will comprise four or more, eight or more, sixteen or more, twenty-four or more, or forty-eight or more fabric materials. Those of skill in the art will appreciate from this specification that members of the array may be the same or different materials. Fabric samples may be woven or unwoven, coated or uncoated, or aggregated with a suitable binder or not. The present invention is not limited to any particular type of fabric material and may include a woven material (e.g., batiste, chiffon, net, voile, organza, georgette, challis, chambray, charmeuse, crepe, dotted swiss, handkerchief linen, satin, eyelet, lace, velvet, taffeta, metallic, gauze, jacquard, gingham, percale, seersucker, broadcloth, brocade, linen, pique, shantung, chintz, velveteen, polyester blend acrylic, fleece, gabardine, denim, twill, corduroy, terry, velour, canvas, duck, percale, tergal, flannel, lame, tricotine, etc.), a non-woven material (e.g., felt, fusibles, interfacing, etc.), a knit material (e.g., atlas, jersey, pointelle, raschel, mesh, panne velvet, tricot, rib knit, double knit, interlock, intarsia, etc.), a pile material (e.g., chenille, chinchilla, faux fur, frieze, grospoint, tubular, etc.), a blend material (e.g., cotton/silk blend, cotton/wool blend, etc.), a composite material (e.g., laminated, etc.), or a combination thereof. The fabric materials can be natural (e.g., cotton, silk, linen, wool, hemp, ramie, jute, etc.), synthetic (e.g., acetate, acrylic, lastex, nylon, polyester, rayon, etc.), or combination thereof. They can also be acrylic coated, airo finished, bleached, resin treated, sanded, scented, sheared, silver coated, wax coated, stonewashed, bonded, enzyme washed, flocked, glazed, mercerized, milled/fulled, and subject to other textile treatments for color, texture, bacterial resistant, soil resistant, oil repellent, flame resistant, pill resistant water resistant, mildew resistant, water repellant, wrinkle resistant, or ultra violet resistant, etc. Standards (such as calibration standards) or blanks may be employed in the array for known scientific purposes. In this regard, the present invention is particularly attractive for the screening of effects of variations of textile treatments and/or additives (e.g., surfactants, fillers, reinforcements, flame retardants, colorants, environmental protectants, other performance modifiers, control agents, plasticizers, cosolvents, accelerators, etc.) upon the fabric handle of a fabric material.
Relative comparison of the fabric hand of array members (including for instance the comparison with a standard or blank) is a useful embodiment of this invention. Quantitative measurements of fabric hand are also provided by the present invention. The quantitative measurements allow comparison of fabric hand between the array members and other fabric materials not included in the array. As will be appreciated from the discussion elsewhere herein, in one particular embodiment, different material samples are compared with each other (quantitatively or qualitative, according to defined criteria) and their relative performance is ranked. In another particular embodiment, different material samples are compared to determine whether a specific response has occurred in any of the material samples. From the analysis of the materials, sub-sets of materials can be identified for further study or for production in bulk-scale quantities, such as for commercial application.
In regard to typical non-woven materials, and optionally to woven or other materials, it is preferred that fibers are aggregated in a generally cohesive manner. By way of example, to provide cohesion, it is preferred that the material is aggregated together with a suitable binder, (e.g., by applying in a wet state an emulsion containing waxes or polymers that, when dried, will form a continuous phase around the non-woven fibers). A particularly preferred binder for use in the present invention is an aqueous emulsion including a polymer (more preferably a copolymer). A more preferred binder also may include, a stabilizer, a surfactants, a crosslinking agent, or other suitable agent to impart mechanical strength to the system (e.g., once it has been exposed to elevated temperature (˜150° C.)). The binder may add 1 to 99, preferably 5 to 50, more preferably 10-30 percentage weight to the fabric material.
