High-toughness low alloy wear-resistant steel sheet and method of manufacturing method thereof the same

Information

  • Patent Grant
  • 10494706
  • Patent Number
    10,494,706
  • Date Filed
    Wednesday, March 19, 2014
    10 years ago
  • Date Issued
    Tuesday, December 3, 2019
    5 years ago
Abstract
A high-toughness low-alloy wear-resistant steel sheet and a method of manufacturing the same, which has the chemical compositions (wt %): C: 0.08-0.20%; Si: 0.10-0.60%; Mn: 1.00-2.00%; B: 0.0005-0.0040%; Cr: less than or equal to 1.50%; Mo: less than or equal to 0.80%; Ni: less than or equal to 1.50%; Nb: less than or equal to 0.080%; V: less than or equal to 0.080%; Ti: less than or equal to 0.060%; Al: 0.010-0.080%, Ca: 0.0010-0.0080%, N: less than or equal to 0.0080%, O: less than or equal to 0.0080%, H: less than or equal to 0.0004%, P: less than or equal to 0.015%, S: less than or equal to 0.010%, and (Cr/5+Mn/6+50B): more than or equal to 0.20% and less than or equal to 0.55%; (Mo/3+Ni/5+2Nb): more than or equal to 0.02% and less than or equal to 0.45%; (Al+Ti): more than or equal to 0.01% and less than or equal to 0.13%, the remainders being Fe and unavoidable impurities. The present invention reduces the contents of carbon and alloy elements, and makes full use of the characteristics of refinement, strengthening, etc. of micro-alloy elements such as Nb, Ti, etc., and through TMCP process, the wear-resistant steel sheet has high strength, high hardness, good toughness, good weldability, excellent wear-resistant performance, and is applicable to wearing parts in various mechanical equipments.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application represents the national stage entry of PCT international Application No. PCT/CN2014/073675 filed Mar. 19, 2014, which claims priority of Chinese Patent Application No. 201310106558.3 filed Mar. 28, 2013, the disclosures of which are incorporated by reference here in their entirety for all purposes.


TECHNICAL FIELD

The present invention relates to wear-resistant steel and particularly, to a high-toughness low-alloy wear-resistant steel sheet and a method of manufacturing the same, which steel sheet has the typical mechanical properties: a tensile strength of more than 1200 Mpa, an elongation rate of more than 12%, Brinell Hardness of more than 400HB, and −40 Charpy V-notch longitudinal impact energy of more than 60 J.


BACKGROUND

Wear-resistant steel sheets are widely applied on mechanical products in the field of projects with very serious operational conditions and requiring high strength and high wear-resistance, mining, agriculture, cement production, harbor, electrical power and metallurgy, such as earth mover, loading machine, excavator, dumper, grab bucket, stack-reclaimer, delivery bending structure, etc.


Traditionally, austenitic high-manganese steel are usually selected to manufacture the wear-resistant parts. Under the effect of large impact load, austenitic high-manganese steel may be strained to induce martensite phase transformation so as to improve the wear resistance thereof. Austenitic high-manganese steel are not suitable for wide application owing to the limitation of high alloy content, bad machining and welding performance, and low original hardness.


In the past decades, rapid development takes place in the exploitation and application of wear-resistant steel. It is usually produced by adding a moderate amount of carbon and alloy elements and through casting, rolling and offline heat treatment, etc. The casting way has the advantages of short work flow, simple process and easy production, but has the disadvantages of excessive alloy content, bad mechanical, welding and machining performances; the rolling way may further reduce the content of the alloy elements, and improve the performance of products thereof, but yet inappropriate for wide application; the heat treatments of offline quenching plus tempering are the main way of producing wear-resistant steel sheet, and the produced wear-resistant steel sheet has low alloy elements, and high performance and can make the industrial production stable. But with the higher requirements on low carbon, energy conservation, and environmental protection, products with low cost, short work flow and high performance, become the inevitable trend in the development of iron and steel industry.


China Patent CN1140205A discloses a wear-resistant steel with medium and high carbon and medium alloy, that is produced by casting, and has high contents of carbon and alloy elements (Cr, Mo, etc.), which results inevitably in bad welding and machining performance.


China Patent CN1865481A discloses a Bainite wear-resistant steel which has high contents of carbon and alloy elements (Si, Mn, Cr, Mo, etc.), thereby being of poor welding performance; and which is produced by air cooling after rolling or by stack cooling, thereby being of low mechanical properties.


SUMMARY

The objective of the present invention is to provide a high-toughness low-alloy wear-resistant steel sheet and a method of manufacturing the same, which steel sheet has the typical mechanical properties: a tensile strength of more than 1200 Mpa, an elongation rate of more than 12%, Brinell Hardness of more than 400HB, and −40 Charpy V-notch longitudinal impact energy of more than 60 J. It matches high strength, high hardness and high toughness, and has good machining and welding performance, thereby very beneficial to the wide application on projects.


