The present disclosure relates to fabrication of sapphire wafers, and more specifically to high throughput sapphire core production.
Sapphire is an anisotropic, rhombohedral crystal form of aluminum oxide that has multiple axes, designated a, m, r, and c. Each axis varies in thermal expansion, hardness, and optical properties. For example, the a-, m-, and r-, axes exhibit birefringence, while the c-axis does not. Furthermore, each of these orientations have different lattice spacings, and these spacings are also different from GaN layers that are typically grown on sapphire light emitting diode (LED) substrates.
Controlled single crystal growth processes typically involve the use of a seed crystal, wherein the seed crystal is oriented to achieve a desired growth direction. The crystal grown from the seed crystal is a larger single crystal having the same orientation as the seed and is referred to as a “boule.” Sapphire boules typically have a cylinder-like shape with a circumferential surface 105 and two axial ends 103 and 101 (i.e., top and bottom ends), as shown in
Currently, sapphire production processes generally grow crystals on a-, m- or r-orientations. However, for LED applications using sapphire as substrates for GaN layers, the closest match of lattice spacing to GaN is the c-axis orientation; thus, c-axis sapphire substrates are required. To satisfy these industry requirements, crystal growers obtain c-axis cores from a-axis or m-axis boules. For example, since the a-axis is perpendicular to the c-axis, c-axis cores can be obtained by coring in a direction parallel to the a-plane of the boule and perpendicular to the a-axis 208 (the growth axis) of the a-axis boule 200, as shown in
This approach presents limitations, such as variation in core diameter and length, low material utilization, and multiple handling steps. Low material utilization results from the fact that a cross section of the boule is generally circular, and a circle does not have one consistent length; the maximum length is equal to the diameter of the boule, and the minimum length approaches zero.
What is needed is a process which eliminates core length variation, maximizes material utilization, minimizes the number of handling steps, and reduces or eliminates the need for glues.
In one aspect, the present disclosure is directed to a method for producing growth-axis oriented single crystal sapphire cores or near-net cores. According to the method, a boule is grown on a desired growth axis having a first axial end and a second axial end. An orientation of a plane normal to the desired growth axis with respect to the boule is determined. The boule is then cored in a direction perpendicular to the plane to produce at least one growth-axis oriented single crystal sapphire core, or the boule is outer-diameter-ground to form a single crystal sapphire near-net core.
In another aspect, the present disclosure is directed to a method for producing c-axis oriented single crystal sapphire cores or near-net cores. According to the method, a c-axis boule having a first axial end and a second axial end is grown. A first axial surface at the first axial end is formed on the boule, and the boule is oriented to orient a c-plane of the boule such that the c-plane is parallel to a resurfacing plane of a resurfacing instrument. The first axial surface of the oriented boule is resurfaced to establish a resurfaced first axial surface that is parallel to the c-plane of the boule. A second axial surface at the second axial end is formed such that the second axial surface is parallel to the resurfaced first axial surface. The boule is cored in a direction perpendicular to the c-plane of the boule to form at least one c-axis oriented single crystal sapphire core, or outer-diameter ground to form a single crystal sapphire near-net core.
In another aspect, the boule is oriented so that the first axial surface is parallel to a desired plane, rather than parallel to a resurfacing plane of a resurfacing machine.
In yet another aspect, the present disclosure is directed to another method for producing c-axis oriented single crystal sapphire cores or near-net cores. According to the method, a c-axis boule having a first axial end and a second axial end is grown. A first axial surface is formed at the first axial end of the boule, and a second axial surface parallel to the first axial surface is formed at the second axial end of the boule. A c-plane of the boule is oriented such that the c-plane is parallel to a resurfacing plane of a resurfacing instrument. The first axial surface and the second axial surface are resurfaced so that each are parallel to the c-plane of the boule. The boule is then cored in a direction perpendicular to the c-plane of the boule to form at least one c-axis oriented single crystal sapphire core, or outer-diameter ground to form a single crystal sapphire near-net core. In another aspect, the boule is oriented so that the first axial surface is parallel to a desired plane, rather than parallel to a resurfacing plane of a resurfacing machine.
In another aspect, a method for processing a boule is disclosed. The method includes steps of placing a boule grown on a desired growth axis and having a first axial end and a second axial end into a gimbaled fixture having first and second rotary axes. The method also includes a step of determining an orientation of a plane normal to the desired growth axis with respect to the boule. The method also includes a step of forming a first axial surface at the first axial end of the boule, the first axial surface parallel to the plane.