What may vary from binder to binder are (1) the monomers used in the polymerization; (2) the order in which they are attached (random or blocky); (3) the surfactants; and (4) any other additives that may give the system unique characteristics (e.g., something that is sensitive to the presence of ions). One preferred binder includes an olefin, a vinyl ester, or a combination thereof, and an example of such a preferred binder is a copolymer of ethylene and vinyl acetate in an emulsion with various stabilizers. For more examples of suitable binders, see U.S. Pat. Nos. 4,605,589, 4,975,320 and 6,043,317. It is preferred that the binder should generally be uniformly distributed throughout the non-woven material, but it also may be randomly distributed. Such uniform distribution can be achieved using any number of conventional techniques. For example, the non-woven material immersed with the binder is passed through spaced opposing surfaces such as rubber-coated rollers with a self-adjusting gap to squeeze out any excess binder and provide uniform distribution. Depending on the nature of the binder (e.g., whether it contains any cross-linkable polymers), a drying step and/or a curing step can be used to process the non-woven material treated with the binder.
In accordance with the teachings of the present invention, it may also be possible to employ the present invention for analyzing the effects of the use of different binders from sample to sample. Thus, in an array of samples, binders employed may be the same or different.
The shape and size of each array sample can generally vary, depending on the particular characterization protocols and systems used to analyze the sample. It is generally contemplated that arrays of samples will be mounted for screening in or on a suitable support structure, namely a sample holder. Typically, the sample holder will have at least one and more preferably a plurality of openings defined therein. Thus, in one preferred embodiment, the sample size will be larger than the opening through which it will be forced by a probe during screening. It is preferred that the sample is at least about 2 times larger than the opening, more preferred at least about 5 times larger than the opening, and most preferred about 10 times larger than the opening. It is appreciated that the present invention advantageously permits for attaining reliable data with relatively small samples, but the actual sample size is not critical. Typical sample sizes can range from about 8 mm to about 18 mm, more preferred from about 12 mm to about 18 mm, and most preferred from about 15 mm to about 17 mm. Larger diameters are also possible.
The Parallel Dynamic Mechanical Analyzer
Referring to
The PDMA 100 generally has as many probes 104 as desired. For example there may be as many as there are samples in the array 230, although for clarity,
The PDMA 100 includes at least one actuator for moving the probes 104 and the samples 230 in relation to each other. In one preferred embodiment, the actuators are attached to the probes 104 and the samples 230 remain stationary. In another preferred embodiment, the actuators are attached to the sample holder 102 and the probes remain stationary. In yet another preferred embodiment, both the probes 104 and the sample holder 102 have actuators attached allowing them to both become non-stationary. In an exemplary preferred embodiment, the PDMA 100 includes first 110 and second 112 translation actuators for displacing the array 230 in a direction normal 114 to surfaces containing the array 230 and the ends 116 of the probes 104. The first translation actuator 110, which is attached to the sample holder 102 via a housing 117 that surrounds the second translation actuator 112, provides relatively coarse displacement of the sample holder 102. A useful first translation actuator 110 includes a motorized translation stage available from POLYTEC PI under the trade name M-126 Translation Stage, which has a translation range of 25 mm and a resolution of 0.1 μm. The second translation actuator 112, which is attached directly to the sample holder 102, provides relatively fine displacement of the sample holder 102. A useful second translation actuator 112 includes a preloaded piezoelectric stack available from Polytec PI under the trade name P-753 LISA Linear PZT Stage Actuator, which has a translation range of 30 mm and can provide a 100-N pushing force and a 20-N pulling force. The PDMA 100 typically controls the first 110 and second 112 translation actuators using a DC motor controller and an amplifier/position servo controller, respectively, which are linked to a suitable general-purpose computer (not shown). In an alternative embodiment, the first 110 translation actuator is mounted on an x-y translation stage (not shown), which allows movement of the sample holder 102 in a direction substantially parallel to the surfaces containing the array 230 and the ends of the probes 104. This latter embodiment is useful when the sample holder 102 must be moved laterally to align different groups of array samples 230 with the probes 104 during screening—i.e., when the PDMA employs fewer probes 104 than samples in the array 230 and the probes 104 are stationary.