To achieve the above-mentioned objective, the present invention takes the following technical solution:


A high-toughness low-alloy wear-resistant steel sheet, which has the chemical compositions in weight percentage: C: 0.08-0.20%; Si: 0.10-0.60%; Mn: 1.00-2.00%; B: 0.0005-0.0040%; Cr: less than or equal to 1.50%; Mo: less than or equal to 0.80%; Ni: less than or equal to 1.50%; Nb: less than or equal to 0.080%; V: less than or equal to 0.080%; Ti: less than or equal to 0.060%; Al: 0.010-0.080%; Ca: 0.0010-0.0080%; N: less than or equal to 0.0080%; 0: less than or equal to 0.0080%; H: less than or equal to 0.0004%; P: less than or equal to 0.015%; S: less than or equal to 0.010%; and (Cr/5+Mn/6+50B): more than or equal to 0.20% and less than or equal to 0.55%: (Mo/3+Ni/5+2Nb): more than or equal to 0.02% and less than or equal to 0.45%; (Al+Ti): more than or equal to 0.01% and less than or equal to 0.13%, the remainders being Fe and unavoidable impurities; the microstructures thereof being fine martensite and retained austenite, and the volume fraction of the retained austenite being less than or equal to 5%; the typical mechanical properties: a tensile strength of more than 1200 Mpa, an elongation rate of more than 12%, Brinell Hardness of more than 400HB, and −40 Charpy V-notch longitudinal impact energy of more than 60 J.


The respective functionalities of the chemical compostions of the high-toughness low-alloy wear-resistant steel sheet according to the present invention are as follows:


Carbon: carbon is the most basic and important element in the wear-resistant steel, that can improve the strength and hardness of the steel, and thus further improve the wear resistance thereof. However it is not good for the toughness and welding performance of the steel. Accordingly, the carbon content in the steel should be controlled between 0.08-0.20 wt %, preferably, between 0.10-0.20 wt %.


Silicon: silicon is subjected to solid solution in ferrite and austenite, to improve their hardness and strength, but excessive silicon may result in sharply decreasing the toughness of the steel. Simultaneously, due to that the affinity between silicon and oxygen is better than that between the silicon and Fe, it is easy to generate silicates with low melting point during welding, and increase the flowability of slag and melted metals, thereby affecting the quality of welding seams. Hence its content should not be too much. The silicon content in the wear-resistant steel of the present invention should be controlled between 0.10-0.60 wt %, preferably, between 0.10-0.50 wt %.


Manganese: manganese improves sharply the hardenablity of the steel, and reduces the transformation temperature and critical cooling speed thereof. However, when the content of manganese is too high, it may have a grain coarsening tendency, increasing the susceptibility to tempering embrittleness and prone to causing segregation and cracks of casting blanks, thus lowering the performance of the steel sheet. The manganese content in the wear-resistant steel of the present invention should be controlled between 1.00-2.00 wt %, preferably, between 1.00-1.80 wt %.


Boron: boron can improve the hardenability of steel, but excessive boron may result in hot shortness, and affect the welding performance and hot machining performance. Consequently, it is necessary to control the content of B. The content of B in the wear-resistant steel is controlled between 0.0005-0.0040 wt %, preferably, between 0.0005-0.0020 wt %.


Chromium: chromium can decrease the critical cooling speed and improve the hardenability of the steel. Chromium may form multiple kinds of carbides such as (Fe,Cr)3C, (Fe,Cr)7C3 and (Fe,Cr)23C7, that can improve the strength and hardness. During tempering, chromium can prevent or retard the precipitation and aggregation of carbide, and improve the temper stability. The chromium content in the wear-resistant steel of the present invention should be controlled less than or equal to 1.50 wt %, preferably, between 0.10-1.20%.


Molybdenum: molybdenum can refine grains and improve the strengh and toughness. Molybdenum exists in the sosoloid phase and carbide phase of the steel, hence, the steel containing molybdenum has effects of solid solution and carbide dispersion strengthening. Molybdenum is the element that can reduce the temper brittleness, with improving the temper stability. The molybdenum content in the wear-resistant steel of the present invention should be controlled less than or equal to 0.80 wt %, preferably less than or equal to 0.60% wt %.


Nickel: nickel has the effect of obviously decreasing the cold shortness transformation temperature. However, excessive nickel may lead to the difficulty of descaling on the surface of the steel sheet and remarkably higher cost. The nickel content in the wear-resistant steel of the present invention should be controlled less than or equal to 1.50 wt %, preferably less than or equal to 1.20 wt %.


