The present application relates generally to treatment of wastewater and, more particularly, to methods and systems for purifying and recovering high toxicity wastewater including, e.g., wastewater produced by hydraulic fracturing (fracking) and other operations.
Fracking is a drilling process used to extract oil and natural gas from rock formations. The process involves pumping water down a wellhead at a pressure sufficient to penetrate underground formations, which results in the release of materials such as hydrocarbons, suspended solids, and dissolved solids. When the fracking operation is complete, the pressure is released, and some of the water flows back up the wellhead and is captured as fracking wastewater. The wastewater is typically contaminated with hydrocarbons, suspended solids, dissolved solids, metals, bacteria, and/or other contaminants. The wastewater must be treated before it can be released into the environment or reused in the fracking process.
In accordance with one or more further embodiments, a system is disclosed for reducing contaminants and dissolved solids in wastewater produced by hydraulic fracturing operations. The system includes a tank for receiving the wastewater from a wastewater source and mixing the wastewater with a stream of water having a lower level of total dissolved solids than the wastewater to produce a stream of diluted wastewater. Multiple reverse osmosis stages are provided for processing the stream of diluted wastewater including a first reverse osmosis stage connected in series to a second reverse osmosis stage, wherein the first reverse osmosis stage produces a first brine stream and a first permeate stream. The first brine stream is output as waste when the first brine stream reaches a given concentration of total dissolved solids, and the first permeate stream is output to the second reverse osmosis stage. The second reverse osmosis stage produces a second brine stream and a second permeate stream, wherein a portion of the second permeate stream is provided to the tank to dilute additional wastewater to be processed and the remainder of the second permeate stream is output as permeate, and wherein the second brine stream is provided to the tank to be mixed with the additional wastewater. The system further includes connection lines for operably connecting the tank and the reverse osmosis stages. The system also includes a pump system for pumping liquid streams among the tank and the reverse osmosis stages.
In accordance with one or more embodiments, a method is disclosed for reducing contaminants and dissolved solids in wastewater produced by hydraulic fracturing operations. The method includes the steps of: receiving the wastewater from a wastewater source; mixing, in a tank, the wastewater with a stream of water having a lower level of total dissolved solids than the wastewater to produce a stream of diluted wastewater; processing the stream of diluted wastewater in series in multiple reverse osmosis stages including a first reverse osmosis stage and a second reverse osmosis stage, wherein the first reverse osmosis stage produces a first brine stream and a first permeate stream, wherein the method further comprises outputting the first brine stream as waste when the first brine stream reaches a given concentration of total dissolved solids, and outputting the first permeate stream to the second reverse osmosis stage; wherein the second reverse osmosis stage produces a second brine stream and a second permeate stream, wherein the method further comprises outputting a portion of the second permeate stream to the tank to dilute additional wastewater to be processed and outputting the remainder of the second permeate stream as permeate, and outputting the second brine stream to the tank to be mixed with the additional wastewater.
Various embodiments disclosed herein relate to treatment of wastewater and, more particularly, to methods and systems for purifying and recovering high toxicity wastewater. While the various examples disclosed herein relate to treating fracking wastewater, the methods and systems in accordance with various embodiments are also usable with other types of wastewater including, but not limited to, generally any high salinity wastewater, lechate wastewater from landfills, industrial non-radiologic high toxicity wastewater, wastewater from coal or potash extraction, septic/sewage wastewater, wastewater produced from various mining operations, wastewater produced from oil and/or gas extraction processes, and wastewater produced from pharmaceutical and industrial processes.
The system 100 can operate independently or be an add-on to current fracking water treatment systems at fracking sites. In accordance with one or more embodiments, the system 100 is connected directly to waste storage tanks or bypass wastewater lines at a fracking site by any suitable connection apparatus (e.g., fasteners, threaded pipe, solvent welding, mechanical sleeve fittings, pressed fittings, and flanged fittings).