Each of the probes 104 includes a test fixture 118 that contacts one of the sensors 106 through a solid or composite shaft 120 shown in phantom in FIG. 2. Each shaft 120 passes through an aperture 122 in an isolation block module 124 that separates the probe test fixture 118 from the sensor 106. For clarity,
As shown in
The geometry of the diaphragms 166 makes each of the flexure strips 150 compliant for displacements normal 114 to the surface supporting or containing the array 230, but mechanically stiff for displacements parallel to the array 230. The use of two flexure strips 150 also makes each combination of shaft 120 and diaphragms 166 mechanically stiff for angular displacements away from the direction normal 114 to the surface of the array 230. Moreover, through proper selection of materials and dimensions, the flexure strips 150 exhibit effective spring constants—for displacements normal 114 to the array 230—substantially less than effective constants of the sensors 106. In this way, the flexure strips 150 ordinarily exert minimal influence on the measured responses to protrusions, unless they are used to “pre-load” the sensors 106 as discussed below. Useful materials for the flexure strips 150 include metallic and polymeric films. For example, one particularly useful flexure strip material is polyimide film, which is available from DuPont under the trade name KAPTON in thickness ranging from about from about thirteen μm to about one hundred twenty five μm. Other useful flexure materials include stainless steel foil, diaphrams (in general) and corrugated bronze, for example, the flexure may be mechanically machined stainless steel. Since the effective spring constants of the diaphragms 166 and typical sensors 106 are temperature-dependent, the use of thermally insulating sheathing 160, 162, 164 on the shafts 120 permits the PDMA 100 to vary the temperature of the arrays 230 without significantly affecting the measured response.
For the high throughput fabric handle screening, it is preferred that the PDMA 100 employs a probe 104 having a blunt end (not shown) for protruding the array 230. Alternatively, the probe 104 can be equipped with a blunt end test fixture 118 for protruding the array 230. The PDMA 100 may provide a mechanism for removing and securely attaching the test fixtures 118. Suitable attachment mechanisms include mechanical and electromagnetic couplings, as well as devices employing permanent magnets.
As can be seen in
The relatively large footprint of each sensor 106 shown in
FIG. 7 and
As shown in
The first sensor board 232 shown in
Referring to
The PDMA 100 can use a wide variety of sensors 106, including miniature force sensors. Most of the sensors 106 incorporate signal conditioning electronics. Suitable force sensors include piezoresistive micromachined silicon strain gauges that form a leg of a conventional Wheatstone bridge circuit. A useful low-compliant force sensor is available from Honeywell under the trade name FSL05N2C. The Honeywell force sensor has a 500-g range (4.9 N full scale), which is suitable for most of the screening methods described in subsequent sections. As noted earlier, many force sensors can tolerate only modest variation in temperature without compromising accuracy and precision. The use of a composite shaft 120 having an insulating sheathing 160, 162, 164 (
In an alternative embodiment, force sensors are incorporated into the flexure strips 150 by placing strain gages on the diaphragms 166 (FIG. 4). Strain resulting from the application of a known force—typically a deadweight load applied to the rigid shaft 120—is recorded and used to develop a calibration curve for the force sensor. The principal disadvantage of this approach is the extensive signal conditioning requirements associated with strain gage measurements.
Referring again to FIG. 2 and
Alternatively, the environmental chamber may comprise a substantially gas-tight enclosure that surrounds the sample holder 102, the probes 104, the isolation block modules 124, and the sensors 106. The enclosure may be further separated into two compartments—one that encloses the sample holder 102 and the samples 230, and one that encloses the sensors 106 and the isolation block modules 124. The latter embodiment allows blanketing the sample holder 102 and the samples 230 with a first gas that is different than a second gas blanketing the sensors 106. In this way, the PDMA can vary the environment of the samples 230 independently of the sensors 106, while maintaining the sensors 106 at conditions different than or the same as the laboratory environment.