Niobium: the effects of refining grains and precipitation strengthening of niobium contribute notably to the obdurability of the material, and Nb is the strong former of carbide and nitride which can strongly restrict the growth of austenite grains. Nb improves or enhances the performance of the steel mainly through precipitation strengthening and phase transformation strengthening, and it has been considered as one of the most effective hardening agent in the HSLA steel. The niobium content in the wear-resistant steel of the present invention should be controlled less than or equal to 0.080 wt %, preferably between 0.005-0.080 wt %.


Vanadium: the addition of vanadium is to refine grains, to make the austenite grains free from too coarsening during heating the steel blank. Thus, during the subsequent multi-pass rolling, the steel grains can be further refined and the strength and toughness of the steel are improved. The vanadium content in the wear-resistant steel of the present invention should be controlled less than or equal to 0.080 wt %, preferably less than or equal to 0.060 wt %.


Titanium: titanium is one of the formers of strong carbide, and forms fine TiC particles together with carbon. TiC particles are fine, and distributed along the grain boundary, that can reach the effect of refining grains. Harder TiC particles can improve the wear resistance of the steel. The content of titanium in the wear-resistant steel is controlled less than or equal to 0.060 wt %, preferably, between 0.005-0.060 wt %.


Aluminum: aluminum and nitrogen in the steel may form fine and indissolvable AlN particles, which can refine the grains in the steel. Aluminum can refine the grains in the steel, stabilify nitrogen and oxygen in the steel, alleviate the susceptibility of the steel to the notch, reduce or eliminate the ageing effect and improve the toughness thereof. The content of Al in the wear-resistant steel is controlled between 0.010-0.080 wt %, preferably, between 0.020-0.080 wt %.


Aluminum and titanium: titanium can form fine particles and further refine grains, while aluminum can ensure the formation of fine Ti particles and allow full play of titanium to refine grains. Accordingly, the range of the total content of aluminum plus titanium should be controlled more than or equal to 0.010% and less than or equal to 0.13%, preferably, more than or equal to 0.01% and less than or equal to 0.12%.


Calcium: calcium contributes remarkably to the deterioration of the inclusions in the cast steel, and the addition of an appropriate amount of calcium in the cast steel may transform the strip like sulfide inclusions into spherical CaS or (Ca, Mn) S inclusions. The oxide and sulfide inclusions formed by calcium have low density and tend to float and to be removed. Calcium also reduces the segregation of sulfide at the grain boundary notably. All of those are beneficial to improve the quality of the cast steel, and further improve the performance thereof. The content of calcium in the wear-resistant steel is controlled between 0.0010-0.0080 wt %, preferably, between 0.0010-0.0050 wt %.


Phosphorus and sulphur: both phosphorus and sulphur are harmful elements in the wear-resistant steel, and the content thereof should be controlled strictly. The content of phosphorus in the steel of the present invention is controlled less than or equal to 0.015 wt %, preferably less than or equal to 0.012 wt %; the content of sulphur therein controlled less than or equal to 0.010 wt %, preferably less than or equal to 0.005 wt %.


Nitrogen, oxygen and hydrogen: excessive nitrogen, oxygen and hydrogen in the steel is harmful to the performances such as welding performance, impact toughness and crack resistance, and may reduce the quality and lifetime of the steel sheet. But too strict controlling may substantially increase the production cost. Accordingly, the content of nitrogen in the steel of the present invention is controlled less than or equal to 0.0080 wt %, preferably less than or equal to 0.0050 wt %; the content of oxygen therein controlled less than or equal to 0.0080 wt %, preferably less than or equal to 0.0050 wt %; the content of hydrogen therein controlled less than or equal to 0.0004 wt %, preferably less than or equal to 0.0003 wt %.


In the method of manufacturing the high-toughness low-alloy wear-resistant steel sheet, the steel sheet can be obtained through stages of smelting respective original materials as the aforementioned proportions of the chemical compositions, casting, heating, rolling and cooling directly after rolling; wherein in the heating stage, the slab heating temperature is 1000-1200, and the heat preservation time is 1-3 hours; in the stage of rolling, the rough rolling temperature is 900-1150, while the finish rolling temperature is 780-880; in the stage of cooling, the steel is water cooled to below 400, then air cooled to the ambient temperature, wherein the speed of water cooling is more than or equal to 20/s.


Furthermore, the stage of cooling directly after rolling further includes a stage of tempering, in which the heating temperature is 100-400, and the heat preservation time is 30-120 min.


Preferably, during the heating process, the heating temperature is 1000-1150; more preferably the heating temperature is 1000-1130; and most preferably, the heating temperature is 1000-1110 for improving the production efficiency, and preventing the austenite grains from overgrowth and the surface of the billet from strongly oxidizing.


