The present invention relates to the field of nanofabrication of graphene patterns, in particular, utilizing a localized heat source, such as a laser beam, for localized graphene transfer from large-area graphene.
The capability to produce high-quality graphene on a large scale has become a key factor in commercializing graphene-based technologies. Graphene exhibits extraordinary properties which can be utilized for many applications in various fields of science and engineering. A reliable, fast and economical fabrication technique is necessary for the commercialization of graphene-based products. Current techniques for producing graphene devices involve the use of photolithography or e-beam lithography to produce graphene devices having the necessary structures. Some of the disadvantages of these processes include high processing cost, long processing time, low yield, and unwanted doping of graphene. In addition, these processes are not compatible with flexible polymer substrates. Techniques where graphene patterns are printed using graphene ink overcome these disadvantages, but do not provide a continuous printed pattern. Hence, such techniques have limited use in applications such as nanoelectronics where the continuity of the graphene pattern may be critical to the performance of the device. Further, a continuous monolayer of graphene ribbon exhibits higher values of carrier mobility than a similar pattern printed with graphene ink.
The placement of electronic devices on flexible substrates has been a growing area for research and development due to rapidly expanding applications and markets for touch screens, electronic paper and displays, photovoltaics, lighting, and sensor tags. To achieve the economy of scale for large-area substrates requiring active transistor functionality, the primary focus has been to fabricate the electronics directly on the flexible substrate. The most promising materials and processes to date include thin-film metal oxide materials deposited by moderate temperature processes such as chemical vapor deposition (CVD) or atomic layer deposition (ALD), yet there are still concerns associated with substrate compatibility, throughput, and subsequent process integration for final device and circuit designs.
Conventional transparent conducting electrodes make use of indium tin oxide (ITO) and are commonly used in solar cells, touch sensors and flat panel displays. ITO is an essential element in virtually all flat-panel displays, including touch screens on smart phones and iPads, and is an element of organic light-emitting diodes (OLEDs) and solar cells. The element indium is becoming increasingly rare and expensive. ITO is also brittle, which heightens the risk of a screen cracking when a smart phone is dropped, and further rules ITO out as the basis for flexible displays. Graphene film is a strong candidate to replace ITO due to its high conductivity, good transparency, and good mechanical flexibility. Efforts to make transparent conducting films from large-area graphene, however, have been hampered by the lack of efficient methods for the synthesis, patterning and transfer of graphene at the scale and quality required for applications in high performance nanoelectronics.
Two properties of graphene (i.e., electron mobility and material flexibility) may be employed to facilitate the development of electronic components and circuits for various applications, such as flexible screens and very-high-performance transistors and electronic components. Recently, the large-scale growth of high-quality graphene on metal using CVD has enabled various applications. The fabrication of the graphene-based active component, however, requires complex, expensive and time-consuming processes using conventional lithography techniques. A simple process for the production of both graphene patterning and graphene transfer patterns is urgently needed to enable the fabrication of marketable graphene devices.
Embodiments of the present invention provide a technique that facilitates high-speed and high-throughput graphene pattern printing using localized heat sources, such as, but not limited to, lasers. In an embodiment of the present invention, large-area graphene is applied to a thermal release tape, and a substrate is placed in contact with the large-area graphene. In an embodiment of the present invention, a localized heat source, such as a laser beam, locally heats the thermal release tape such that the locally-heated area of the tape loses its adhesive properties, and the graphene on that locally-heated area of the thermal release tape is selectively transferred onto the substrate.
For a more complete understanding of the present invention, reference is made to the following detailed description of an exemplary embodiment considered in conjunction with the accompanying drawings, in which:
Component parts of the exemplary system 10 may include a mechanism for pressing the thermal tape 12 against the substrate 16 at a precisely controlled pressure (e.g., a roller press comprising rollers 22 and fixed glass support 24, also referred to herein as a platen 24), a localized heat source (e.g., laser source 26 and deflectable mirror 28, one or both of the position and orientation of which may be controlled by a computer (not shown)), and a specially-prepared cartridge (not shown) for dispensing the thermal tape 12 with its adhered large-area graphene 14. In the exemplary method of the present invention, the thermal release tape 12 and the substrate 16 (e.g., a polyethylene terephthalate (PET) polymer film) are passed between the rollers 22 and the fixed glass platen 24 as illustrated in
As the thermal release tape 12 and substrate 16 are rolled forward between the rollers 22 and glass platen 24, the laser beam 30 is sequentially focused on desired locations (e.g., heated area 18) on the thermal release tape 12 through the glass platen 24 using the deflectable mirror 28. The laser beam 30 thus heats up the desired area on the thermal release tape 12, elevating its temperature above the temperature at which the thermal release tape 12 loses its adhesive properties. In an embodiment of the present invention, the thermal release tape 12 loses its adhesive properties at a temperature of about 80° C., and the desired locations are heated to a temperature of about 150° C. The thermal release tape 12 loses its adhesive properties at the desired locations such that the graphene 14 is released from the thermal release tape 12 only at the desired locations and is transferred onto the substrate 16. In an embodiment of the present invention, a graphene pattern can be precisely printed onto the substrate 16 as the thermal release tape 12 and substrate 16 are advanced at a speed of about 150 to about 200 mm per minute.
