High velocity, combustion-powered, fastener-driving tool

Information

  • Patent Grant
  • 5806747
  • Patent Number
    5,806,747
  • Date Filed
    Friday, October 17, 1997
    27 years ago
  • Date Issued
    Tuesday, September 15, 1998
    26 years ago
Abstract
In a combustion-powered, fastener-driving tool with a combustion chamber, a piston chamber communicating with the combustion chamber, a driving piston movable within the piston chamber between an initial position and a terminal position, and a driving blade mounted to the driving piston so as to be conjointly movable with the driving piston, the driving piston, the driving blade, and the piston chamber are arranged so that combustion in the combustion chamber imparts energy to the driving piston and the driving blade so as to drive the driving piston and the driving blade from the initial position toward the terminal position with the driving blade preceding the driving piston, over a stroke having a length sufficient to enable the driving blade to transfer more than eight tenths of the maximum, transferable energy to a fastener engaged by the driving blade as the driving piston and the driving blade approach the terminal position. The piston chamber has an inner, cylindrical wall. The driving piston has an annular portion with an annular groove seating a piston ring or has two axially spaced, annular portions, at least one of which has an annular groove seating a piston ring engaging the inner, cylindrical wall. The driving piston, the driving blade, and the piston chamber are arranged so that the driving piston and the driving blade are guided solely within the axial length of the driving piston, over at least substantially all of the stroke.
Description

TECHNICAL FIELD OF THE INVENTION
This invention pertains to a high velocity, combustion-powered, fastener-driving tool, in which a driving piston, a driving blade, and a piston chamber are arranged so that combustion of a fuel in a combustion chamber imparts energy to the driving piston and the driving blade so as to drive the driving piston and the driving blade over a stroke having a length sufficient to enable the driving blade to transfer more than one half of the maximum, transferable energy to a fastener, and so that the driving piston and the driving blade are guided solely within the axial length of the driving piston, over at least substantially all of the stroke.
BACKGROUND OF THE INVENTION
Combustion-powered, fastener-driving tools of a type exemplified in Nikolich U.S. Pat. No. Re. 32,452 and Nikolich U.S. Pat. No. 5,197,646 are available commercially from ITW Paslode (a unit of Illinois Tool Works Inc.) of Vernon Hills, Ill., and are used widely in building construction.
Typically, such a tool comprises a combustion chamber, a piston chamber communicating with the combustion chamber, a driving piston movable within the piston chamber over a stroke between an initial position and a terminal position, and a driving blade mounted to the driving piston so as to be conjointly movable with the driving piston. Combustion in the combustion chamber imparts energy to the driving piston and the driving blade so as to drive the driving piston and the driving blade over a stroke from an initial position toward a terminal position with the driving blade preceding the driving piston. Typically, the driving blade is guided by passing through or between guides, over the entire stroke of the driving blade.
Generally, such a tool also comprises means for sensing when the tool is pressed against a workpiece, for enabling the tool when the tool is pressed against a workpiece, and for disabling the tool when the tool is not pressed against a workpiece, together with means including a trigger for initiating combustion in the combustion chamber when the tool is enabled and the trigger is actuated.
It has been found that such tools known heretofore transfer less than one half of the maximum, transferable energy to a fastener engaged by the driving blade as the driving piston and the driving blade approach the terminal position. It would be highly desirable to provide such a tool that could transfer substantially more of the maximum, transferable energy to a fastener engaged by the driving blade as the driving piston and the driving blade approach the terminal position.
SUMMARY OF THE INVENTION
A first aspect of this invention stems from a discovery that increasing the ratio of the piston displacement volume to the combustion chamber volume, as by lengthening the stroke of the piston, increases the fraction of the imparted energy that can be thus transferred until a maximum, transferable energy is approached, whereupon such fraction begins to fall as such ration is increased further. A second aspect of this invention stems from a discovery that, since friction within the tool affects the fraction of the imparted energy that can be thus transferred and since the driving blade tends to buckle if elongated excessively, it is advantageous for the driving piston and the driving blade to be guided solely within the axial length of the driving piston, over substantially all of the stroke, so as to minimize friction within the tool.
