High voltage AC machine winding with grounded neutral circuit

Information

  • Patent Grant
  • 6891303
  • Patent Number
    6,891,303
  • Date Filed
    Tuesday, May 27, 1997
    27 years ago
  • Date Issued
    Tuesday, May 10, 2005
    19 years ago
Abstract
An electric high voltage AC machine intended to be directly connected to a distribution or transmission network (16) comprises at least one winding. This winding comprises at least one current-carrying conductor, a first layer having semiconducting properties provided around said conductor, a solid insulating layer provided around said first layer, and a second layer having semiconducting properties provided around said insulating layer. In addition grounding means (18, 24, 26, 28) are provided to connect at least one point of said winding to ground.
Description

The present invention relates to an electric high voltage AC machine intended to be directly connected to a distribution or transmission network, said machine comprising at least one winding.


Such generators with a rated voltage of up to 36 kV is described by Paul R. Siedler, “36 kV Generators Arise from Insulation Research”, Electrical World, Oct. 15, 1932, pp. 524-527. These generators comprise windings formed of medium voltage insulated conductors wherein insulation is subdivided into various layers of different dielectric constants. The insulating material used is formed of various combinations of the three components of micafolium-mica, varnish and paper.


In a publication by Power Research Institute, EPRI, EL-3391, Apr. 1984 a generator concept is proposed for providing such high voltages that the generator can be directly connected to a power network without any intermediate transformer. Such a generator was supposed to comprise a superconducting rotor. The magnetization capacity of the superconducting field would then make it possible to use air gap windings of sufficient thickness for withstanding the electric forces. The proposed rotor is, however, of a complicated structure with a very thick insulation which considerably increases the size of the machine. In addition thereto special measures have to be taken for insulating and cooling the coil end sections.


By electric high voltage AC machines is meant, according to the present invention, rotating electric machines like generators in power stations for production of electric power, double-fed machines, outer pole machines, synchronous machines, asynchronous converter cascades, as well as power transformers. For connecting such machines, except for transformers, to distribution and transmission networks, in the following commonly referred to as power networks, a transformer has so far been needed for transforming the voltage up to the network level, that is in the range of 130-400 kV.


By manufacturing the winding of these machines of an insulated electric high voltage conductor with a solid insulation of similar structure as cables used for power transmission the voltage of the machine can be increased to such levels that the machines can be directly connected to any power network without an intermediate transformer. Thus this transformer can be omitted. Typical working range for these machines is 30-800 kV.


For this kind of machines special attention has to be paid to grounding problems.


Grounding of generator systems and other similar electrical systems implies intentional measures for connecting an electric system to ground potential. When the so-called neutral point of the system is available it is often connected to ground, directly or through a suitable impedance. It also happens that other points in the system are connected to ground. If one point in the system is grounded the complete system is grounded as long as the galvanic connection extends.


The grounding principle used is determined by the design of the system. For a system including a generator directly connected to a Y-Δ connected step-up-transformer with the Δ-winding at the generator voltage the following grounding alternatives are most common.


High resistance grounding


No grounding


Resonant grounding.


High resistance grounding is normally realized by connection of a low ohmic resistor in the secondary of a distribution transformer with the primary winding of the transformer connected from the generator neutral point to ground. Such prior art grounding is illustrated in FIG. 1, which shows a generator 2 connected by a Y-Δ connected step-up transformer 3 to a network 9. The primary 11 of a distribution transformer is connected between the neutral point of the generator 2 and ground. In the secondary 10 of the transformer a resistor 12 is connected.


The same kind of grounding can, of course, be obtained by installing a high ohmic resistor directly between the generator neutral point and ground.


An ungrounded electric system lacks any intentional connection to ground. Thus an ungrounded generator has no connection between its neutral point and ground, except for possible voltage transformers for feeding different relays and instruments.


Resonant grounding is normally also realized as illustrated in FIG. 1 with the resistor 12 replaced by a reactor 12a. The reactor reactance is chosen such that the capacitive current during a line to ground fault is neutralized by an equal component of inductive current contributed for by the reactor 12a.


Also low resistance or low impedance grounding and effective grounding of the above systems are possible. Low resistance or low impedance grounding will result in lower transient overvoltages but higher ground fault currents, which can cause internal damages to the machine.


Low resistance grounding is achieved by the intentional insertion of a resistance between the generator neutral and ground. The resistance may be inserted either directly in connection to ground or indirectly, in the secondary of a transformer whose primary is connected between generator neutral and ground, cf. FIG. 1.


Low impedance grounding, that is low inductance grounding is accomplished in the same way as low resistance grounding with the substitution of an inductor for the resistor. The value of the inductor in ohms is less than that required for resonant grounding, as discussed above.


For systems comprising several generators connected to a common feeding line or bus with circuit breakers between the generator terminals and the common bus low resistance or low impedance grounding is suitable.


