This disclosure relates generally to electric motors and, more particularly, to brushless electric motors.
Known electric motors derive power from interactions of magnetic fields produced by permanent magnets or electromagnets. Conventional rotary coil motors generally include a rotor ring comprised of magnetic elements configured to pass through a stator made up of a set of coils arranged in a ring. Unfortunately, the torque produced by such rotary coil motors may be insufficient for various applications having low current requirements.
The disclosure is directed in one respect to an apparatus for use with a brushless motor. The apparatus includes a coil assembly having a plurality of coils wherein the plurality of coils are arranged in the shape of a cylinder. A rotor includes a plurality of outer magnets configured as a first Halbach cylinder surrounding the coil assembly. The rotor further includes an outer magnet housing coupled to the plurality of outer magnets, the outer magnet housing surrounding the plurality of outer magnets. A plurality of inner magnets of the rotor are arranged as a second Halbach cylinder such that the coil assembly is interposed between the plurality of inner magnets and the plurality of outer magnets. The rotor also includes an inner magnet housing coupled to the plurality of inner magnets and an output shaft surrounded by the inner magnet housing.
In one aspect the disclosure pertains to an electric motor which includes a coil assembly having a plurality of coils. The plurality of coils may be arranged in the shape of a cylinder. A rotor includes a plurality of outer magnets configured as a first Halbach cylinder surrounding the coil assembly. The rotor further includes an outer magnet housing coupled to the plurality of outer magnets, the outer magnet housing surrounding the plurality of outer magnets. A plurality of inner magnets of the rotor are arranged as a second Halbach cylinder such that the coil assembly is interposed between the plurality of inner magnets and the plurality of outer magnets. The rotor also includes an inner magnet housing coupled to the plurality of inner magnets and an output shaft surrounded by the inner magnet housing. The electric motor further includes a motor housing surrounding the plurality of outer magnets. An end plate includes an electrical connector having an electrical connection to the coil assembly.
In another aspect the disclosure relates to an apparatus for use with a brushless motor. The apparatus includes a coil assembly having a plurality of coils which may be arranged in the shape of a cylinder. The apparatus further includes a rotor including a plurality of outer magnets configured as a first Halbach cylinder surrounding the coil assembly. A cylindrical support structure may be coupled to, and surround, the plurality of outer magnets. A plurality of inner magnets may be arranged as a second Halbach cylinder. The coil assembly may be interposed between the plurality of inner magnets and the plurality of outer magnets. The apparatus further includes a core element surrounded by the plurality of inner magnets.
The disclosure also pertains to an electric motor including a coil assembly having a plurality of coils which may be arranged in the shape of a cylinder. The motor further includes a rotor including a plurality of outer magnets configured as a first Halbach cylinder surrounding the coil assembly. A cylindrical support structure may be coupled to, and surround, the plurality of outer magnets. A plurality of inner magnets may be arranged as a second Halbach cylinder. The coil assembly may be interposed between the plurality of inner magnets and the plurality of outer magnets. The motor further includes a core element which defines an interior space and is coupled to the plurality of inner magnets. A motor output shaft is coupled to the rotor. A motor housing surrounds the rotor and the coil assembly and may define an aperture circumscribing the motor output shaft.
The features, nature and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:
In the following description of exemplary embodiments, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
The word “exemplary” is used herein to mean “serving as an example or illustration.” Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs.
It should be understood that the specific order or hierarchy of steps in the processes disclosed herein is an example of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged while remaining within the scope of the present disclosure.
Reference will now be made in detail to aspects of the subject technology, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.
The electric motor disclosed herein may be used in connection with applications requiring relatively high-torque. In addition, embodiments of the motor draw relatively low current draw and thereby mitigate overheating.
In one embodiment the electric motor includes a coil assembly having a plurality of coils. The plurality of coils may be arranged in the shape of a cylinder. The electric motor further includes a rotor including a plurality of outer magnets configured as a first Halbach array wherein the plurality of outer magnets surround the coil assembly. A plurality of inner magnets are arranged as a second Halbach array wherein the plurality of inner magnets are surrounded by the coil assembly. A core element is coupled to the plurality of inner magnets and a motor output shaft is positioned within an interior space circumscribed by the core element.
Turning now to the drawings,
Although controller 106 is shown as being within a controller housing 112 abutting the motor housing 110, in other embodiments the controller for the electric motor may be in essentially any location. For example, the controller may be located remote from the motor (e.g., in a remote computer in network communication with the motor).