The system 100 includes multiple reverse osmosis (RO) membrane units 102 used to separate liquids from dissolved and suspended solids, in this case for removing contaminants and dissolved solids from fracking wastewater.
The system also includes concentration tanks 104, which receive the wastewater to be treated containing high levels of total dissolved solids (TDS). The concentration tanks 104 are used to control maximum salt load timing, as well as to provide TDS control.
The system also includes low TDS fluid feed tanks 106 holding water containing low levels of TDS used to dilute incoming high TDs fluid for purification as will be described further below.
The concentration tanks 104, the low TDS fluid feed tanks 106, and the reverse osmosis units 102 are connected by various connection lines as depicted in
The system also includes a wave AI control panel 110, which is used to display system information and enable manual input for parameter changes. The wave AI system monitors and adjusts the system parameters for optimal efficiencies. The system can monitor various conditions and aspects of the system including, but not limited to, pressure, flow rate, conductivity, permeate flux, brine build up, and backwashing operations. It accomplishes this by reading real-time feedback from in-line sensors and adjusting mechanical components, such as the Variable Frequency Drive (VFD) for the revolutions per minute (RPM) speed of the motor, which increases or decreases flow, as well as motorized ball valves that control internal pressure. Further details of the system are provided below in connection with
In accordance with one or more embodiments, the TDS levels in the brine and permeate outputs can be adjusted as desired to meet particular needs by modulating the pressure in the system, and by varying the water concentration in the system by modulating the dilution level, before the concentrate/brine wastewater is removed from the system. This is controlled by programming the Wave AI system to meet particular use specifications. The system is configured to automatically adjust itself using the Wave AI to maintain the desired levels once initially programmed.
Brine wastewater TDS can also be controlled by the number of loops in the system. For example, if the water starts at 1,000 ppm TDS, it increases by 10% each loop the water takes within the system, so after the first loop, the TDS would be 1,100 ppm. Through this, the system can generate whatever brine wastewater concentration level is desired. For example, the system can concentrate the brine wastewater to a high enough TDS level to allow for the use/attachment to the system of a secondary element extraction technology to enable removal of various elements in the brine including, e.g., salt, Lithium, and other commoditizable elements. This can also be programmed and controlled by the Wave AI system.
The system outputs brine at a brine port 112, and outputs permeate at a permeate port 114.
The system 100 processes the fracking wastewater in multiple RO stages 102 to remove contaminants and dissolved solids. As illustrated in the
The wastewater that was not recovered by the reverse osmosis stages is rejected from the system by brine port 112 as a highly concentrated brine. This wastewater can be processed in an evaporator to remove the water, producing a near zero liquid waste for chemical recapture. When set up in a one stage configuration, the system will output gray-brackish water levels after a one stage reverse osmosis section. This water can be further purified by linking systems in series.
By way of example, fracking wastewater can have a TDS concentration above 45,000 PPM. In the
In accordance with one or more embodiments, the system is designed to be rapidly deployable at a fracking site.
The system 200 can operate independently or be an add-on to current fracking water treatment systems at fracking sites. In accordance with one or more embodiments, the system 200 is connected directly to waste storage tanks or bypass wastewater lines at a fracking site by any suitable connection apparatus (e.g., fasteners, threaded pipe, solvent welding, mechanical sleeve fittings, pressed fittings, and flanged fittings). In the
The system 200 processes the fracking wastewater in multiple stages to remove contaminants and dissolved solids. In the first stage, the wastewater, which contains high levels of total dissolved solids (TDS), is diluted with water containing low levels of TDS inside a mixing tank 4. The water containing low levels of TDS can be potable water provided to the system or recovered by the system and provided from tank 2, which receives the low TDS water through pipe 3 from a polishing step RO (described below). It is also possible to use gray water recovered by the system 200 to dilute the fracking wastewater depending on the TDS level of the wastewater. Gray water can be used if low TDS water is not available, but this will lower the efficiency of the system. The goal of the dilution step is to decrease the input wastewater's TDS level as much as possible. The ratio of the low TDS water stream to the high TDS water stream is based on the contamination and dissolved solids levels of both streams.