The environmental chamber may include devices for regulating and/or monitoring the temperature of the samples 230. Useful devices include one or more heating or cooling elements placed within a gas stream that feeds the environmental chamber containing the array 230. Other useful devices include an array of radiant heaters positioned adjacent to the samples 230. Alternatively, the PDMA 100 may include resistance heaters or thermoelectric devices that are attached to the sample holder 102, which heat or cool individual or groups of samples in the array 230. The PDMA 100 may also include devices such as thermocouples, thermistors, or resistive thermal devices (RTD) for monitoring the temperature of individual samples 230. In some embodiments, the PDMA 100 includes a temperature controller, such as a data acquisition board, for subjecting the array 230 to a desired temperature-time profile. The temperature controller automatically adjusts the power supplied to the heating and cooling devices in response to signals received from the temperature monitoring devices. Typically, software running on an external computer communicates and coordinates functions of the temperature controller and the temperature monitoring devices.
Parallel Dynamic Mechanical Analyzer Control and Data Acquisition
The second translation actuator 112 shown in
As shown in
Software running on the computer 304 coordinates the activities of the boards 302, 310 and allows the user to specify screen parameters including positions of the first 110 and second 112 translation actuators at any given time, the number of samples 230, and so on.
General Methodology
The methodology for high throughput fabric handle screening used in this experiment generally includes the following steps: (1) providing a plurality of samples of non-woven materials; (2) aggregating the materials in a binder; (3) placing the samples on a sample holder having a plurality of openings with smooth edges; (4) protruding the samples; (5) measuring the response of each sample; (6) comparing the samples relating to each other; (7) identifying the samples that meet predetermined criteria and/or ranking the samples based upon their individual performance; and (8) preparing bulk scale quantities of a material or materials based upon the results of this high throughput fabric handle screening.
Method of Screening Fabric Handle Using the Parallel Dynamic Mechanical Analyzer
Referring to
In a preferred embodiment, the probes 104 have about the same lateral spacing as the tunnels 410 and/or the openings 407 so that there is a one-to-one correspondence between the individual probes 104 and the samples in the array 230. In addition, since the array 230 and the ends of the probes 104 also define two generally planar surfaces, the system can protrude all of the array samples 230 simultaneously by displacing the array 230 (sample holder 102) and/or the probes 104 in a direction normal to the two surfaces. If adapted to protrude all of the array samples 230 simultaneously, the system may include a rectilinear translation stage that is attached to the sample holder 102 or the probes 104.
In other embodiments, the system may protrude individual or groups of array samples 230 in a rapid serial fashion. In these embodiments, the system may include a translation mechanism capable of three-dimensional motion, which is attached to a single probe 104, to a group of probes 104, or to the sample holder 102.
The Automated Rapid Serial System
Referring to FIG. 10 and
It is further preferred that each sample 502 is at least about 2 times larger than the diameter of the opening 506, more preferred at least about 5 times larger than the diameter of the opening 506, and most preferred about 10 times larger than the diameter of the opening 506. The particular sample holder 504 shown in FIG. 10 and
The ARSS 500 also includes a probe 512 (or other similarly functioned device) having a blunt end for protruding the array 502. Alternatively, the probe 512 can be equipped with a blunt end test fixture 118 for protruding the array 502. The ARSS 500 can generally include as many probes 512 as desired, for example there may be as many as probes 512 as there are samples in the array 502 and in a preferred embodiment, the probes 512 have about the same lateral spacing as the openings 506 so that one probe 512 is associated with one opening 506 or sample 502. Alternatively, the ARSS may employ fewer probes 512 than samples in the array 502, so that a group of probes 512 protrudes multiple samples 502, or there may be more probes 512 than samples in the array 502. Alternatively, there may be only one probe 512 and the ARSS 500 includes a translation mechanism capable of three-dimensional motion, which is attached to the single probe 512 or to the sample holder 504 to allow high throughput screening in a rapid serial fashion.
The ARSS 500 includes actuator(s) for moving the probe(s) 512 and the samples 502 in relation to each other. In one preferred embodiment, the actuator is attached to the probe 512 and the samples 502 remain stationary. In another preferred embodiment, the actuator is attached to the sample holder 504 and the probe 512 remains stationary. In yet another preferred embodiment, both the probe 512 and the sample holder 504 have actuators attached allowing both of them to translate.