Attention is now directed to
The motor 100 further includes a plurality of non-rotational components including a set of 12 coils 314 arranged to form a cylindrical structure interposed between the plurality of inner magnets 308 and the plurality of outer magnets 312. In other implementations a different number of coils 312 may be used (e.g., 6, 9 or 18 coils). The coils 314 may operate like brushless DC coils with a pre-defined pitch. In other embodiments the coils may be comprised of flat wire. In one embodiment each coil is substantially rectangular and is molded with a radius that results in a pre-defined assembly diameter and a pre-defined total resistance. The coils 312 may be attached to the motor housing 110 or to a molded structure in turn coupled to the motor housing 110.
Turning now to
During operation of the brushless motor 100, current is introduced through the coils 314 thereby creating a magnetic field having a direction that depends on the direction that the current is flowing through the coils 314. The magnetic fields produced by the coils 314 interact with the magnetic fields generated by the inner magnets and the outer magnets 312 in order to produce a rotational force that acts on the rotational components of the motor 100. The magnitude of the magnetic field produced by the coils 314 corresponds to the number of turns associated with each coil 314 and the amperage conducted through the conductive material. It should be understood that any type of conductive material with varying specifications can be used. It should further be understood that the coils 312 may be electrically connected to a power source and/or connected together in any manner known in the electrical and mechanical arts.
The outer magnets 312 can be, for example, substantially rectangular with a curved cross section as shown in
As noted above, the encoder assembly includes an encoder feedback scale mounted so as to rotate with the output shaft 108 and an encoder feedback read head 320. The encoder assembly can also include feedback circuitry (not shown) along with the encoder feedback scale for indicating positional feedback to, for example, the controller 106 or a controller not disposed within (such as a remote computer). The encoder feedback read head 320 (e.g., a sensor, a transducer etc.), can be paired with the encoder feedback scale that can encode position. The encoder feedback read head 320 can read the encoder feedback scale and convert the encoded position into an analog or digital signal. This in turn can then be decoded into position data by a digital readout (DRO) or motion controller (not shown). The encoder assembly can work in either incremental or absolute modes. Motion can be determined, for example, by change in position over time. Encoder technologies can include, for example, optical, magnetic, inductive, capacitive and eddy current.
The encoder feedback scale may include a series of stripes or markings running along a length of the linear encoder feedback scale printed on, or affixed to, the motor output shaft 108 or a surface coupled thereto. During operation of the brushless motor, the encoder feedback read head 320 (e.g., an optical reader) can count the number of stripes or markings read in order to determine the current position of the rotational components of the motor 100 relative to the non-rotational components. In some instances, the recorded positional data can be transmitted to a remote device for monitoring purposes. In some instances, a user can input one or more values to a remote device (such as a connected computer) in order to designate an amount of rotation desired for a particular task. These values can then be transmitted to a controller in electrical communication with the encoder assembly such that relative rotation of the plurality of rotational components can be adjusted according to the values specified. The brushless motor 100 may include any number of electrical connections and may include any number of electronic control sequences. Furthermore, in other embodiments, the motor 100 may include any number of on-board digital control and/or analog circuitry known in the electrical arts.
As is known, the controller 106, such as a servo controller, can generate control signals that operate the motor 100. For example, in accordance with programmed instructions, typically in the form of software, the controller 106 can generate control signals and output such control signals to the motor 100 to cause movement of the shaft 108. In one embodiment the controller 106 is programmed to control the motor 100 depending on the particular application for which the motor 100 is being utilized. Typically, a computer (not shown) is coupled to the controller 106 to generate and transmit software (code representing a set of instructions to be executed) generated in a programming language to the controller 106 for the specific application. Such software, once running on the controller 106, will instruct the motor 100 to move the shaft 108 in a manner specific to the particular application or task.
Examples of computer code include, but are not limited to, micro-code or micro-instructions, machine instructions, such as produced by a compiler, code used to produce a web service, and files containing higher-level instructions that are executed by a computer using an interpreter. For example, embodiments may be implemented using imperative programming languages (e.g., C, FORTRAN, etc.), functional programming languages (Haskell, Erlang, etc.), logical programming languages (e.g., Prolog), object-oriented programming languages (e.g., Java, C++, etc.) or other suitable programming languages and/or development tools. Additional examples of computer code include, but are not limited to, control signals, encrypted code, and compressed code.