According to the first aspect of this invention, this invention provides a combustion-powered, fastener-driving tool of the type noted above, wherein the driving piston, the driving blade, and the piston chamber are arranged so that combustion in the combustion chamber having a combustion chamber volume imparts energy to the driving piston and the driving blade so as to drive the driving piston and the driving blade from the initial position toward the terminal position, through a piston displacement volume, with the driving blade preceding the driving piston, wherein the ratio of the piston displacement volume to the combustion chamber volume is sufficient to enable the driving blade to transfer more than one half of the maximum, transferable energy to a fastener engaged by the driving blade as the driving piston and the driving blade approach the terminal position, preferably being sufficient to enable the driving blade to transfer more than eight tenths of the maximum, transferable energy to a fastener engaged by the driving blade as the driving piston and the driving blade approach the terminal position. The ratio of the piston chamber volume to the combustion chamber volume can be advantageously increased by lengthening the stroke of the piston.
According to the second aspect of this invention, this invention provides a combustion-powered, fastener-driving tool of the type noted above, wherein the driving piston, the driving blade, and the piston chamber are arranged so that the driving piston and the driving blade are guided solely within the axial length of the driving piston, over at least substantially all of the stroke.
Preferably, the piston chamber has an inner, cylindrical wall, and the driving piston has an annular portion with an annular groove, in which a piston ring is seated and engages the inner, cylindrical wall.
These and other objects, features, and advantages of this invention are evident from the following description of two contemplated embodiments of this invention with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective, schematic view of elements of a high velocity, combustion-powered, fastener-driving tool constituting one contemplated embodiment of this invention.
FIG. 2, on a larger scale, is a sectional view taken along line 2--2 of FIG. 1, in a direction indicated by arrows.
FIG. 3, on a similar scale, is a fragmentary, cross-sectional view taken through an axis of the tool shown in FIG. 1.
FIG. 4, on a similar scale, is a fragmentary, cross-sectional view taken through an axis of a high velocity, combustion-powered, fastener-driving tool constituting an alternative embodiment of this invention.
FIG. 5 is a sectional view taken along line 5--5 of FIG. 4, in a direction indicated by arrows.
FIG. 6 is a simplified, longitudinal section taken through a high velocity, combustion-powered, fastener-driving tool constituting a preferred embodiment of this invention.
FIG. 7 is a graph of piston chamber volume versus energy (joules) for such tools having combustion chambers of six different volumes.
FIG. 8 is a graph of (inches) versus energy (joules) for such tools having combustion chambers of six different volumes.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
As shown schematically in FIGS. 1, 2, and 3, a high velocity, combustion-powered, fastener-driving tool 10 of the type noted above constitutes one contemplated embodiment of this invention. Except as illustrated and described herein, the tool 10 may be substantially similar to one of the combustion-powered, fastener-driving tools disclosed in Nikolich U.S. Pat. No. Re. 32,452 and No. 5,197,646, the disclosures of which are incorporated herein by reference.
Being of the type noted above and deriving motive power from combustion of a gaseous fuel, the tool 10 comprises a housing structure 20 and a cylinder body 22, which is mounted fixedly within the housing structure 20, and which defines a combustion chamber 30, a piston chamber 40 communicating with the combustion chamber 30, and a nosepiece 32 communicating with the piston chamber 40. The combustion chamber 30, the piston chamber 40, and the nosepiece 32 define an axis of the tool 10. The combustion chamber 30 is adapted to contain a mixture of such a fuel and air. The nosepiece 32 is adapted to receive a fastener and to guide the fastener as the fastener is driven.