Referring to
In a preferred embodiment, the ARSS 500 is employed in association with suitable software for combinatorial materials research, such as LIBRARY STUDIO™, by Symyx Technologies, Inc. (Santa Clara, Calif.); IMPRESSIONIST™, by Symyx Technologies, Inc. (Santa Clara, Calif.); EPOCH™, by Symyx Technologies, Inc. (Santa Clara, Calif.); POLYVIEW™, by Symyx Technologies, Inc. (Santa Clara, Calif.) or a combination thereof. The skilled artisan will appreciate that the above-listed software can be adapted for use in the present invention, taking into account the disclosures set forth in commonly-owned and copending U.S. patent application Ser. No. 09/174,856 filed on Oct. 19, 1998, U.S. patent application Ser. No. 09/305,830 filed on May 5, 1999 and WO 00/67086, U.S. patent application Ser. No. 09/420,334 filed on Oct. 18, 1999, U.S. application Ser. No. 09/550,549 filed on Apr. 14, 2000, each of which is hereby incorporated by reference. Additionally, the system may also use a database system developed by Symyx Technologies, Inc. to store and retrieve data with the overlays such as those disclosed in commonly-owned and copending U.S. patent application Ser. No. 09/755,623 filed on Jan. 5, 2001, which is hereby incorporated by reference for all purposes. The software preferably provides graphical user interfaces to permit users to design arrays of fabric samples by permitting the input of data concerning the precise location on the sample holder 506 of each sample in the array (i.e., the address of each sample). Upon entry, the software will execute commands to control movement of the robot, for controlling activity at such individual address. Data obtained from the analysis can be compiled and analyzed.
Optionally, the ARSS 500 further includes an environmental chamber for controlling the environment (e.g., temperature, humidity, etc.) of the array. An example of a suitable environmental chamber is a thermal jacket for heating and cooling the array 502 as desired (e.g., preferably between −100° C. and 200° C.). One preferred thermal jacket includes passages for receiving a heated or cooled fluid such as liquid nitrogen, water, steam or other suitable fluid from a fluid supply. The fluid from the fluid supply may be pumped to the thermal jacket with a pump that is controlled by a controller.
Method of Screening Fabric Handle Using the Automated Rapid Serial System
Referring to
Interpretation of the Load-Displacement Curve
The load-displacement curve obtained during the high throughput fabric handle screening methods discussed above contains information about various mechanical properties associated with fabric handle such as bending modulus, shear stiffness, compression, friction, and extensibility. Due to the extreme complexities of the interactions of these mechanical properties throughout the duration of the screen, extraction of the various properties from the curve is extremely difficult. See Pan, Ning and Yen, K. C., “Physical Interpretations of Curves Obtained Through the Fabric Extraction Process for Handle Measurement,” Textile Res. J. 65(5), 279-290 (1992). The maximum force reached during the protrusion is thus taken to be representative of the overall fabric handle, incorporating all of the various mechanical properties into one value.
Screening Throughput
The instruments described above in accordance with the present invention can analyze an array having 2 or more samples, and preferably, at least 8 samples to ensure adequate screening throughput. Those of skill in the art will appreciate that lower or higher throughput may serve the needs of a particular application of this invention. Thus, 4 or more, 8 or more, 16 or more, 24 or more, or 48 or more probes in parallel are within the scope of this invention. These probes may all be in the same test fixture or in multiple test fixtures.
As for screening throughput for parallel embodiments, up to 96 array samples may have their mechanical properties associated with fabric handle measured simultaneously in about 10 minutes or less, preferably about 5 minutes or less and even more preferably in about 1 minute or less. In some parallel embodiments, screening throughput of even about 30 seconds or less may be accomplished for an array of the sizes discussed herein, e.g., up to 96 samples in the array.