Preferably, during the stage of rolling, the rough rolling temperature is 900-1100° C., and the reduction rate in the stage of rough rolling is more than 20%, while the finish rolling temperature is 780-860° C., and the reduction rate in the stage of finish rolling is more than 40%; more preferably, the rough rolling temperature is 900-1080° C., and the reduction rate in the stage of rough rolling is more than 25%, while the finish rolling temperature is 780-855° C., and the reduction rate in the stage of finish rolling is more than 45%; most preferably, the rough rolling temperature is 910-1080° C., and the reduction rate in the stage of rough rolling is more than 28%, while the finish rolling temperature is 785-855° C., and the reduction rate in the stage of finish rolling is more than 50%.


Preferably, in the stage of cooling, the cease cooling temperature is below 380° C., the water cooling speed is more than or equal to 23° C./s; more preferably, the cease cooling temperature is below 350° C., the water cooling speed is more than or equal to 27° C./s; most preferably, the cease cooling temperature is below 330°, and the water cooling speed is more than or equal to 30° C./s.


Preferably, in the stage of tempering, the heating temperature is 100-380 and the heat preservation time is 30-100 min; more preferably, the heating temperature is 120-380, the heat preservation time is 30-100 min; most preferably, the heating temperature is 150-380, the heat preservation time is 30-100 min.


Due to the scientifically designed contents of carbon and alloy elements in the high-toughness low-alloy wear-resistant steel sheet of the present invention, and through the refinement strengthening effects of the alloy elements and controlling the rolling and cooling process for structural refinement and strengthening, the obtained wear-resistant steel sheet has excellent mechanical properties (strength, hardness, elongation rate, and impact toughness etc), welding performance and wear resistance.


The differences between the present invention and the prior art are embodied in the following aspects:


1. regarding the chemical compositions, the wear-resistant steel sheet of the present invention gives priority to low carbon and low alloy, and makes full use of the characteristics of refinement and strengthening of the micro-alloy elements such as Nb, Ti or the like, reducing the contents of carbon and alloy elements such as Cr, Mo, and Ni, and ensuring the good mechanical properties and excellent welding performance of the wear-resistant steel sheet.


2. regarding the production process, the wear-resistant steel sheet of the present invention is produced by TMCP process, and through controlling the process parameters such as start rolling and finish rolling temperatures, rolling deformation amount, and cooling speed in the TMCP process, the structure refinement and strengthening effects are achieved, and further the contents of carbon and alloy elements are reduced, thereby obtaining the steel sheet with excellent mechanical properties and welding performance, etc. Moreover, the process has the characteristics of short work flow, high efficiency, energy conservation and low cost etc.


3. regarding the performance of the products, the wear-resistant steel sheet of the present invention has the advantages such as high strength, high hardness, high low-temperature toughness (typical mechanical properties thereof: a tensile strength of more than 1200 Mpa, an elongation rate of more than 12%, Brinell Hardness of more than 400HB, and −40 Charpy V-notch longitudinal impact energy of more than 60 J), and has good welding performance.


4. regarding the micro-structure, the wear-resistant steel sheet of the present invention makes full use of the addition of the alloy elements and the controlled rolling and controlled cooling processes to obtain fine martensite structures and retained austenite (wherein the volume fraction of the retained austenite is less than or equal to 5%), which are beneficial for matching nicely the strength, hardness and toughness of the wear-resistant steel sheet.


In sum, the wear-resistant steel sheet of the present invention has apparent advantages, and owing to being obtained by controlling the content of carbon and alloy elements and the heat treatment processes, it is of low cost, simple processes, high strength and hardness, good low-temperature toughness, excellent machining performance, high weldability, and applicable for a variety of vulnerable parts mechanical equipments, whereby this kind of wear-resistant steel sheet is the natural tendency of the development of the social economy and iron-steel industries.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a photograph of the microstructure of the steel sheet in Embodiment 5 according to the present invention.





DETAILED DESCRIPTION

Hereinafter the technical solution of the present invention will be further set out in conjunction with the detailed embodiments. It should be specified that those embodiments are only used for describing the detailed implements of the present invention, but not for constituting any limitation on the protection scope thereof.


Table 1 shows the chemical compositions in weight percentage of the wear-resistant steel sheet in Embodiments 1-10 and the steel sheet in the contrastive example 1 (which is an embodiment in the patent CN1865481A). The method of manufacturing them is: the respective smelt raw materials are treated in the following stages: smelting-casting-heating-rolling-cooling directly after rolling-tempering (not necessary), and the chemical elements in weight percentage are controlled, wherein, in the stage of heating, the slab heating temperature is 1000-1200, and the hear preservation time is 1-3 hours; in the stage of rolling, the rough rolling temperature is 900-1150, while the finish rolling temperature is 780-880; in the stage of cooling, the steel is water cooled to below 400, then air cooled to the ambient temperature, wherein the speed of water cooling is more than or equal to 20/s; in the stage of tempering, the heating temperature is 100-400, and the heat preservation time is 30-120 min. The specific process parameters in Embodiments 1-10 are shown in Table 2.