Turning to
During operation the motor control apparatus 550 functions to control currents flowing through the coils 314. To this end a first current sensor 554 detects a first current Ia flowing through one of the coils 314 and a second current sensor 558 detects a second current Ib flowing through another of the coils 314. As shown, measurements of the currents Ia, Ib and an actual position signal (θ) from the encoder read head 158 (or other position sensor operative to detect the angular position of a rotating component of the motor 100) are supplied to a d-q transform module 558 configured to implement a d-q transform (also known as a Park transform). As is known, the d-q transform may be used to effectively transform or otherwise project a three-phase system onto a two-dimensional control space. Although in the general case implementation of the d-q transform requires Ic in addition to Ia, Ib and θ, in the present embodiment the 3-phase coils of the motor 100 are balanced and thus Ic can be reconstructed from Ia and Ib.
Implementation of the Park transform enables the module 558 to express the set of three sinusoidal currents present on the coils 314 as a direct axis current Id and a quadrature axis current Iq. Since the Park-transformed currents Id, Iq are essentially constant, it becomes possible to control the motor 100 by using the constant currents Id, Iq rather than the sinusoidal signals actually supplied to the motor 100.
As shown in
Attention is now directed to
The apparatus 700 further includes a housing 710 which surrounds the rotor and the coil assembly. An output shaft 702 coupled to, or integral with, the rotor may protrude from an aperture defined by the housing 710. Radial bearings 750, 754 are surrounded by the core element 709.
Turning now to
The motor 800 further includes a plurality of non-rotational components including a motor housing 810 and a cylindrical coil assembly 812 supported by a coil bobbin 816. In the embodiment of
During operation of the dual rotor magnet apparatus 800, the dual magnetic cylinders and the motor output shaft 802 rotate about a longitudinal axis circumscribed by the vacuum thru shaft 830. The motor housing 810, and an end plate 817 and a top plate 815 arranged substantially perpendicular to this longitudinal axis, do not rotate during operation of the motor 800. As shown, the end plate 817 defines an aperture 834 in communication with the vacuum thru shaft 830 and top plate 815 defines an aperture circumscribing the output shaft 802. The end plate 817 may also support an electrical connector 836 configured to, for example, provide electrical current to the coil assembly 812 and receive position feedback provided by the encoder feedback read head 822.
In one embodiment the motor 800 may be controlled by a controller disposed within a controller housing (not shown) abutting the motor housing 810. In other embodiments the controller for the motor 800 may be in essentially any location. For example, the controller may be located remote from the motor 800 (e.g., a remote computer in network communication with the motor).
Although the present invention has been fully described in connection with embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the present invention. The various embodiments of the invention should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or other configuration for the invention, which is done to aid in understanding the features and functionality that can be included in the invention. The invention is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, although the invention is described above in terms of various exemplary embodiments and implementations, it should be understood that the various features and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described. They instead can, be applied, alone or in some combination, to one or more of the other embodiments of the invention, whether or not such embodiments are described, and whether or not such features are presented as being a part of a described embodiment. Thus the breadth and scope of the invention should not be limited by any of the above-described exemplary embodiments.
Terms and phrases used in this document, and variations thereof, unless otherwise expressly stated, should be construed as open ended as opposed to limiting. As examples of the foregoing: the term “including” should be read as meaning “including, without limitation” or the like; the term “example” is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof; and adjectives such as “conventional,” “traditional,” “normal,” “standard,” “known”, and terms of similar meaning, should not be construed as limiting the item described to a given time period, or to an item available as of a given time. But instead these terms should be read to encompass conventional, traditional, normal, or standard technologies that may be available, known now, or at any time in the future. Likewise, a group of items linked with the conjunction “and” should not be read as requiring that each and every one of those items be present in the grouping, but rather should be read as “and/or” unless expressly stated otherwise. Similarly, a group of items linked with the conjunction “or” should not be read as requiring mutual exclusivity among that group, but rather should also be read as “and/or” unless expressly stated otherwise. Furthermore, although items, elements or components of the invention may be described or claimed in the singular, the plural is contemplated to be within the scope thereof unless limitation to the singular is explicitly stated. For example, “at least one” may refer to a single or plural and is not limited to either. The presence of broadening words and phrases such as “one or more,” “at least,” “but not limited to”, or other like phrases in some instances shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases may be absent.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the invention. It will be appreciated that, for clarity purposes, the above description has described embodiments of the invention with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the invention. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only to be seen as references to suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed; obviously, many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, they thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the following claims and their equivalents define the scope of the invention.