Large Area Graphene Fabrication
The production of thermal release tape having large-area graphene adhered thereto may be carried out according to the following process of the present invention. The overall process involves large-area graphene fabrication on a transition metal substrate such as copper (Cu) foil via chemical vapor deposition (CVD). More particularly, in an embodiment of the present invention, a Cu scroll is placed in the center of a 2-inch diameter quartz tube in a horizontal 3-zone tube furnace, and heated to 1000° C. under hydrogen (H2) and argon (Ar) flow. Reaction gas mixtures of methane (CH4) at 50 sccm, H2 at 15 sccm, and Ar at 1000 sccm are fed through the quartz tube. Subsequently, the Cu scroll is rapidly cooled to room temperature under H2 and Ar flow, resulting in large-area graphene layers grown on both sides of the Cu scroll.
Large-area graphene is applied to the thermal release tape by adhering the graphene-copper surface to the thermal release tape at room temperature. To ensure uniform surface contact between the large-area graphene and the thermal release tape surface, pressure is applied to the copper/graphene/thermal release tape stack using a roll press or other suitable means of applying pressure. Then, the stack is placed in a copper etchant bath where the copper foil is etched away for about 12 hours. The remaining stack of large-area graphene and thermal transfer tape is then rinsed with DI water and dried using a nitrogen gun. The thermal release tape with its adhered large-area graphene may then be used in the exemplary printing process described above.
The following experiments (i.e., Experiment 1 and Experiment 2) have been conducted, and verify the utility of the present invention. Good uniform transfer of large-area graphene on the targeted substrate using a roller press was demonstrated (Experiment 1), and local heating of the thermal release tape was observed to consistently transfer graphene only in the locally heated areas (Experiment 2). The results of Experiments 1 and 2 are summarized below.
Large-area graphene transfer onto a substrate was demonstrated using a roller-press apparatus. Silicone rollers were used to press multiple layers of large-area graphene adhered to a thermal release tape (thermal release tape 3195MS, Semiconductor Equipment Corporation) against a film of PET polymer at high temperatures (i.e., temperatures equal to or greater than about 100° C.), and a uniform pressure in the range of about 5 psi to about 10 psi. At high temperatures, the thermal release tape lost its adhesive properties and the graphene layer was transferred onto the PET substrate. Three temperatures were tested (i.e., 100° C., 120° C., and 150° C.). Care was taken to ensure that the PET film did not soften during the transfer process.
Homogeneous transfer of large-area graphene was observed at all three temperatures. The best transfer, based on the amount of large-area graphene transferred to the substrate and the uniformity of the large-area graphene transferred, was observed in the test run at 150° C.
It may be noted that thermal release tapes are commercially available having a range of adhesive and transfer characteristics. For example, there are tapes that lose their adhesive properties at temperatures higher than, or lower than, the thermal release tapes used in Experiment 1. Further, there are commercially available polymer substrates that exhibit different mechanical properties and temperature responses than those of PET films. Appropriate selections of thermal release tapes and polymer substrates may be made by those having ordinary skill in the art and possession of the present disclosure.
The feasibility of local graphene transfer from large-area graphene to a substrate was demonstrated by locally heating thermal release tape having large-area graphene adhered thereto.
The present experiment demonstrates that localized heating of thermal tape with large-area graphene adhered thereto can be used to accurately transfer a pattern of graphene to a substrate. As discussed elsewhere herein, precise heating of the thermal tape can be achieved using other sources of localized heating, such as a laser beam.
It will be understood that the embodiment of the present invention described herein is merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the spirit and scope of the invention. For instance, all such variations and modifications are intended to be included within the scope of the invention as described in the appended claims.