Moreover, the tool 10 comprises a driving piston 50 movable axially within the piston chamber 40 over a stroke between an initial position, which is an upper position in the drawings, and a terminal position, which is a lower position in the drawings. The driving piston 50 has an axial length, to which reference is to be later made. Furthermore, the tool 10 comprises a driving blade 60, which is mounted to the driving piston 50 so as to be conjointly movable with the driving piston 50. Generally, the terminal position is defined by an annular, elastomeric bumper 90, which is arranged to arrest the driving piston 50 as the driving piston 50 and the driving blade 60 approach the terminal position. The combustion chamber 30 has a volume, which is measured with the driving piston 50 and the driving blade 60 in the initial position. As the driving piston 50 and the driving blade 60 are moved from the initial position into the terminal position, the driving piston 50 is displaced through a volume, which may be conveniently called the piston displacement volume.
As disclosed in Nikolich U.S. Pat. No. 5,197,646 noted above, the tool 10 comprises means including a workpiece-contacting element for sensing when the tool is pressed against a workpiece, for enabling the tool 10 when the tool 10 is pressed against a workpiece, and for disabling the tool 10 when the tool 10 is not pressed against a workpiece, means including a trigger for initiating combustion of a gaseous fuel mixed with air in the combustion chamber 30 when the trigger is actuated. Details of these means and other elements of the tool 10 are outside the scope of this invention and can be readily supplied by persons having ordinary skill in the art from the Nikolich patents noted above and from other sources.
As discussed above, the first aspect of this invention stems from the discovery that increasing the ratio of the piston displacement volume to the combustion chamber volume, as by lengthening the stroke of the piston, increases the fraction of the imparted energy that can be thus transferred until a maximum, transferable energy is approached, whereupon such fraction begins to fall. This discovery is illustrated by the graph of FIG. 7, which shows the energy transferable by a driving blade to a fastener at strokes of different lengths, for combustion-powered, fastener-driving tools of the type noted above with different combustion chamber volumes, and by the graph of FIG. 8, which shows the energy transferable by a driving blade to a fastener at different piston displacement volumes for combustion-powered, fastener-driving tools of the type noted above with different combustion chamber volumes. All numbers shown on the graphs (FIGS. 7 and 8) are approximate.
According to the first aspect of this invention, the driving piston 50, the driving blade 60, and the piston chamber 40 are arranged so that combustion in the combustion chamber 30 imparts energy to the driving piston 50 and the driving blade 60 so as to drive the driving piston 50 and the driving blade 60 from the initial position toward the terminal position with the driving blade 60 preceding the driving piston 50, over a stroke having a length sufficient to enable the driving blade 60 to transfer more than one half of the maximum, transferable energy to a fastener engaged by the driving blade 60 as the driving piston 50 and the driving blade 60 approach the terminal position, preferably over a stroke having a length sufficient to enable the driving blade 60 to transfer more than eight tenths of the maximum, transferable energy to a fastener engaged by the driving blade 60 as the driving piston 50 and the driving blade 60 approach the terminal position.
As an example of such tools known heretofore, one model of a combustion-powered, fastener-driving tool available commercially from Illinois Tool Works Inc. has a combustion chamber with a volume of approximately 17 cubic inches and a stroke of approximately 3.5 inches, utilizes a given quantity of a gaseous fuel, and is capable of transferring approximately 50 joules to a fastener, which energy (50 joules) is approximately 0.417 (less than one half) of the maximum energy (120 joules) transferable in such a tool. As an example of such tools embodying this invention, an experimental, combustion-powered, fastener-driving tool having a combustion chamber with a volume of approximately 17 cubic inches but a stroke of approximately seven inches and utilizing approximately the same quantity of the same fuel is capable of transferring approximately 100 joules to a fastener, which energy (100 joules) is approximately 0.833 times (more than eight tenths) of the maximum energy (120 joules) transferable in such a tool.
As discussed above, the second aspect of this invention stems from a discovery that for reducing friction within such a tool so as to increase the fraction of the maximum, transferable energy that can be thus transferred it is advantageous for the driving piston 50 and the driving blade 60 to be guided solely within the axial length of the driving piston 50, over substantially all of the stroke.