The present application is a continuation of U.S. application Ser. No. 15/728,454, entitled HIGH-TORQUE, LOW-CURRENT BRUSHLESS MOTOR, filed Oct. 9, 2017, which claims the benefit of priority under 35 U.S.C. § 119(e) of Provisional Application No. 62/441,913, entitled HIGH-TORQUE, LOW-CURRENT BRUSHLESS MOTOR, filed Jan. 3, 2017, the content of which is hereby incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3602749 | Esters | Aug 1971 | A |
4488242 | Tabata et al. | Dec 1984 | A |
4576421 | Teramachi | Mar 1986 | A |
4616886 | Teramachi | Oct 1986 | A |
4693676 | Inaba | Sep 1987 | A |
4696144 | Bankuty et al. | Sep 1987 | A |
4745589 | Nomura | May 1988 | A |
4799803 | Tanaka | Jan 1989 | A |
4804913 | Shimizu et al. | Feb 1989 | A |
4808955 | Godkin et al. | Feb 1989 | A |
4857786 | Nihei et al. | Aug 1989 | A |
4858452 | Ibrahim | Aug 1989 | A |
5051635 | Kasahara | Sep 1991 | A |
5053670 | Kosugi | Oct 1991 | A |
5057753 | Leuthold et al. | Oct 1991 | A |
5111088 | Fujino | May 1992 | A |
5160865 | Gururangan | Nov 1992 | A |
5161586 | Auriemma | Nov 1992 | A |
5175456 | Neff et al. | Dec 1992 | A |
5201838 | Roudaut | Apr 1993 | A |
5225725 | Shiraki et al. | Jul 1993 | A |
5270625 | Neff | Dec 1993 | A |
5317222 | Neff et al. | May 1994 | A |
5376862 | Stevens | Dec 1994 | A |
5446323 | Neff et al. | Aug 1995 | A |
5450050 | Ban et al. | Sep 1995 | A |
5476324 | Takei | Dec 1995 | A |
5501498 | Ulrich | Mar 1996 | A |
5594309 | McConnell et al. | Jan 1997 | A |
5685214 | Neff et al. | Nov 1997 | A |
5722300 | Burkhard et al. | Mar 1998 | A |
5751075 | Kwon et al. | May 1998 | A |
5751077 | Gonzalez | May 1998 | A |
5834872 | Lamb | Nov 1998 | A |
5859482 | Crowell et al. | Jan 1999 | A |
5893646 | Mizutani et al. | Apr 1999 | A |
5952589 | Leung et al. | Sep 1999 | A |
6043573 | Neff et al. | Mar 2000 | A |
6091167 | Vu et al. | Jul 2000 | A |
6118360 | Neff | Sep 2000 | A |
6223971 | Sato | May 2001 | B1 |
6290308 | Zitzelsberger | Sep 2001 | B1 |
6404086 | Fukasaku et al. | Jun 2002 | B1 |
6439103 | Miller | Aug 2002 | B1 |
6495935 | Mishler | Dec 2002 | B1 |
6525439 | Whelan | Feb 2003 | B2 |
6741151 | Livshitz et al. | May 2004 | B1 |
6848164 | Jung | Feb 2005 | B2 |
6907651 | Fisher et al. | Jun 2005 | B1 |
6997077 | Kollmann et al. | Feb 2006 | B2 |
7011117 | Carpino et al. | Mar 2006 | B1 |
7053583 | Hazelton | May 2006 | B1 |
7168748 | Townsend et al. | Jan 2007 | B2 |
7323798 | Hartramph et al. | Jan 2008 | B2 |
7336007 | Chitayat | Feb 2008 | B2 |
7482717 | Hochhalter et al. | Jan 2009 | B2 |
7517721 | Ito et al. | Apr 2009 | B2 |
7800470 | Wright et al. | Sep 2010 | B2 |
7960893 | Kim et al. | Jun 2011 | B2 |
8083278 | Yuan | Dec 2011 | B2 |
8415838 | Eghbal et al. | Apr 2013 | B1 |
8487484 | Miller, Jr. | Jul 2013 | B1 |
8498741 | Ihrke et al. | Jul 2013 | B2 |
8578760 | Calhoun et al. | Nov 2013 | B2 |
8890389 | Li et al. | Nov 2014 | B2 |
9375848 | Neff et al. | Jun 2016 | B2 |
9381649 | Neff et al. | Jul 2016 | B2 |
9731418 | Neff et al. | Aug 2017 | B2 |
9748823 | Neff et al. | Aug 2017 | B2 |
9748824 | Neff et al. | Aug 2017 | B2 |
9780634 | Neff et al. | Oct 2017 | B2 |