For the rapid serial or the hybrid parallel-serial embodiments, fabric handle of each sample in the array is detected at an average sample throughput of not more than about 2 minute per sample. As used in connection herewith, the term “average sample throughput” refers to the sample-number normalized total (cumulative) period of time required to detect the fabric handle of two or more fabric samples within an array. The total cumulative time period is delineated from the initiation of the screening process for the first fabric sample, to the detection of the fabric handle of the last fabric sample and includes any intervening between-sample pauses in the process. The sample throughput is preferably not more than about 30 seconds per sample, more preferably not more than about 20 seconds per sample, even more preferably not more than about 15 seconds per sample, and most preferably not more than about 10 seconds per sample.
It will be appreciated from the above that many alternative embodiments exist for high throughput fabric handle screening within the scope of the present invention. For example, instead of using probes, the PDMA 100 and the ARSS 500 can be configured to protrude the array samples by clamping, suctioning or pinching a portion (preferably the center portion) of each sample and pulling the sample through the opening. Accordingly, the methods and instruments discussed above are to be considered exemplary and nonlimiting as to the scope of the invention.
An example of the present invention is performed upon an airlaid non-woven fabric materials. The experiment begins with cutting an airlaid non-woven fabric material into a rectangle approximately 2″×1″ in size and sandwiching between two pieces of polyester scrim to hold the fabric material together during the padding process. The fabric material is placed into a shallow container and soaked with 300 ml of binder solution (generally an emulsion). The binder solution is diluted down sufficiently so that the percent weight added on to the non-woven fabric material during this process is about 15%. The wet fabric material is passed between two rubber-coated rollers with a self-adjusting gap to squeeze out the excess liquid and ensure a uniform distribution of polymer solids throughout the fibers. The sample is dried at 110° C. for approximately 10 minutes, either with or without the scrim. Depending on the emulsion (i.e., is there cross-linker in the system), there is a curing step following the drying step at 130° C. for 5 minutes. Thereafter, the fabric material is cut to form 4 fabric samples with each sample being a 2 cm diameter circle. This process of preparing the fabric samples is repeated 6 times, each time with a different binder to yield an array of 24 fabric samples. The fabric samples are then arranged in a 4×6 array and centered over the funnel-shaped openings in the sample holder. For the 4×6 array, the outer lip of each of the funnel-shaped openings is 12 mm in diameter, and the inner opening is 6 mm in diameter. The centers of the openings are spaced 18 mm apart. After the array is placed onto the sample holder, they are then placed onto a cantilever-type load cell with a maximum allowable force of 50N. The output of the load cell is a voltage, but a calibration curve can be used to translate the voltage into a force (in this case, the relationship is F=30.96*V). Using the robotics-control software, the center of the first opening and the center of the last opening are identified. The fabric hand screening is run using Symyx' Impressionist™ and Epoch™ software. The probe is translated to a position slightly above the sample centered on the opening, and moved the probe downwards at a relatively slow speed (˜5-10 mm/sec), and collects the response of the load cell as force is applied to the sample. This is repeated for each sample on the array. When the program is finished with its data collection, a suitable fitting routine goes back and fits each peak in the voltage versus time output, identifying such values as peak height and peak width. These parameters are saved to a database, from where they can be later retrieved along with the actual load-displacement curves.
The screening process takes approximately 5 seconds per sample allowing the entire array of 24 samples to be screened in less than 2 minutes. The peak height of each of the load-displacement curves is used to rank the fabric hand of the 6 different binders. The ranking of fabric hand using the above-described rapid serial technique yielded results matching human panel fabric handle screens as shown in Table 1. The fabric materials are correlated from soft to stiff with increasing peak height. For comparison by a human panel test, panelists are asked to rank the fabric samples in the array from 1 to 6 for softest to stiffest. The total points a sample received is divided by the number of panelists to obtain the ranking. In the human panel test, half of the participants rank the array samples in the same order as the rapid serial test and the other half have two array samples switched.