Thus, the piston chamber 40 has an inner, cylindrical wall 42, and the driving piston 50 has an annular portion 52 with an annular groove 54, in which a piston ring 56 is seated. The piston ring 56 engages the inner, cylindrical wall 42, so as to provide a gas-tight seal between the driving piston 50 and the cylindrical wall 42 as the driving piston 50 and the driving blade 60 are driven axially. The driving piston 50, which has a small mass, has a central hub 70, which trails the annular portion 52, three radial arms 72, which radiate from the central hub 70, and three axially extending guides 74, each of which is connected to the central hub 70 by one of the radial arms 72 and each of which has an outer face 76 conforming to the cylindrical wall 42. As the driving piston 50 and the driving blade 60 are driven axially, these axially extending guides 74 help to guide the driving piston 50 and the driving blade 60 along the cylindrical wall 42 and serve to prevent tilting of the driving piston 50 and the driving blade 60 from the axis to any significant degree.
As shown schematically in FIGS. 4 and 5, a high velocity, combustion-powered, fastener-driving tool 100 of the type noted above constitutes an alternative embodiment of this invention. The tool 100 is designed to drive fasteners exemplified by the illustrated fastener F of a type exemplified in Almeras et al. U.S. Pat. No. 4,824,003 and Dewey et al. U.S. Pat. No. 5,193,729. Except as illustrated and described herein, the tool 100 may be substantially similar to the tool 10 and to one of the combustion-powered, fastener-driving tools disclosed in Nikolich U.S. Pat. No. Re. 32,452 and No. 5,197,646, supra.
The tool 100 comprises structure defining a combustion chamber (not shown) along with structure defining a piston chamber 120 having an inner, cylindrical wall 122, a driving piston 130 movable axially within the piston chamber 120 over a stroke between an initial position, which is an upper position in the drawings, and a terminal position, which is a lower position in the drawings. The driving piston 130 is shown in the terminal position.
Furthermore, the tool 100 comprises a driving blade 160, which is mounted to the driving piston 130 so as to be conjointly movable with the driving piston 130. Generally, the terminal position is defined by an annular, elastomeric bumper 170, which is arranged to arrest the driving piston 130 as the driving piston 130 and the driving blade 160 approach the terminal position.
As shown, the driving piston 130 has a central hub 132 between two axially spaced, annular portions 134, 136, a leading one of which 134 has an annular groove 138 with a piston ring 170 seated in the annular groove 138 and engaging the inner, cylindrical wall 122. Also, the trailing portion 136 has four generally cylindrical openings 180, so as to reduce the mass of the driving piston 130.
As shown in FIG. 6, a combustion-powered, fastener-driving tool 200 for driving fasteners like the fastener F shown in FIG. 4 constitutes a preferred embodiment of this invention. The tool 200 is similar to the tools described above, particularly the tool 10, and comprises structure defining a combustion chamber 210, structure defining a piston chamber 220 having an inner, cylindrical wall 222, a driving piston 230 movable axially within the piston chamber 220 over a stroke between an initial position, which is an upper position in the drawings, and a terminal position, which is a lower position in the drawings.
Being similar to the driving piston 50, the driving piston 230 has an annular portion 232 with an annular groove 234, in which a piston ring 236 is seated. The piston ring 236 engages the inner, cylindrical wall 222, so as to provide a gas-tight seal between the driving piston 230 and the cylindrical wall 222 as the driving piston 230 and the driving blade 260 are driven axially. The driving piston 230, which has a small mass, has a central hub 240, which trails the annular portion 232, three radial arms 242, which radiate from the central hub 240, and three axially extending guides 244, each of which is connected to the central hub 240 by one of the radial arms 242 and each of which has an outer face 246 conforming to the cylindrical wall 222.