In another aspect, a method for processing a boule is disclosed. The method includes a step of placing a boule grown on a c-axis, the boule having a first axial end and a second axial end, into a gimbaled fixture having first and second rotary axes, and determining an orientation of a plane normal to the c-axis with respect to the boule. The method also includes steps of orienting the boule using the first and second rotary axes of the gimbaled fixture so that the plane is parallel to a resurfacing plane of a resurfacing machine and forming a first axial surface at the first axial end of the boule, the first axial surface parallel to the resurfacing plane. In another aspect, the boule is oriented so that it is parallel to a desired plane, rather than parallel to a resurfacing plane of a resurfacing machine.
In another aspect, a fixture is disclosed, the fixture being suitable for orienting a workpiece, such as a boule, for machining or for grinding. The fixture includes independently-movable primary and secondary rotary axes, a primary (outer) ring and a secondary (inner) ring, the secondary ring having a support surface for supporting the workpiece. The secondary ring may optionally include at least one mount for ring contact retainers for the secondary ring. The secondary or inner ring is connected to at least one axle on the second rotary axis and the primary or outer ring is connected to at last one axle on the first rotary axis. Each axle is supported by at least one block. The fixture may be operated manually or may optionally include power drives where at least one axle of the first rotary axis is operably connected to a first power drive and at least one axle of the second rotary axis is operably connected to a second power drive, the power drives independently receiving input power and causing rotation of the at least one axle for the first rotary axis and the at least one axle for the second rotary axis. The fixture may be used with an x-ray diffraction system, including an x-ray emitter, an x-ray detector and a goniometer, and a control system, for detecting an orientation of the workpiece and for sending signals to a controller to manipulate the first and second power drives so that a desired plane of the workpiece is parallel to a resurfacing plane or so that a desired plane of the workpiece is oriented in a desired manner.
Another aspect of the present disclosure is a contoured fixture for mounting a boule for machining. The contoured fixture includes a contoured receiving portion, a plurality of adjustable blocks each having a contact portion. In one embodiment, the contacting portions may be flat and in another aspect they may be have contours that accommodate the corresponding contours of a boule. The contoured fixture may also include a plurality of bolts or other fasteners for mounting the fixture to a machine tool or grinder for processing.
Another aspect of the present disclosure is a device for machining a flat surface onto a workpiece, such as a boule. This method uses the fixtures disclosed herein and may be used to position the boule horizontally or vertically.
One aspect of the present disclosure is a fixture including a flat supporting surface, a retainer, and a plurality of fasteners mounting the retainer to the flat supporting surface, wherein the retainer contacts a circumferential surface of a workpiece mounted in the fixture. When the flat supporting surface and the retainer are separated a desired distance, the workpiece is held in place by a frictional force between the retainer and the workpiece. In one embodiment, the workpiece is mounted in an axial direction between the flat supporting surface and the retainer. In one embodiment, the mounted workpiece is suitable for machining an axial surface onto the workpiece. Another embodiment may also include spacer sleeves between the flat supporting surface and the retainer. In another embodiment, the device for machining further includes a horizontal support mounted perpendicularly to the flat supporting surface.
In yet another embodiment, the retainer discussed in the above paragraph includes a first and a second portion, each portion further including a groove and two lips, the groove suitable for mounting a preformed packing for contact between the retainer first and second portions and the workpiece. The retainer first and second portions may be reversibly joined by fasteners.
In another embodiment, a fixture is disclosed for machining a flat surface onto a circumferential or side surface of a workpiece, such as a core or near net core. In one embodiment, the machining fixture includes a horizontal base and a vertical base mounted perpendicularly to the horizontal base. The fixture also includes at least one contact portion within the horizontal base, at least one compression portion atop the horizontal base and at least one fastener removably securing the compression portion to the horizontal base. In another embodiment, the machining fixture also includes at least one spring between the compression portions and the horizontal base.
The disclosure and the following detailed description of certain embodiments thereof may be understood by reference to the following figures:
a and 6b depict another boule fixture used in certain embodiments of the process of the present disclosure;
The following description includes various embodiments according to the present disclosure and accompanying figures. It should be appreciated that the figures are intended to provide a general understanding of the process and are not necessarily to scale.
