The present disclosure relates to providing a high utilization alternating current (AC)-line input light emitting diode (LED) driver, and more particularly, to providing a driver that automatically transitions to the most (or more) favorable configuration of the LEDs based on the instantaneous line voltage input.
It is frequently desirable to power LEDs from the AC line. In North America, this is nominally 120VAC or 277VAC; in other parts of the world, this is nominally 240VAC. The actual line voltage may deviate from this nominal by +10% or more on a regular basis.
LEDs typically have a forward voltage while conducting current of approximately 3V. This voltage varies somewhat as a function of the drive current and temperature, typically ±20%. However, LEDs, being diodes, need to be driven with a current rather than a voltage. For this reason, LEDs are frequently driven by switch-mode power supplies (SMPS), which convert the high-voltage AC line voltage to a low-voltage current.
However, SMPS tend to be expensive, and may have relatively low lifetime compared with that of the LEDs they are driving. For this reason, some designs use a string of LEDs, with a sufficient number of LEDs in series in the string to present a forward voltage of approximately the line voltage. Some designs place the LED string directly across the AC line; however, since LEDs are unidirectional, the LEDs in this arrangement conduct only during half of each line cycle. Other designs first rectify the AC line and then apply the rectified voltage to the string of LEDs; in this arrangement, the LEDs conduct during both halves of the line cycle, thus providing double the light output of the first configuration.
However, such designs suffer from a number of problems. One of these problems is the low utilization of the LEDs, which is to say, the amount of light produced per LED is relatively low. Since the string of LEDs has a forward voltage roughly comparable with the line voltage, the LEDs don't turn on at all until a substantial fraction of the peak line voltage is reached by the AC line. They are thus off for a significant fraction of the line cycle, resulting in less light output per LED than if they were on longer. Furthermore, since the LEDs are off for a significant fraction of the line cycle, line frequency flicker may be more noticeable with this system than if they were on longer.
It would be desirable to have an AC drive circuit that conducts current through the LEDs for a larger fraction of the line cycle, to improve LED utilization and reduce flicker. It would also be desirable that it would be inexpensive and have a long lifetime.
Some embodiments described herein relate to an AC-line driver for LEDs, such that the above-described primary problem is effectively solved. An AC-line driver for LEDs can produce a certain current throughout a specified range of the instantaneous line voltage, and then re-configure to produce another certain current throughout another specified range of the instantaneous line voltage. It provides for high LED utilization and low flicker, and also provides for high efficiency, low cost and long lifetime.
In some embodiments, a rectifier bridge and two sets of strings of LEDs can be included. The first set of strings can be connected from the output of the bridge, through a controllable element such as a transistor or a current sink, to ground. The second set of strings of LEDs can be connected through a transistor to the output of the bridge, and is then connected, either directly or through a controllable element such as a transistor or a current sink, to ground. The output of the first set of strings of LEDs is, in addition to being connected to a controllable element, also connected to a diode, and potentially also to additional components as described below, which in turn connects to the input of the second set of strings of LEDs.
In such embodiments, while the instantaneous line voltage is in a first, lower, input range of the voltage, the controllable element for the first set of strings of LEDs is on, as is also the controllable element from the output of the bridge to the input to the second set of strings of LEDs. The controllable element for the second set of strings of LEDs, if present, is on in this configuration. In this configuration, both sets of strings of LEDs are connected in parallel to the output of the bridge, and are both powered on. In one embodiment, the strings of LEDs and the controllable elements are configured such that a specific current is produced in the first range of the instantaneous line voltage.
While the instantaneous line voltage is in a second, higher, input range of the line voltage, the controllable element for the first set of strings of LEDs is off, as is also the controllable element from the output of the bridge to the input to the second set of strings of LEDs. The controllable element for the second set of strings of LEDs, if present, remains on in this configuration. In this configuration, the current from the bridge goes through the first set of strings of LEDs, then through the diode and additional components if present, and then through the second set of strings of LEDs, and thence through the controllable element, if present, to ground. In one embodiment for a 120VAC line input, the first input voltage range is 0-120V and the second input voltage range is 120V-168V.
The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification.
a is a system block diagram of an AC-line input LED circuit 10, according to an embodiment.
b is an example graph showing voltage as a function of time for the AC line shown in
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawing and the description to refer to the same or like parts.
According to the design characteristics, a detailed description of the embodiments is given below.
a is a system block diagram of an AC-line input LED circuit 10, according to an embodiment.
As shown in
The connection of the first 121 of the two sets of strings of LEDs 120 to the transistor 140 is also connected to a diode 170. The diode 170 is connected to a third set of strings of LEDs 180, although this third set of strings of LEDs 180 may not be present in all cases. The third set of strings of LEDs 180 may instead be replaced or supplemented by one or more resistors and/or one or more zener diodes. The third set of strings of LEDs 180, if present, or the one or more resistors and/or one or more zener diodes, if present, is then connected to the connection between the transistor 150 and the second 122 of the two sets of strings of LEDs 120. If the third set of strings of LEDs 180 is not present, nor the one or more resistors and/or one or more zener diodes, then the diode 170 is instead connected directly to the connection between the transistor 150 and the second 122 of the two sets of strings of LEDs 120.
As shown in
When the output 250 of the comparator 230 is high, all three transistors 140, 150, and 160 if present, are in their ‘on’ state, shown as a closed switch. Transistor 140 connects the first 121 of the two sets of strings of LEDs 120 to ground, causing them to experience voltage equal to the line voltage and conduct current. Transistor 150 connects the output voltage of the bridge 130 to the input of the second 122 of the two sets of strings of LEDs 120. Transistor 160 or a current sink, if present, connects the second 122 of the two sets of strings of LEDs 120 to ground. If transistor 160 or a current sink is not present, the second 122 of the two sets of strings of LEDs 120 may be connected directly to ground. As the second 122 of the two sets of strings of LEDs 120 is connected to the output of the bridge 130 and ground, through the transistor 150 which is on, they also experience voltage equal to the line voltage, and so they also conduct current. Since the diode 170 and the third set of strings of LEDs 180 and/or resistors and/or zener diodes has the output of the bridge 130 and ground applied across them, the diode 170 is reverse-biased, and is non-conducting in this situation. In this configuration, the two sets of strings of LEDs 120 are in parallel, thus producing the correct current in each string while the line voltage is in this lower voltage range.
Although the above-discussed embodiment is shown with two possible ranges of the instantaneous line voltage, any number of ranges is possible in other embodiments with an appropriately alternative control system(s). Similarly, although the above-discussed embodiment is shown with two possible LED set configurations, series and parallel, additional configurations are possible in other embodiments. For example, in such alternative embodiments, the additional configurations can include various combinations of LEDs connected in series and LEDs connected in parallel, effectively forming various possible hybrid configurations. Such additional possible hybrid configurations can be implemented, for example, with the alternative control system(s) having more than two ranges of instantaneous line voltage.
It will be apparent that various modifications and variation can be made to the disclosed embodiments. In view of the foregoing, it is intended that the disclosed embodiments cover modifications and variations.
This patent application claims priority to U.S. Provisional Patent Application No. 61/979,147 filed on Apr. 14, 2014 and entitled “High Utilization LED Driver”, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61979147 | Apr 2014 | US |