TABLE 1







Chemical Compositions in Embodiments 1-10 and in Contrastive Example 1 (unit: wt %)

























C
Si
Mn
P
S
Cr
Mo
Ni
Nb
V
Ti
Al
B
Ca
N
O
H



























Embodi-
0.08
0.50
2.00
0.015
0.005
0.22
0.22
0.45
0.080
0.080
0.019
0.027
0.0030
0.0080
0.0042
0.0060
0.0004


ment 1



















Embodi-
0.10
0.38
1.80
0.009
0.010
0.56
0.13
/
/
/
0.005
0.035
0.0015
0.0050
0.0080
0.0040
0.0002


ment 2



















Embodi-
0.11
0.45
1.53
0.008
0.004
/
0.25
/
0.060
0.010
0.022
0.010
0.0011
0.0020
0.0050
0.0028
0.0002


ment 3



















Embodi-
0.13
0.33
1.50
0.010
0.003
0.35
0.27
/
0.021
/
/
0.020
0.0017
0.0030
0.0028
0.0021
0.0003


ment 4



















Embodi-
0.14
0.25
1.41
0.009
0.003
0.28
0.36
/
0.011
/
0.045
0.080
0.0020
0.0040
0.0038
0.0030
0.0003


ment 5



















Embodi-
0.16
0.25
1.33
0.009
0.004
1.50
/
/
0.035
/
0.012
0.052
0.0005
0.0030
0.0029
0.0028
0.0002


ment 6



















Embodi-
0.17
0.31
1.29
0.007
0.003
0.61
0.80
/
/
0.060
0.060
0.060
0.0016
0.0020
0.0035
0.0022
0.0003


ment 7



















Embodi-
0.18
0.10
1.10
0.008
0.002
1.2
0.46
0.28
0.015
/
0.027
0.041
0.0013
0.0030
0.0032
0.0018
0.0002


ment 8



















Embodi-
0.19
0.23
1.22
0.008
0.003
0.57
0.26
/
0.028
/
0.016
0.030
0.0018
0.0020
0.044
0.0035
0.0003


ment 9



















Embodi-
0.20
0.21
1.00
0.009
0.002
0.75
0.38
1.50
0.036
/
0.033
0.052
0.0020
0.0010
0.038
0.0032
0.0002


ment 10



















Contras-
0.30
0.8
2.05
<0.04
<0.03
0.6
0.6 












tive Ex-



















ample 1
















TABLE 2







Specific Process Parameters in Embodiments 1-10




















Slab
Heat
Rough
Rough
Finish
Finish


Cease

Heat




Heating
Prev.
Rolling
Rolling
Rolling
Rolling

Cooling
Cooling
Temper.
Prev.
Thickness



Temp.
Time
Temp.
Deform.
Temp.
Deform.
Cooling
Speed
Temp.
Temp.
Time
of Steel



° C.
h
° C.
Rate %
° C.
Rate %
Way
° C./s
° C.
° C.
min
Sheet mm






















Embodi-
1000
1
950
20
780
45
water
30
210
/
/
16


ment 1














Embodi-
1120
1.5
1060
25
795
53
water
25
355
/
/
25


ment 2














Embodi-
1070
2
980
33
820
40
water
20
400
/
/
29


ment 3














Embodi-
1110
2
1020
40
835
46
water
38
256
/
/
33


ment 4














Embodi-
1140
2
1100
36
800
52
water
40
135
/
/
41


ment 5














Embodi-
1080
2
980
28
865
53
water
39
175
/
/
30


ment 6














Embodi-
1130
2.5
1080
36
816
62
water
50
100
310
110
39


ment 7














Embodi-
1160
2.5
1120
41
808
66
water
33
 85
/
/
19


ment 8














Embodi-
1150
3
1110
25
880
70
water
29
Ambient
/
/
35


ment 9








Temp.





Embodi-
1200
3
1150
42
830
63
water
44
130
/
/
50


ment 10









1. Mechanical Property Test


The high-toughness low-alloy wear-resistant steel sheets in Embodiments 1-10 are tested for mechanical properties, and the results thereof are shown in Table 3.