Number | Name | Date | Kind |
---|---|---|---|
1870412 | Kennedy | Aug 1932 | A |
2590839 | Claphan | Apr 1952 | A |
2786352 | Sobota | Mar 1957 | A |
3071961 | Heigl et al. | Jan 1963 | A |
3151483 | Plummer | Oct 1964 | A |
3613445 | Dent et al. | Oct 1971 | A |
3618372 | Beckstrom | Nov 1971 | A |
3675475 | Weinstein | Jul 1972 | A |
3713328 | Aritomi | Jan 1973 | A |
3798960 | Glass | Mar 1974 | A |
3804092 | Tunc | Apr 1974 | A |
3805598 | Corcoran | Apr 1974 | A |
3818751 | Karper et al. | Jun 1974 | A |
3835697 | Schneider et al. | Sep 1974 | A |
3838596 | Neuenschwander | Oct 1974 | A |
3849874 | Jeffers | Nov 1974 | A |
3895513 | Richardson | Jul 1975 | A |
3908441 | Virloget | Sep 1975 | A |
3933032 | Tschoegl | Jan 1976 | A |
4103550 | Alley et al. | Aug 1978 | A |
4229979 | Greenwood | Oct 1980 | A |
4447125 | Lazay et al. | May 1984 | A |
4517830 | Gunn et al. | May 1985 | A |
4567774 | Manahan et al. | Feb 1986 | A |
4570478 | Soong | Feb 1986 | A |
4599219 | Cooper et al. | Jul 1986 | A |
4602501 | Hirata | Jul 1986 | A |
4605589 | Orphanides | Aug 1986 | A |
4680958 | Ruelle et al. | Jul 1987 | A |
4685328 | Huebner et al. | Aug 1987 | A |
4699000 | Lashmore et al. | Oct 1987 | A |
4715007 | Fujita et al. | Dec 1987 | A |
4740078 | Daendliker et al. | Apr 1988 | A |
4749854 | Martens | Jun 1988 | A |
4776202 | Brar et al. | Oct 1988 | A |
4789236 | Hodor et al. | Dec 1988 | A |
4793174 | Yau | Dec 1988 | A |
4829837 | Telfer | May 1989 | A |
4893500 | Fink-Jensen | Jan 1990 | A |
4899575 | Chu et al. | Feb 1990 | A |
4899581 | Allen et al. | Feb 1990 | A |
4932270 | Lurie et al. | Jun 1990 | A |
4975320 | Goldstein et al. | Dec 1990 | A |
5008081 | Blau et al. | Apr 1991 | A |
5051239 | von der Goltz | Sep 1991 | A |
5092179 | Ferguson | Mar 1992 | A |
5115669 | Fuller et al. | May 1992 | A |
5142900 | Duke | Sep 1992 | A |
5193383 | Burnham et al. | Mar 1993 | A |
5236998 | Lundeen et al. | Aug 1993 | A |
5269190 | Kramer et al. | Dec 1993 | A |
5271266 | Eschbach | Dec 1993 | A |
5272912 | Katsuzaki | Dec 1993 | A |
5280717 | Hoseney et al. | Jan 1994 | A |
5303030 | Abraham et al. | Apr 1994 | A |
5305633 | Weissenbacher et al. | Apr 1994 | A |
5398885 | Andersson et al. | Mar 1995 | A |
5437192 | Kawamoto et al. | Aug 1995 | A |
5438863 | Johnson | Aug 1995 | A |
5452614 | Kato et al. | Sep 1995 | A |
5452619 | Kawanabe et al. | Sep 1995 | A |
5481153 | Turner | Jan 1996 | A |
5517860 | Lin et al. | May 1996 | A |
5520042 | Garritano et al. | May 1996 | A |
5532942 | Kitamura et al. | Jul 1996 | A |
5610325 | Rajagopal et al. | Mar 1997 | A |
5614662 | Hallan et al. | Mar 1997 | A |
5626779 | Okada | May 1997 | A |
5699159 | Mason | Dec 1997 | A |
5700953 | Hlady et al. | Dec 1997 | A |