The present application claims the benefit of U.S. Provisional Patent Application No. 61/766,956, filed on Feb. 20, 2013, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4772924 | Bean et al. | Sep 1988 | A |
4903101 | Maserjian | Feb 1990 | A |
5238868 | Elman et al. | Aug 1993 | A |
6813064 | John et al. | Nov 2004 | B2 |
7167355 | Chen | Jan 2007 | B2 |
7217951 | Krishna et al. | May 2007 | B2 |
7387253 | Parker et al. | Jun 2008 | B1 |
7550755 | Balkenende et al. | Jun 2009 | B2 |
7628928 | Guerra | Dec 2009 | B2 |
7830926 | Kim | Nov 2010 | B1 |
7852613 | Ma et al. | Dec 2010 | B2 |
8098482 | Clelland et al. | Jan 2012 | B2 |
8206469 | Chiang et al. | Jun 2012 | B2 |
8278757 | Crain | Oct 2012 | B2 |
8455842 | Zhang | Jun 2013 | B2 |
8697485 | Crain et al. | Apr 2014 | B2 |
8810996 | Lee et al. | Aug 2014 | B2 |
8878120 | Patil et al. | Nov 2014 | B2 |
20030012249 | Eisenbeiser | Jan 2003 | A1 |
20070215855 | Kang | Sep 2007 | A1 |
20100207254 | Jain et al. | Aug 2010 | A1 |
20110042813 | Crain | Feb 2011 | A1 |
20110052813 | Ho | Mar 2011 | A1 |
20110101309 | Lin et al. | May 2011 | A1 |
20120007913 | Jang | Jan 2012 | A1 |
20120121891 | Kim | May 2012 | A1 |
20120128983 | Yoon | May 2012 | A1 |
20120170171 | Lee | Jul 2012 | A1 |
20120235119 | Babich et al. | Sep 2012 | A1 |
20120244358 | Lock | Sep 2012 | A1 |
20120255860 | Briman et al. | Oct 2012 | A1 |
20120270205 | Patel | Oct 2012 | A1 |
20130264011 | Lin | Oct 2013 | A1 |
20130264192 | Lin | Oct 2013 | A1 |
20130264193 | Lin | Oct 2013 | A1 |
20130264307 | Lin | Oct 2013 | A1 |
20130266729 | Lin | Oct 2013 | A1 |
20140103298 | Lee | Apr 2014 | A1 |
20140127584 | Kim et al. | May 2014 | A1 |
20140205841 | Qiu et al. | Jul 2014 | A1 |
20140321028 | Lee et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2012073998 | Jun 2013 | WO |
2013119295 | Aug 2013 | WO |
Entry |
---|
Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, Jun. 20, 2010, pp. 574-578. |
Caldwell et al., Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates, ACSNano, Jan. 25, 2010, pp. 1108-1114. |
Zhou, M. et al., Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films, Chem. Eur. J., 2009, 15, pp. 6116-6120. |
Notice of Allowance mailed Jan. 22, 2015 in reference to U.S. Appl. No. 14/327,716. |
Non-Final Office Action mailed Aug. 15, 2014 in reference to U.S. Appl. No. 14/327,716. |
Non-Final Office Action mailed Dec. 6, 2013 in reference to U.S. Appl. No. 13/301,124. |
Final Office Action mailed Jun. 25, 2014 in reference to U.S. Appl. No. 13/324,622. |
First Action Interview Program Communication mailed Nov. 6, 2014 regarding U.S. Appl. No. 14/053,232. |
Akhavan, O. et al., Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano, 4 (2010) 5731-5736. |
Bolotin, K. et al., Ultrahigh electron mobility in suspended graphene; Solid State Communications, 146 (2008) 351-355. |
Bourlinos, A. et al., Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids, Langmuir, 19 (2003) 6050-6055. |
Chen, Z. et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nature Materials, 10 (2011) 424-428. |
Coleman, J.N., Liquid-Phase Exfoliation of Nanotubes and Graphene, Advanced Functional Materials, 19 (2009) 3680-3695. |
Cote, L. et al., Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite, Journal of the American Chemical Society, 131 (2009) 11027-11032. |
Dikin, D. et al., Preparation and characterization of graphene oxide paper, Nature, 448 (2007) 457-460. |
Dreyer, D. et al., The chemistry of graphene oxide, Chemical Society reviews, 39 (2010) 228-240. |
Dreyer, D. et al., From Conception to Realization: An Historical Account of Graphene and Some Perspectives for Its Future, Angewandte Chemie International Edition, 49 (2010) 9336-9344. |
El-Kady, M. et al., “Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors,” Science, vol. 335, No. 6074, pp. 1326-1330, Mar. 2012. |
Gao, X. et al., Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design, Journal of Physical Chemistry C, 114 (2010) 832-842. |
Hong, A. et al., “Graphene Flash Memory,” ACS Nano 5 (10), 7812-7817 (2011). |
Ferrari, A. et al., Inkjet-Printed Graphene Electronics; ACS Nano, vol. 6, No. 4,2992-3006, (2012). |
Kim, F. et al., Graphene oxide: Surface activity and two-dimensional assembly, Advanced Materials, 22 (2010) 1954-1958. |
Kim, J. et al., Graphene oxide sheets at interfaces, Journal of the American Chemical Society, 132 (2010) 8180-8186. |
