This invention relates in general to well pumps, and in particular to a well pump system using a progressive cavity pump that discharges through a high velocity tubing string.
Submersible pumping systems are often used in hydrocarbon producing wells for pumping fluids from within the well bore to the surface. These fluids are generally liquids and include produced liquid hydrocarbon as well as water. One type of system employs an electrical submersible pump (ESP). ESP's are typically disposed at the end of a length of production tubing and have an electrically powered motor. Often, electrical power may be supplied to the pump motor via cable strapped to the exterior of the production tubing. Another system uses progressing cavity pumps (PCP), which are positive displacement pumps that consist of a helical steel rotor inside a synthetic elastomer stator bonded to a steel tube. As the rotor turns within the stator, fluid moves through the pump from cavity to cavity. The resulting pumping action increases the pressure of the fluid, allowing production to the surface.
One technique involves suspending an electrical motor on a string of production tubing in the well. A progressing cavity pump in lowered through the production tubing and stabs into engagement with the previously installed motor. The line, which may be a wireline, used to lower the pump through the production tubing is retrieved. Supplying power to the motor rotates the rotor of the pump, which pumps well fluid out the upper end of the pump into the production tubing.
While this technique works fine in many wells, in some wells, debris in the well fluid can settle out and drift down onto the pump, eventually hampering flow. For example, in coal bed methane producing wells, the pump is employed for dewatering, and the gas flows up the annulus surrounding the production tubing. Coal fines are typically entrained in the water and tend to accumulate. This accumulation requires subsequent cleanout.
In this invention, the well fluid pumped by the pump is produced up an inner tubing string rather than the production tubing. A motor is secured to a string of outer tubing and lowered into the well. A rotary pump is secured to a string of inner tubing and lowered into the outer tubing. When the pump reaches the motor, it stabs into cooperative engagement with the motor. The operator leaves the inner tubing string attached to the discharge of the pump.
Supplying power to the motor rotates the pump, causing well fluid to flow into the outer tubing and to an intake of the pump. The pumps discharge the well fluid into the inner tubing, which flows to an upper end of the well. If the well produces gas, such as a coal bed methane well, the gas flows up the annulus surrounding the production tubing.
a and 3b comprise a further enlarged sectional view of a lower portion of the progressive cavity pump assembly of
a and 4b comprise an enlarged sectional and schematic view of a lower portion of the outer tubing string and motor of
a-5c comprise an enlarged sectional and schematic view of the inner string of
Referring to
A string of outer tubing 13 is shown supported in casing 11. Outer tubing 13 is typically made up of sections of conduit, each approximately thirty feet in length, that are screwed together to make up a string. The upper end of outer tubing 13 is supported at the wellhead. Outer tubing 13 is not cemented in the wellbore, thus is not considered to be a casing. In the prior art, tubing of this nature is typically the conduit through which production fluids flow to the surface.
A motor 15 is carried at the lower end of outer tubing 13. Motor 15 is an electrical motor that in this example but it could alternately be another type, such as a hydraulic motor. Motor 15 is connected to a gear box 17 to reduce the speed of rotation in motor 15. Gear box 17 is connected to a seal section 19 that reduces pressure differential between lubricant in motor 15 and the well bore fluid in casing 13. Seal section 19 is attached to an intake housing 21, which in turn connects to a lower end of outer tubing 13. A power line or cable 23 extends alongside outer tubing 13 to motor 15 for supplying power to operate motor 15. In this embodiment, motor 15 has a larger outer diameter than a drift inner diameter of tubing 13, but it could be smaller. The drift inner diameter is considered to be the nominal inner diameter throughout the length of outer tubing 13.
Intake housing 21 has a plurality of intake ports 29 for receiving well fluid from casing 11. The producing formation in this example produces gas and water, but the well could alternately or also produce oil. The well fluid flowing into intake housing 21 is principally a liquid, normally water and/or oil. The well fluid in this example also contains gas, which separates from the water by gravity and flows up the outer tubing annulus in casing 11 surrounding outer tubing 13. In this example, the water is removed from the well to prevent a buildup of water diminishing the gas flow.
A string of inner tubing 31 is installed within outer tubing 13. Inner tubing string 31 may be made up of sections of conventional small diameter conduit screwed together; or it may be made up of coiled tubing. Both inner tubing 31 and outer tubing 13 are suspended at the surface by a wellhead 32. Wellhead 32 has a water outlet 33 in fluid communication with inner tubing 31. Wellhead 32 has a gas outlet 34 in fluid communication with the outer tubing annulus surrounding outer tubing 13.
A rotary pump 35 is secured to the lower end of inner tubing 31. Pump 35 is stabbed into cooperative engagement with motor 15. Intake ports 36 in the assembly of pump 35 draw well fluid that has flowed in through intake housing ports 29. The well fluid flows to pump 35 and is pumped up inner tubing 31 and out water outlet 33.