The process according to the present disclosure provides efficient processing of boules that eliminates core length variation within a boule, maximizes material utilization, minimizes the number of handling steps, and reduces or eliminates the need for glues. These features are particularly advantageous for large boules, for example, boules having a diameter up to and greater than 260 mm and weighing up to and more than about 100 kg. Sapphire is a brittle material that is prone to damage from handling. This problem is exacerbated with large diameter boules, which are heavy and difficult to handle. The present disclosure includes various mechanical fixtures to fix the boule in place during processing. The fixtures described herein may be movable so that a boule may be moved from one physical location to another to be further processed in various processing tools without removing the boule from the fixture. For example, a boule may be fixed within a fixture and the fixture may be moved from an orienting device, such as an x-ray diffraction system, to a resurfacing device, such as a rotary grinder or a table grinder. The fixture may itself be fixed within a processing tool, for example, by using a vacuum, magnetic, or hydraulic chuck. On the other hand, the fixtures described herein may remain stationary as a boule is processed therein. For example, a fixture may remain in a processing station and various tooling equipment within the processing station may perform processing operations on the fixed boule.
The process according to the present disclosure is capable of producing “near-net” cores. Near-net cores are formed from minimal processing of boules, for example, by minimal grinding as opposed to coring. After circumferential surface grinding, near-net cores are ready for slicing into large diameter wafers, for example, 10, 12, and up to 26 inches. A near-net core may differ in radius from its original boule size by only a few millimeters. For example, a 6″ (150 mm) diameter c-axis near-net core can be grown from a 6.3″ (160 mm) diameter c-axis boule. The boule is outer-diameter (“OD”) ground down (i.e., the circumferential surface is ground down to establish a smaller radius) to obtain a 6″ near-net core. Thus, a near-net core is just slightly smaller in diameter than the originally grown boule.
Near-net cores can only be produced when the orientation of the original boule matches the orientation of the desired core. Thus, c-axis near-net cores can only be produced from c-axis boules. Conventional sapphire growth processes typically grow a-axis boules and core perpendicularly for c-axis cores. Therefore, such processes cannot achieve near-net c-axis cores. For near-net cores, the present disclosure may simply require OD grinding and no coring, which results in significant decrease in labor costs and a significant increase in yield. Also, near-net coring produces a single large core from a boule with minimal material waste, thereby giving high yields.
For boules much larger than the desired core diameter, the near-net approach may not be applicable, and multiple cores may be processed from each boule. The present disclosure provides an aspect of vertical coring where the cores thus produced all have the same length. For example, a c-axis boule having a 260 mm diameter and a length of 150 mm, can yield fourteen 2-inch cores 150 mm in length, as shown in
The embodiments described herein refer to c-axis boules. However, the process is applicable to producing r-axis, n-axis, and a-axis cores. For applications where c-axis wafers are used, c-axis boules processed in accordance with the present disclosure achieve significantly higher yields than, for example, a-axis boules processed into c-axis cores, because c-axis boules produce cores that can be processed into near-net cores with minimal material removal. In addition, cores of the same orientation as the growth axis of the boule, even if they are not near-net, can produce higher yields than conventional processes where the desired core orientation is different from the boule orientation (for example, processing c-axis cores from a-axis boules). Moreover, such cores are uniform in length, thereby simplifying processing and lowering costs. Typical yields for near net cores can be about 80%. Same orientation cores that are not near-net can be about 50%, compared to yields of only about 30% achieved by conventional a-axis boule processes where the desired core has a different orientation from the boule from which it is obtained.
For silicon on sapphire (SOS) applications, the desired sapphire substrate has an r-orientation, which is approximately 60 degrees from the c-axis. Therefore, for the reasons discussed above, it is desirable to extract r-axis cores from r-axis boules to achieve high yields, preferably by producing near-net cores. Procedures for extracting cores for SOS from r-axis boules are similar to extracting c-axis cores for LED from c-axis grown boules.