TABLE 3







Mechanical Properties of Embodiments 1-10 and Contrastive Example 1











Charpy



Transverse Stretch
V-notch













90° Cold

Tensile

Longitudinal



Bending
Hardness
Strength
Elongation rate
Impact Energy



D = 3a
HB
MPa
%
(−40° C.), J















Embodiment 1
Passed
402
1205
16%
125


Embodiment 2
Passed
405
1215
16%
109


Embodiment 3
Passed
409
1230
16%
100


Embodiment 4
Passed
413
1245
15%
95


Embodiment 5
Passed
420
1260
15%
88


Embodiment 6
Passed
430
1290
15%
82


Embodiment 7
Passed
435
1325
14%
80


Embodiment 8
Passed
440
1340
14%
78


Embodiment 9
Passed
449
1360
14%
68


Embodiment 10
Passed
453
1395
14%
65


Contrastive

About 400
1250
12%



Example 1

(HRC43)









Seen from Table 3, the wear-resistant steel sheet in Embodiments 1-10 has a tensile strength of 1200-1400 Mpa, an elongation rate of 14-16%, Brinell Hardness of 400-460HB, and −40 Charpy V-notch longitudinal impact energy of 60-130 J, which indicates that the wear-resistant steel sheet of the present invention has not only high strength, high hardness, good elongation rate etc. but also excellent low-temperature impact toughness. The strength, hardness, and elongation rate of the steel sheet of the present invention are obviously superior to that in contrastive example 1.


2. Wear Resistance Test


The wear resistance test is performed on ML-100 abrasive wear testing machine. When cutting out a sample, the axis of the sample is perpendicular to the steel sheet surface, and the wear surface of the sample is the rolled surface of the steel sheet. The sample is machined into a step-like cylinder body with a tested part of ϕ4 mm and a clamped part of ϕ5 mm. Before testing, the sample is rinsed by alcohol, and dried by a blower, then weighted on a scale with a precision of ten thousandth. The measured weight is taken as the original weight, then it is mounted onto an elastic clamp. The test is performed by an abrasive paper with 80 meshes, under an effect of a load 84N. After the test, due to the wear between the sample and the abrasive paper, a spiral line may be drawn on the abrasive paper by the sample. According to the start radius and end radius of the spiral line, the length of the spiral line is calculated out with the following formula:






S
=


π


(


r
1
2

-

r
2
2


)


a





wherein, r1 is the start radius of the spiral line; r2 is the end radius of the spiral line; a is the feed of the spiral line. In each test, weighting is performed for three times, and the average results are used. Then the weight loss is calculated, and the weight loss per meter indicates the wear rate of the sample (mg/M).


The wear resistance test is performed on the super-strength high-toughness low-alloy wear-resistant steel sheet in Embodiments 1-10 of the present invention. The wearing test results of the steel in these embodiments according to the present invention and the contrastive example 2 (in which a steel sheet with a hardness of 360HB is used) are shown in Table 4.









TABLE 4







Wearing Resistance Test Results of the Steel in Embodiments 1-10


and The Contrastive Example 2










Steel Type
Test Temp.
Wearing Test Conditions
Wearing Rate (mg/M)





Embodiment 1
Ambient Temp.
80-grit abrasive paper/
14.656




84 N load



Embodiment 2
Ambient Temp.
80-grit abrasive paper/
14.602




84 N load



Embodiment 3
Ambient Temp.
80-grit abrasive paper/
14.565




84 N load



Embodiment 4
Ambient Temp.
80-grit abrasive paper/
14.503




84 N load



Embodiment 5
Ambient Temp.
80-grit abrasive paper/
14.211




84 N load



Embodiment 6
Ambient Temp.
80-grit abrasive paper/
13.933




84 N load



Embodiment 7
Ambient Temp.
80-grit abrasive paper/
13.802




84 N load



Embodiment 8
Ambient Temp.
80-grit abrasive paper/
13.690




84 N load



Embodiment 9
Ambient Temp.
80-grit abrasive paper/
13.632




84 N load



Embodiment 10
Ambient Temp.
80-grit abrasive paper/
13.567




84 N load



Contrastive example 2
Ambient Temp.
80-grit abrasive paper/
15.588




84 N load









It is known from Table 4 that in this wearing condition of ambient temperature and 80-meshes abrasive paper/84N load, the wearing performance of the high-toughness low-alloy wear-resistance according to the present invention is better than that of the contrastive example 2.


3. Welding Performance Test


According to the Y-slit weld cracking test (GB4675.1-84), a Y-slit weld cracking test is performed, and five groups are tested.


First, the constrained welding seams are welded through the rich Ar gas shielding weld, by using JM-58 welding wires of 01.2. During the welding process, the angular deformation of the test piece is strictly controlled. After welding, they are cooled to the ambient temperature, so as to weld the tested seams. The seams are welded under the ambient temperature and 48 hours after completing the welding, the cracks on the surfaces, sections and root of the seams are detected. This detection is carried out by dissection test and staining. The welding conditions are 170A×25V×160 mm/min.


The welding performance test is performed on the wear-resistant steel sheet of Embodiments 1-10 according to the present invention, and the test results are shown as Table 5.