Pump 35 could be of different rotary types, such as a centrifugal pump, a progressive cavity pump or a screw pump. In this example, it comprises a progressive cavity pump that optionally includes lower and upper flex shaft housings 41A and 41B extending downward and coupled to base housing 37. A flex shaft 44, located within flex shaft housings 41A and 41B, has a lower end connected to base coupling 39. Flex shaft 44 is a long rod, usually of metal, that is restrained by bushings at its lower end to rotate concentrically on a single axis. Lower flex shaft housing 41A extends into intake housing 21 (
Flex shaft 44 is attached on its upper end to a rotor 45 of progressing cavity pump 35, Rotor 45 has a double helical exterior and is normally made of metal such as steel. Rotor 45 is rotated by flex shaft 44 within an elastomeric stator 47, which in turn is bonded within a steel housing. Stator 47 has an inner cavity that has a single helical configuration. When rotor 45 is rotated within stator 47, it will pump fluid upward. Because of the helical configurations of rotor 45 and stator 47, rotor 45 orbits about a central axis rather than concentrically on the axis. Flex shaft 44 accommodates the orbital motion by flexing and orbiting at its upper end while its lower end rotates about a single axis.
In this example, flex shaft housings 41A and 41B are optionally connected together by seal and latch sub 43, which will be explained subsequently. A centralizer 49 may be mounted between the upper end of pump 35 and the lower end of inner tubing 31. Centralizer 49 engages the inner diameter of outer tubing and serves to center pump 35 within outer tubing 13. The outer diameter of progressive cavity pump 35 is larger than the drift inner diameter of inner tubing 31. The drift inner diameter of inner tubing 31 is selected to be sufficiently small to increase the well fluid velocity flowing through pump 35 enough to significantly reduce debris entrained in the water from falling downward in inner tubing string 31 and building up on pump 35.
a and 3b comprise an enlarged view of a portion of flex shaft housings 41A and 41B removed from outer tubing 13 (
A collet 57, carried on nipple 51 below band 55, serves as a latch. Collet 57 has a lower circular base that engages the upper end of lower flex shaft housing 41A. Collet 57 may be free to slide axially a limited distance on nipple 51. A plurality of collet fingers 59 extend upward from the base, each having an upper end that is free. Collet fingers 59 are biased outward so that the outer diameter circumscribed by the free ends is greater than the outer diameter of the base of collet 57. Collet fingers 59 are free to flex radially inward.
An energizing ring 61 is sandwiched between the lower end of upper flex shaft housing 41B and band 55. In this embodiment, energizing ring 61 has an external chamfer or conical portion 63 that is located on its exterior. Conical portion 63 tapers inwardly in a downward direction. Energizing ring 61 serves as part of a seal that will be explained subsequently.
a and 4b show an enlarged portion of the lower end of the outer string made up of outer tubing 13 (
In this example, a seal and latch housing 71 mounts to the upper end of intake housing 21. Seal and latch housing 71 is a tubular member, preferably having a bore 72 with an inner diameter at least equal to the drift inner diameter of outer tubing 13. A seating nipple 73 is secured by threads to the upper end of seal and latch housing 71. The lower end of outer tubing 13 is secured by threads to seating nipple 73. A seal ring 75 is located on an upward facing shoulder 77 in seal and latch housing 71. The lower end of seating nipple 73 abuts the upper edge of seal ring 75, preventing any axial movement of seal ring 75. In this embodiment, seal ring 75 has a chamfer 77 at its upper end on its inner diameter. The inner diameter of seal ring 75 is preferably less than the drift inner diameter of outer tubing 13. The lower end of seal ring 75 protrudes radially into bore 72, defining a downward facing shoulder 79. Seal ring 75 is preferably made from a metal.
a-5c show pump 35 installed in outer tubing 13 and coupled to motor 15. As pump 15 is lowered on inner tubing 31 (
Referring to
In operation, the operator will first drill and case a well with casing 11. The operator attaches motor 15 and intake housing 21 to the lower end of outer tubing 13. The operator lowers the outer string assembly into the well while strapping power cable 23 alongside outer tubing 13. When at the desired depth, the operator will secure a hanger to the upper end of outer tubing 13 and support it within wellhead 32. The operator then attaches progressive cavity pump 35 and its flex housings 41A and 41B (
The operator then supplies power to motor 15, which rotates base coupling 39, flex shaft 44 and rotor 45. Stator 47 does not rotate because of the anti-rotational engagement of lower intake housing 41B with adapter 69. The rotation of rotor 45 causes liquid collecting in casing 11 (
In this example, gas being produced by the well will flow up the annulus in casing 11 surrounding outer tubing 13. Perforations 12 in casing 11 to the gas and water production zone 14 optionally may be located above intake ports 29 to reduce the tendency for gas to be drawn into progressive cavity pump 35.
When the operator wishes to retrieve pump 35, an over pull on inner tubing 31 will cause collet fingers 59 (
While the invention has been shown in only one of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without departing from the scope of the invention. For example, a variety of latch and sealing mechanisms may be employed to latch the pump and seal the inner annulus other than the one shown. Also, latching the pump may not be always necessary because the pump is retained at the lower end of the outer tubing by means of the inner tubing.
In addition, rather than connect the motor to the string of outer tubing and lower the motor with the outer tubing, it could be connected to the pump assembly at the surface and lowered through the outer tubing. The power cable would be located on the exterior of the outer tubing string and have electrical contacts on the inside of the outer tubing string near its lower end. The motor would have electrical contacts that make up with electrical contacts attached to the outer tubing string when the pump and motor reach the lower end of the outer tubing string. In that method, the pump and motor would be connected together at the surface, connected to the inner tubing and lowered as a unit within the outer tubing.
This application claims priority to and the benefit of provisional application Ser. No. 60/992,588, filed Dec. 5, 2007.
Number | Date | Country | |
---|---|---|---|
60992588 | Dec 2007 | US |