Sapphire boules that are processed in accordance with the present disclosure can be formed from various single crystal growth processes, including the Czochralski method (Cz); Kyropolous method (Ky); Vertical Bridgman (VB) method and variants of VB; Horizontal Bridgman (HB) method and variants of HB; Heat Exchanger Method (HEM); Gradient Freeze (GF) and variants of GF; and Controlled Heat Extraction System (CHES), the last being described in U.S. patent application Ser. Nos. 12/588,656, 12/909,471, and 13/095,073, the entireties of all of which are incorporated herein by reference. Such boules typically have a cylinder-like shape with a circumferential surface and two axial ends (i.e., top and bottom ends), as shown in
Some of the above mentioned processes utilize a crucible, and a boule formed therein generally takes on the inverted shape of the interior of the crucible. Various crystal growers have developed proprietary crucible designs having a particular shape to facilitate the growth and extraction processes. For example, a boule may have a cone-like taper at its bottom. In other processes, a seed crystal is dipped into and pulled/rotated from a melt. Growth occurs on the seed, and the size of the crystal may be controlled by the speed of removal/rotation from the melt. Depending on the crystal growth process, the diameter of the cylinder-like shape can vary greatly. For example, “pulled” crystals may vary in diameter depending on the pulling mechanism and accuracy of heat controls. Diameters of boules grown in crucibles can also vary as a result of factors including distortion of the crucible at high temperatures, thickness of the crucible, thermal expansion of the crucible material, and shape of the solid-liquid interface during growth, among other things. These factors are important in determining whether or not epoxies and glues are required or whether mechanical fixturing is adequate for processing of boules to cores. Boules produced in accordance with the disclosures of U.S. patent application Ser. Nos. 12/588,656, 12/909,471, and 13/095,073 are generally consistent in size and shape and therefore are well suited for mechanical fixturing.
In the method according to the present disclosure, a boule is processed in a sequence of steps to produce growth-axis oriented single crystal sapphire cores or a near-net core. For example, the method can include growing a boule on a desired growth axis having a first axial end and a second axial end. For LED applications, the desired growth axis may be c-axis, while for SOS applications, the desired growth axis may be r-axis. Alternatively, the desired growth axis may be a-axis or m-axis.
It should be appreciated that the growth axis of a boule typically is not precisely co-axial with the physical central axis of the boule. This is offset is illustrated in
The shape and orientation of the boule at each of the various steps of one embodiment is shown in
The process according to some embodiments of the present disclosure may use a contoured mechanical fixture such as the one shown in
The fixtured boule is then placed under a grinding tool and the first axial end 403 of the boule is ground down to form a flat first axial surface 413, as shown in
The boule 600 shown in the fixture of
Referring again to
For example, the orienting fixture 725 of
The orienting fixture may optionally include automation components (not shown) for automatically adjusting the rotary positions of the primary and secondary rings corresponding to each axis, so that orientation of the boule can be performed without human operation. The orienting fixture 725 may be used in conjunction with an x-ray diffraction system (which includes an x-ray emitter, detector, and a goniometer) to position the boule such that the c-plane (corresponding to the growth axis of the boule) is parallel to a desired plan, for example a, resurfacing plane. In one embodiment, the planes are parallel if they are within about ±0.1 degrees of each other. The diffraction properties of the crystal are analyzed to establish the orientation of the axes of the boule, and the boule is reoriented to position the plane as needed. For example, if the resurfacing plane is a horizontal plane (i.e., if the resurfacing plane corresponds to a horizontal grinding surface), the boule is oriented so that a c-plane of the boule is horizontal. In cases where the boule has a taper along its length (i.e., circumference of the boule decreases along its length), the orienting fixture may include an additional fitting (not shown), such as a tapered ring, that surrounds the boule, allowing the boule to be placed in the fixture both top side up and bottom side up.
After the c-plane of the boule is oriented, as shown in
A boule processed in accordance with the above described steps has first and second axial surfaces that are coplanar with the c-plane of the boule, and the boule can be cored to produce one or more cores, or outer-diameter (“OD”) ground to produce a single near-net core. In one embodiment, the first and second axial surfaces are parallel if they are oriented within about ±0.1 degrees of each other.
The sequence of another embodiment according to the present disclosure is shown in
Referring again to
This embodiment of the present disclosure, which uses only two fixtures, eliminates or minimizes the need for glues or waxes and minimizes the number of times a boule must be handled. Limiting the frequency of handling reduces the risk of damage to the boule during processing, thereby reducing yield loss. In addition, the reduced number of handling steps represents a significant reduction in processing time.
Optionally, the cores or near-net core thus produced can be further oriented to determine an a-plane, and subsequently provided an “a-flat” surface prior to slicing the cores or near-net core into wafers. Referring to
As shown in
Another embodiment of a fixture is depicted in
In embodiments the process flow described herein may be provided in a fully or partially automated processing line, with physical, mechanical, and/or robotic handoff among processing stations, automated process monitoring, such as under computer control, and other computer- and robotics-based automation capabilities as may be understood by those of ordinary skill in the art.
While the invention has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.
All documents referenced herein are hereby incorporated by reference.
The present application is a non-provisional of U.S. Provisional Appl. 61/379,358, of the same title, filed on Sep. 1, 2010.
Number | Date | Country | |
---|---|---|---|
61379358 | Sep 2010 | US |