TABLE 5







The Results of Welding Performance Test of Embodiments 1-10

















Surface
Root
Section





Preheat
Sample
Crack
Crack
Crack
Ambient.
Relative



Temp.
No.
Ratio, %
Ratio, %
Ratio, %
Temp.
Humidity





Embodi-
No
1
0
0
0
10° C.
63%


ment 1
Preheat
2
0
0
0






3
0
0
0






4
0
0
0






5
0
0
0




Embodi-
No
1
0
0
0
16° C.
60%


ment 2
Preheat
2
0
0
0






3
0
0
0






4
0
0
0






5
0
0
0




Embodi-
No
1
0
0
0
19° C.
61%


ment 3
Preheat
2
0
0
0






3
0
0
0






4
0
0
0






5
0
0
0




Embodi-
No
1
0
0
0
23° C.
63%


ment 4
Preheat
2
0
0
0






3
0
0
0






4
0
0
0






5
0
0
0




Embodi-
50° C.
1
0
0
0
26° C.
66%


ment 5

2
0
0
0






3
0
0
0






4
0
0
0






5
0
0
0




Embodi-
No
1
0
0
0
32° C.
63%


ment 6
Preheat
2
0
0
0






3
0
0
0






4
0
0
0






5
0
0
0




Embodi-
80° C.
1
0
0
0
27° C.
62%


ment 7

2
0
0
0






3
0
0
0






4
0
0
0






5
0
0
0




Embodi-
50° C.
1
0
0
0
33° C.
61%


ment 8

2
0
0
0






3
0
0
0






4
0
0
0






5
0
0
0




Embodi-
750° C. 
1
0
0
0
28° C.
59%


ment 9

2
0
0
0






3
0
0
0






4
0
0
0






5
0
0
0




Embodi-
100° C. 
1
0
0
0
30° C.
58%


ment 10

2
0
0
0






3
0
0
0






4
0
0
0






5
0
0
0









It is known from Table 5 that the wear-resistant steel sheets of Embodiments 1-10 according to the present invention presents no cracks after welding under the respective condition of no preheating, preheating temperature of 50-100° C. ambient temperature of 10-33° C., which indicates that the wear-resistant steel sheet of the present invention has good welding performance, and in particular, are extremely applicable for the welds with large dimensions.


4. Microstructure


The microstructures are obtained by checking the wear-resistant steel sheet of Embodiment 5. As shown in FIG. 1, the microstructures are fine martensite and a trace of retained austenite, wherein the volume fraction of the retained austenite is less than or equal to 5%, which ensures that the steel sheet has excellent mechanical properties.


The present invention, under the reasonable conditions of production process, designs scientifically the compositions of carbon and alloy elements, and the ratios thereof, reducing the cost of alloys; and makes full use of TMCP processes to refine and strengthen the structures, such that the obtained wear-resistant steel sheet has excellent mechanical properties (such as high hardness, strength, elongation rate and good impact toughness etc.), and welding performance.