9871435 | Neff et al. | Jan 2018 | B2 |
20010013728 | Harita | Aug 2001 | A1 |
20030009241 | Kruger et al. | Jan 2003 | A1 |
20030218391 | Hirata | Nov 2003 | A1 |
20040076348 | Dalessandro et al. | Apr 2004 | A1 |
20040227535 | Kobayashi et al. | Nov 2004 | A1 |
20040232800 | Seguchi et al. | Nov 2004 | A1 |
20050211512 | Fenwick | Sep 2005 | A1 |
20050234565 | Marks et al. | Oct 2005 | A1 |
20050253469 | Hochhalter et al. | Nov 2005 | A1 |
20050258701 | Soitu | Nov 2005 | A1 |
20060023980 | Kato et al. | Feb 2006 | A1 |
20060113847 | Randall et al. | Jun 2006 | A1 |
20060279140 | Jenny | Dec 2006 | A1 |
20070053781 | Davis | Mar 2007 | A1 |
20070296364 | Shoemaker et al. | Dec 2007 | A1 |
20080048505 | Moriyama et al. | Feb 2008 | A1 |
20080150559 | Nayak et al. | Jun 2008 | A1 |
20080157607 | Scheich et al. | Jul 2008 | A1 |
20080258654 | Neff | Oct 2008 | A1 |
20090040247 | Cato et al. | Feb 2009 | A1 |
20090058198 | Finkbeiner et al. | Mar 2009 | A1 |
20090058201 | Brennvall | Mar 2009 | A1 |
20090058581 | Neff et al. | Mar 2009 | A1 |
20090114052 | Haniya et al. | May 2009 | A1 |
20090152960 | Kimura et al. | Jun 2009 | A1 |
20090218894 | Aso et al. | Sep 2009 | A1 |
20090261663 | Aso et al. | Oct 2009 | A1 |
20090278412 | Kimura et al. | Nov 2009 | A1 |
20090309442 | Qu et al. | Dec 2009 | A1 |
20100005918 | Mizuno et al. | Jan 2010 | A1 |
20100133924 | Neff et al. | Jun 2010 | A1 |
20100171378 | Kim et al. | Jul 2010 | A1 |
20100181858 | Hibbs | Jul 2010 | A1 |
20100203249 | Elgimiabi | Aug 2010 | A1 |
20100244605 | Nakano et al. | Sep 2010 | A1 |
20100274365 | Evans et al. | Oct 2010 | A1 |
20100295401 | Nakagawa et al. | Nov 2010 | A1 |
20110037333 | Atallah | Feb 2011 | A1 |
20110068595 | Ihrke et al. | Mar 2011 | A1 |
20110132169 | Kapoor et al. | Jun 2011 | A1 |
20110187222 | Li et al. | Aug 2011 | A1 |
20120043832 | Neff et al. | Feb 2012 | A1 |
20120080960 | Neff et al. | Apr 2012 | A1 |
20120206024 | Yoshida et al. | Aug 2012 | A1 |
20120299405 | Li et al. | Nov 2012 | A1 |
20120305092 | Corso et al. | Dec 2012 | A1 |
20130154397 | Sullivan | Jun 2013 | A1 |
20140159407 | Neff et al. | Jun 2014 | A1 |
20140159408 | Neff et al. | Jun 2014 | A1 |
20140159513 | Neff et al. | Jun 2014 | A1 |
20140159514 | Neff et al. | Jun 2014 | A1 |
20140210396 | Yamanaka et al. | Jul 2014 | A1 |
20140317941 | Patti et al. | Oct 2014 | A1 |
20150168483 | Kim | Jun 2015 | A1 |
20150171723 | Neff et al. | Jun 2015 | A1 |
20150236575 | Walsh | Aug 2015 | A1 |
20150303785 | Neff et al. | Oct 2015 | A1 |
20160013712 | Neff et al. | Jan 2016 | A1 |
20160184989 | Neff et al. | Jun 2016 | A1 |
20160229064 | Neff et al. | Aug 2016 | A1 |
20170012519 | Neff et al. | Jan 2017 | A1 |
20170014964 | Neff | Jan 2017 | A1 |
20170089976 | Neff et al. | Mar 2017 | A1 |
20180071921 | Neff et al. | Mar 2018 | A1 |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2018/012223, dated Apr. 24, 2018, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20180191210 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62441913 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15728454 | Oct 2017 | US |
Child | 15844423 | US |