5723792 | Miyazaki | Mar 1998 | A |
5728532 | Ackley | Mar 1998 | A |
5756883 | Forbes | May 1998 | A |
5764068 | Katz et al. | Jun 1998 | A |
5776359 | Schultz et al. | Jul 1998 | A |
5790983 | Rosch et al. | Aug 1998 | A |
5795989 | Simmons et al. | Aug 1998 | A |
5799103 | Schneider et al. | Aug 1998 | A |
5817947 | Bergerus | Oct 1998 | A |
5821407 | Sekiguchi et al. | Oct 1998 | A |
5847283 | Finot et al. | Dec 1998 | A |
5877428 | Scolton | Mar 1999 | A |
5892157 | Syre | Apr 1999 | A |
5922967 | Motoyama | Jul 1999 | A |
5959297 | Weinberg et al. | Sep 1999 | A |
5985356 | Schultz et al. | Nov 1999 | A |
5999887 | Giannakopoulos et al. | Dec 1999 | A |
6004617 | Schultz et al. | Dec 1999 | A |
6010616 | Lewis et al. | Jan 2000 | A |
6013199 | McFarland et al. | Jan 2000 | A |
6030917 | Weinberg et al. | Feb 2000 | A |
6033913 | Morozov et al. | Mar 2000 | A |
6034240 | La Pointe | Mar 2000 | A |
6034775 | McFarland et al. | Mar 2000 | A |
6040193 | Winkler et al. | Mar 2000 | A |
6043317 | Mumick et al. | Mar 2000 | A |
6043363 | LaPointe et al. | Mar 2000 | A |
6045671 | Wu et al. | Apr 2000 | A |
6050138 | Lynch et al. | Apr 2000 | A |
6050139 | Bousfield et al. | Apr 2000 | A |
6087181 | Cong | Jul 2000 | A |
6092414 | Newman | Jul 2000 | A |
6124476 | Guram et al. | Sep 2000 | A |
6149882 | Guan et al. | Nov 2000 | A |
6151123 | Nielsen | Nov 2000 | A |
6157449 | Hajduk | Dec 2000 | A |
6175409 | Nielsen et al. | Jan 2001 | B1 |
6177528 | LaPointe et al. | Jan 2001 | B1 |
6182499 | McFarland et al. | Feb 2001 | B1 |
6187164 | Warren et al. | Feb 2001 | B1 |
6203726 | Danielson et al. | Mar 2001 | B1 |
6225487 | Guram | May 2001 | B1 |
6225550 | Hornbostel et al. | May 2001 | B1 |
6242623 | Boussie et al. | Jun 2001 | B1 |
6248540 | Weinberg et al. | Jun 2001 | B1 |
6260407 | Petro et al. | Jul 2001 | B1 |
6265226 | Petro et al. | Jul 2001 | B1 |
6265601 | Guram et al. | Jul 2001 | B1 |
6268513 | Guram et al. | Jul 2001 | B1 |
6294388 | Petro | Sep 2001 | B1 |
6296771 | Miroslav | Oct 2001 | B1 |
6306658 | Turner et al. | Oct 2001 | B1 |
6315923 | Devenney et al. | Nov 2001 | B1 |
6324251 | Kuwabara | Nov 2001 | B1 |
6326090 | Schultz et al. | Dec 2001 | B1 |
6489776 | Stowe et al. | Dec 2002 | B1 |
Number | Date | Country |
---|---|---|
2112792 | Jul 1994 | CA |
0 317 356 | May 1989 | EP |
1 158 290 | Nov 2001 | EP |
402297040 | Dec 1990 | JP |
WO 9611878 | Apr 1996 | WO |
WO 9815501 | Apr 1998 | WO |
WO 9918431 | Apr 1999 | WO |
WO 0017413 | Mar 2000 | WO |
WO 0023921 | Apr 2000 | WO |
WO 0036410 | Jun 2000 | WO |
WO 0040331 | Jul 2000 | WO |
WO 0051720 | Sep 2000 | WO |
WO 0067086 | Nov 2000 | WO |
WO 0179949 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030041663 A1 | Mar 2003 | US |