Claims
  • 1. A high-toughness low-alloy wear-resistant steel sheet, which has the chemical compositions in weight percentage: C: 0.08% to less than 0.18%; Si: 0.10-0.45%; Mn: 1.53-2.00%; B: 0.0005-0.0040%; Cr less than or equal to 1.50%; Mo: less than or equal to 0.80%; Ni: less than or equal to 1.50%; Nb: 0.060-0.080%; V: less than or equal to 0.080%; Ti: less than or equal to 0.060%; Al: 0.010-0.080%, Ca: 0.0010-0.0080%, N: less than or equal to 0.0080%, O: less than or equal to 0.0080%, H: less than or equal to 0.0004%, P: less than or equal to 0.015%, S: less than or equal to 0.010%, and (Cr/5+Mn/6+50B): more than or equal to 0.20% and less than or equal to 0.55%; (Mo/3+Ni/5+2Nb): more than or equal to 0.02% and less than or equal to 0.45%; (Al+Ti): more than or equal to 0.010% and less than or equal to 0.13%, the remainders being Fe and unavoidable impurities; the microstructures thereof consisting of martensite and retained austenite, and the volume fraction of the retained austenite being less than or equal to 5%; wherein high-toughness low-alloy wear-resistant steel sheet has a tensile strength of more than 1200 Mpa, an elongation rate of more than 12%, Brinell Hardness of more than 400HB, and −40° C. Charpy V-notch longitudinal impact energy of equal to or more than 100 J.
  • 2. The high-toughness low-alloy wear-resistant steel sheet according to claim 1, wherein it has the chemical compositions in weight percentage: C: 0.10% to less than 0.18%; Si: 0.10-0.45%.
  • 3. The high-toughness low-alloy wear-resistant steel sheet according to claim 1, wherein it has the chemical compositions in weight percentage: Mn: 1.53-1.80%; Cr: 0.10-1.20%; Mo: less than or equal to 0.60%; Ni: less than or equal to 1.20%; and (Mo/3+Ni/5+2Nb): more than or equal to 0.04% and less than or equal to 0.40%.
  • 4. The high-toughness low-alloy wear-resistant steel sheet according to claim 1, wherein it has the chemical compositions in weight percentage: B: 0.0005-0.0020%; Nb: 0.060-0.080 wt %; V: less than or equal to 0.060%; (Cr/5+Mn/6+50B): more than or equal to 0.20% and less than or equal to 0.50%.
  • 5. The high-toughness low-alloy wear-resistant steel sheet according to claim 1, wherein it has the chemical compositions in weight percentage: Ca: more than or equal to 0.0010% and less than or equal to 0.0050%; N: less than or equal to 0.0050%; 0: less than or equal to 0.0050%; H: less than or equal to 0.0003%; P: less than or equal to 0.012%; S: less than or equal to 0.005%.
  • 6. The high-toughness low-alloy wear-resistant steel sheet according to claim 1, wherein it has the chemical compositions in weight percentage: Ti: 0.005-0.060 wt %; Al: 0.020-0.080%; (Al+Ti): more than or equal to 0.01% and less than or equal to 0.12%.
  • 7. A method of manufacturing the high-toughness low-alloy wear-resistant steel sheet according to claim 1, wherein it comprises the following stages: smelting as the aforementioned proportions of the chemical compositions, casting, heating, rolling and cooling directly after rolling to obtain the high-toughness low-alloy wear-resistant steel sheet, wherein in the heating stage, the slab heating temperature is 1000-1200° C., and the heat preservation time is 1-3 hours; in the stage of rolling, the rough rolling temperature is 900-1150° C., while the finish rolling temperature is 780-880° C.; in the stage of cooling, the steel is water cooled to below 400° C., then air cooled to the ambient temperature, wherein the speed of water cooling is more than or equal to 20° C./s.
  • 8. The method of manufacturing high-toughness low-alloy wear-resistant steel sheet according to claim 7, wherein the stage of cooling directly after rolling further includes a stage of tempering, in which the heating temperature is 100-400° C., and the heat preservation time is 30-120 min.
  • 9. The method of manufacturing high-toughness low-alloy wear-resistant steel sheet according to claim 7, wherein in the stage of heating, the slab heating temperature is 1000-1150° C.
  • 10. The method of manufacturing high-toughness low-alloy wear-resistant steel sheet according to claim 7, wherein in the stage of rolling, the rough rolling temperature is 900-1100° C., and the reduction rate in the stage of rough rolling is more than 20%, while the finish rolling temperature is 780-860° C., and the reduction rate in the stage of finish rolling is more than 40%.
  • 11. The method of manufacturing high-toughness low-alloy wear-resistant steel sheet according to claim 7, wherein in the stage of cooling, the cease cooling temperature is below 380° C., and the water cooling speed is more than or equal to 23° C./s.
  • 12. The method of manufacturing high-toughness low-alloy wear-resistant steel sheet according to claim 8, wherein in the stage of tempering, the tempering temperature is 100-380° C., and the heat preservation time is 30-100 min.
  • 13. The high-toughness low-alloy wear-resistant steel sheet according to claim 1, wherein the thickness of the steel sheet is in a range of 16 mm to 50 mm.
Priority Claims (1)
Number Date Country Kind
2013 1 0106558 Mar 2013 CN national
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2014/073675 3/19/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/154104 10/2/2014 WO A
US Referenced Citations (6)
Number Name Date Kind
5454883 Yoshie Oct 1995 A
9011614 Nakagaito Apr 2015 B2
20100230016 Kumagai Sep 2010 A1
20140230969 Sugimoto Aug 2014 A1
20150211098 Li Jul 2015 A1
20150259771 Vartanov Sep 2015 A1
Foreign Referenced Citations (17)
Number Date Country
102199737 Sep 2011 CN
102671017 Sep 2012 CN
102747280 Oct 2012 CN
102363859 Dec 2012 CN
102925801 Feb 2013 CN
102925802 Feb 2013 CN
103146997 Jun 2013 CN
H101745 Jan 1998 JP
2007119850 May 2007 JP
2011052320 Mar 2011 JP
2012036501 Feb 2012 JP
2012077336 Apr 2012 JP
1020120070603 Jun 2012 KR
1020120071615 Jul 2012 KR
2012144567 Oct 2012 WO
2012153013 Nov 2012 WO
WO 2013038741 Mar 2013 WO
Non-Patent Literature Citations (2)
Entry
English Machine Translation of JP 2011-052320. (Year: 2011).
PCT International Search Report, PCT/CN2014/073675, dated Jun. 23, 2014, 4 pages.
Related Publications (1)
Number Date Country
20160002759 A1 Jan 2016 US