The tool 200 comprises means including a workpiece-contacting element 240 for sensing when the tool 200 is pressed against a workpiece, for enabling the tool 200 when the tool 200 is pressed against a workpiece, and for disabling the tool 200 when the tool 200 is not pressed against a workpiece, means including a trigger 250 for initiating combustion of a gaseous fuel mixed with air in the combustion chamber 30 when the trigger is actuated. Details of the means including the workpiece-contacting element 240, the means including the trigger 240, and other elements of the tool 200 are outside the scope of this invention and can be readily supplied by persons having ordinary skill in the art from the Nikolich patents noted above and from other sources.
Furthermore, the tool 200 comprises a driving blade 260, which is mounted to the driving piston 230 so as to be conjointly movable with the driving piston 230. Generally, the terminal position is defined by an annular, elastomeric bumper 270, which is arranged to arrest the driving piston 230 as the driving piston 230 and the driving blade 260 approach the terminal position.
The second aspect of this invention, as described above, may prove to be also advantageous in a pneumatically powered, fastener-driving tool of a type exemplified in Golsch U.S. Pat. No. 4,932,480, as well as in a combustion-powered, fastener-driving tool.
Various modifications may be made in the illustrated embodiments described above without departing from the scope and spirit of this invention.
Claims
  • 1. A combustion-powered, fastener-driving tool comprising structure defining a combustion chamber, structure defining a piston chamber communicating with the combustion chamber, and a driving piston movable with the piston chamber between an initial position and a terminal position, the piston chamber having an inner, cylindrical wall defining an axis, wherein the driving piston has a portion having means for providing a gas-tight seal between the driving piston and the inner, cylindrical wall of the piston chamber, a central hub extending axially from the piston portion having said means, plural arms extending radially from the central hub, toward the inner, cylindrical wall of the piston chamber, and plural guides, each of which guides conforms to the inner, cylindrical wall of the piston chamber and each of which guides is connected to the central hub by one of the radially extending arms.
  • 2. The tool of claim 1 wherein the piston portion having said means has an annular groove and wherein said means comprises a piston ring seated within the annular groove, the piston ring engaging the inner, cylindrical wall of the piston chamber.
Parent Case Info

This application is a division of application Ser. No. 08/536,854 filed Sep. 29, 1995 which application is now: U.S. Pat. No. 5,722,578.

US Referenced Citations (38)
Number Name Date Kind
RE32452 Nikolich Jul 1987
620287 Donnelly Feb 1899
895155 Burgess, Jr. Aug 1908
1366448 Erickson Jan 1921
1378353 Hutsell May 1921
2655901 Brown May 1951
2995113 Steiner Aug 1961
3010430 Allen et al. Nov 1961
3040326 De Caro Jun 1962
3042008 Liesse Jul 1962
3074071 De Caro Jan 1963
3133287 Kopf May 1964
3424361 Bayer Jan 1969
3468465 Mulno Sep 1969
3497124 Temple et al. Feb 1970
3828656 Biddle et al. Aug 1974
3850359 Obergfell Nov 1974
3902238 Monson Sep 1975
3915242 Bell Oct 1975
3918619 Termet Nov 1975
3953398 Haytayan Apr 1976
4159070 Monson Jun 1979
4192391 Kastreuz et al. Mar 1980
4286496 Harris Sep 1981
4687126 Brosius et al. Aug 1987
4762051 Besic et al. Aug 1988
4867252 Sudnishnikov et al. Sep 1989
4890778 Hawkins Jan 1990
5029744 Pai Jul 1991
5038665 Aske et al. Aug 1991
5170922 Ehmig et al. Dec 1992
5181450 Monacelli Jan 1993
5197646 Nikolich Mar 1993
5220123 Oehry Jun 1993
5239829 Blake Aug 1993
5329839 Ehmig Jul 1994
5484094 Gupta Jan 1996
5558264 Weinstein Sep 1996
Foreign Referenced Citations (4)
Number Date Country
44 09 755 A1 Mar 1994 DEX
358390 Nov 1961 CHX
366803 Jan 1963 CHX
500 816 Dec 1970 CHX
Divisions (1)
Number Date Country
Parent 536854 Sep 1995