? DESCRIPTION (provided by applicant): Advances in reagents and analytical tools have improved characterization of cellular phenotypes. However, most studies are still performed on cell populations that are morphologically and genetically homogeneous, yet have important biological heterogeneity; with individual cells having unique phenotypic or `omic profiles. This leads to an average measurement of individual cells, none of which may actually be average. Single-cell analysis can define the scope of cell-to-cell variations within a population and provid in-depth analysis of single, exceptional cells in contexts such as stem cell differentiation or cancer, where these cells can give rise to clonal populations that drive the biology. While novel tools such as multiparameter flow cytometry, mass cytometry, and image-based cytometry provide in-depth analysis of individual cells, these technologies only provide a single time point snapshot and lack downstream molecular analysis. This project will develop a integrated cell-sorting and single-cell positioning device to allow single cells to be tracked and measured over time. This system will use a conventional multi-well plate format allowing the use of existing microscopy and analysis platforms.