The second stage filters and decontaminates the diluted wastewater to protect equipment used in subsequent stages. The diluted wastewater mixed in tank 4 is flowed through filters 5 to remove suspended particles and subjected to a UVC (ultraviolet) pretreatment disinfection process 6. This stage can also include other filtration/decontamination equipment such as, e.g., settling tanks and chemical addition tanks.
Water from the second filtration/decontamination stage is pumped by a high-pressure pump 7 to the third stage, which is a reverse osmosis (RO) purification stage. This stage uses two levels of RO purification. The first RO stage 8 uses low salt rejection membranes, which act as a pre-filter to a second RO stage 9. These membranes allow a percentage of incoming ions and dissolved solids through to the permeate side of the RO system. This acts as “flow control” for contamination and dissolved solids. By controlling the dissolved solid content, the system directs a capped amount of dissolved solids that can be in one water stream, which enables the second-high recovery RO stage 9 to work optimally.
The second RO stage 9 removes the lingering ions and dissolved solids from the water. The second RO stage 9 re-pressurizes the water and then filters the water through a high recovery reverse osmosis system. All RO stages can use pressure exchangers to reduce power consumption.
The system has three outputs: potable water, gray water, and brine. The wastewater that was not recovered by RO is rejected from the system through pipe 10 as brine. This water has significantly reduced contamination, ions, and dissolved solids, but does not meet gray water standards. The second output is gray water, which comes directly from the second RO stage 9 through pipe 12. This water has been stripped of most chemicals and dissolved solids (dissolved solid reduction of 40% or higher can be obtained). This water can be further cleaned by using a RO polishing stage 13, which uses a low-pressure motor to cycle water through a RO set-up to produce potable water. This water can be used for low TDS applications through pipe 11 or to be recycled back in to the low TDS water system.
In accordance with one or more embodiments, the system is designed to be rapidly deployed at a fracking site.
In one non-limiting example, the system 100 can include the following features with exemplary purification rates shown in
Low salt rejection membranes in the first RO stage 8 are brackish water membranes that have purification range of 2,000-15,000 PPM. If their range is exceeded, e.g., 50,000 PPM, the membranes cannot block higher amounts of salts which pass through to the permeate side of the membrane. This bleed through effect is based on pressure and feed PPM concentration. Controlling this allows the system to use membranes as a contamination concentration switch. This lets the system have direct control over contamination levels in each stage by increasing or decreasing pressure if the feed concentration stays constant.
High rejection membranes for the second RO stage 9 are membranes built for salt or brine water. These membranes block 95% of all salts at higher ranges.
One non-limiting example of a brackish membrane is the DOW FILMTEC HRLE-440i membrane. One non-limiting example of a salt membrane is the DOW FILMTEC SW30HRLE-440i membrane. Other suitable membranes are also possible.
Having thus described several illustrative embodiments, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to form a part of this disclosure, and are intended to be within the spirit and scope of this disclosure. While some examples presented herein involve specific combinations of functions or structural elements, it should be understood that those functions and elements may be combined in other ways according to the present disclosure to accomplish the same or different objectives. In particular, acts, elements, and features discussed in connection with one embodiment are not intended to be excluded from similar or other roles in other embodiments.
Additionally, elements and components described herein may be further divided into additional components or joined together to form fewer components for performing the same functions.
Accordingly, the foregoing description and attached drawings are by way of example only, and are not intended to be limiting.
This application claims priority from U.S. Provisional Patent Application No. 62/456,435 filed on Feb. 8, 2017 entitled METHODS AND SYSTEMS FOR TREATING FRACKING WASTEWATER, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62456435 | Feb 2017 | US |