Kong, D. et al., Temperature-Dependent Electrical Properties of Graphene Inkjet-Printed on Flexible Materials, Langmuir, ACS Publications, American Chemical Society, 28, (2012) pp. 13467-13472. |
Lee, Y. et al., “Wafer-Scale Synthesis and Transfer of Graphene Films,” Nano Letters 10 (2), 490-493 (2010). |
Li, D. et al., Processable aqueous dispersions of graphene nanosheets, Nat Nano, 3 (2008) 101-105. |
Li, X. X et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, 324 (2009) 1312-1314. |
Lin, Y. et al., “100-GHz Transistors from Wafer-Scale Epitaxial Graphene,” Science, 327 (2010) p. 662. |
Lin, Y. et al., “Wafer-Scale Graphene Integrated Circuit,” Science 332 (6035), 1294-1297 (2011). |
Luo, J. et al., Compression and Aggregation-Resistant Particles of Crumpled Soft Sheets, ACS Nano, 5 (2011) 8943-8949. |
Luo, J. et al., Graphene oxide nanocolloids, Journal of the American Chemical Society, 132 (2010) pp. 17667-17669. |
Novoselov, K. et al., Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) pp. 666-669. |
Park, J. et al., Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process, Applied Physics Letters, vol. 101, No. 4, (2012) p. 043110-043110-4. |
Park, S. et al., Chemical methods for the production of graphenes, Nat Nano, 4 (2009) 217-224. |
Shag, G. et al., Graphene oxide: The mechanisms of oxidation and exfoliation, Journal of Materials Science, 47 (2012) 4400-4409. |
Stankovich, S. et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565. |
Stoller, M. et al., Graphene-Based ultracapacitors; Nano Letters, 8 (2008) 3498-3502. |
Torrisi, F. et al., Inkjet-Printed Graphene Electronics, ACS NANO, vol. 6, No. 4, (2012) 2992-3006. |
Wu, Z.S. et al., Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 1 (2012) 107-131. |
Zangmeister, C.D., Preparation and evaluation of graphite oxide reduced at 220 c, Chemistry of Materials, 22 (2010) 5625-5629. |
Zhang, Y. et al., Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived pc12 cells, ACS Nano, 4 (2010) 3181-3186. |
Zhang, Y. et al., “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today, vol. 5, (2010) pp. 15-20. |
Zhu, Y. et al., Carbon-Based Supercapacitors Produced by Activation of Graphene; Science, 332 (2011) 1537-1541. |
Havener, R. et al., Hyperspectral Imaging of Structure and composition in Atomically Thin Heterostructures; ACS Nano, 13 (2013) 3942-3946. |
Ko, S. et al., Unconventional, Laser Based OLED Material Direct Patterning and Transfer Method; Organic Light Emitting Diode—Material, Process and Devices; Intech, ISBN: 978-953-307-273-9. |
Lee, K. et al., Effect of Laser Beam Trajectory on Donor Plate in Laser Induced Thermal Printing Process; Journal of the Optical Society of Korea, vol. 15, No. 4, Dec. 2011, pp. 362-367. |
Cho, S. et al., Enhanced efficiency of organic light emitting devices (OLEDs) by control of laser imaging condition; Organic Electronics 13 (2012) 833-839. |
Olivares-Marín, M. et al., Cherry stones as precursor of activated carbons for supercapacitors; Materials Chemistry and Physics 114, 1, (2009) 223-227. |
An, L. et al., Optical and Sensing Properties of 1-Pyrenecarboxylic Acid-Functionalized Graphene Films Laminated on Polydimethylsiloxane Membrane, American Chemical Society, vol. 5, No. 2, (2011), pp. 1003-1011. |
Le, L. et al., Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide, Electrochemistry Communications, vol. 13, (2011), pp. 355-358. |
Le, L. et al., Inkjet-Printed Graphene for Flexible Micro-Supercapacitors, IEEE International Conference on Nanotechnology, Aug. 15-18, 2011, Portland, Oregon, USA, pp. 67-71. |
Huang, L. et al., Graphene-Based Conducting Inks for Direct Inkjet Printing of Flexible Conductive Patterns and Their Applications in Electric Circuits and Chemical Sensors, Nano Res, (2011) 9 pages. |
Jacoby, M., Graphene Moves Toward Applications, www.cen-online.org, Nov. 21, 2011, pp. 10-15. |
Jang, B.Z. et al., Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review; Journal of Materials Science 43, 5092-5101, (2008). |
Jang, B.Z. et al., Graphene-Based Supercapacitor with an Ultrahigh Energy Density; NanoLetters, 10, 4863-4868, (2010). |
U.S. Appl. No. 14/327,716, filed Jul. 10, 2014. |
U.S. Appl. No. 14/327,753, filed Jul. 10, 2014. |
Number | Date | Country | |
---|---|---|---|
20140231002 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61766956 | Feb 2013 | US |