Effectively grounding the neutral of a generator has substantially the same advantages and disadvantages as the low resistance or low impedance grounding with some differences.


A system is said to be effectively grounded if certain impedance requirements, which restricts the size of the grounding impedance, are fulfilled. In an effectively grounded system the maximum phase-to-ground voltage in unfaulted phases, in case of a ground fault, are limited to 80% of phase-to-phase voltage.


A power system network is mainly grounded through ground connections of neutral points of transformers in the system and can include no impedance (except for contact resistances), so-called direct grounding, or have a certain impedance.


Previously known grounding techniques are described in e.g. the publication IEEE C62.92-1989, IEEE Guide for the Application of Neutral Grounding in Electrical Utility Systems, Part II—Grounding of Synchronous Systems, published by the Institute of Electrical and Electronics Engineers, New York, USA, Sep. 1989.


If the generator neutral is grounded through a low resistance or inductance as discussed above, a path is formed for third harmonic currents from the generator neutral to ground. If a directly grounded or low-impedance grounded transformer winding or another low-impedance grounded generator is directly connected to the generator, the third harmonic currents will circulate therebetween under normal conditions.


Techniques for solving the problems of third harmonic currents in generator-and motor-operation of AC electric machines of the kind to which the present invention relates are described in Sweedish patent application Ser. Nos. 9602078-9 and 97003-9.


The purpose of the present invention is to provide an electric high voltage AC machine suitable for direct connection to distribution or transmission networks as indicated above, which machine is provided with grounding means suitable for different uses and operating conditions of the machine.


This purpose is obtained with an electric high voltage AC machine of the kind defined in the introductory portion of the description and having the characterising features of at least one winding comprising at least one current-carrying conductor and a magnetically permeable, electric field confining covering surrounding the conductor; a first layer having semi-conducting properties surrounding the conductor, a solid insulating layer surrounding said first layer, and an outer layer having semi-conducting properties surrounding said insulating layer, and grounding means for connecting the neutral paint of said winding in circuit to ground.


An important advantage of the machine according to the invention resides in the fact that the electric field is nearly equal to zero in the end region of the windings outside the second layer with semiconducting properties. Thus no electric fields need to be controlled outside the winding and no field concentrations can be formed, neither within the sheet, nor in winding end regions, nor in transitions therebetween.


According to an advantageous embodiment of the machine according to the invention at least two adjacent layers have substantially equal thermal expansion coefficients. In this way defects, cracks or the like as a result of thermal motions in the winding, are avoided.


According to another advantageous embodiment of the machine according to the invention said grounding means comprise means for low resistance grounding of the winding. In this way transient overvoltages as well as the ground fault current can be limited to moderate values.


According to still another advantageous embodiment of the machine according to the invention, wherein the machine has a Y-connected winding, the neutral point of which being available, high resistance grounding means comprise a resistor connected in the secondary of a transformer whose primary is connected between the neutral point and ground. In this way the resistor used in the secondary of the transformer is of comparatively low ohmic value and of rugged construction. Sufficient damping to reduce transient overvoltages to safe levels can be achieved with a properly sized resistor. Further, mechanical stresses and fault damages are limited during line-to-ground faults by the restriction of the fault current. Such a grounding device is also more economical than direct insertion of a high ohmic resistor between the generator neutral and ground.


According to another advantageous embodiment of the machine according to the invention, wherein the machine has a Y-connected winding the neutral point of which being available, the grounding means comprises a reactor connected in the secondary of a transformer whose primary is connected between the neutral point and ground, said reactor having characteristics such that the capacitive current during a ground fault is substantially neutralized by an equal component of inductive current contributed for by the reactor. In this way the net fault current is reduced to a low value by the parallel resonant circuit thus formed, and the current is essentially in phase with the fault voltage. The voltage recovery on the faulted phase is very slow in this case and accordingly any ground fault of a transient nature will automatically be extinguished in a resonant grounded system.


According to still other advantageous embodiments of the machine according to the invention the grounding means comprise a Y-Δ grounding transformer or a so-called zigzag grounding transformer connected to the network side of the machine. The use of such grounding transformers are equivalent to low inductance or low resistance grounding with respect to fault current levels and transient overvoltages.





To explain the invention in more detail embodiments of the machine according to the invention, chosen as examples, will now be described more in detail with reference to FIG. 2-11 on the accompanying drawings on which



FIG. 1 illustrates prior art grounding of a synchronous generator,



FIG. 2 shows an example of the insulated conductor used in the windings of the machine according to the invention,



FIG. 3 shows an ungrounded three-phase machine in the form of a Y-connected generator or motor connected to a power system,



FIGS. 4-13 show different examples of grounding the Y-connected machine in FIG. 3,



FIG. 14 shows a machine according to the invention in the form of a Δ-connected generator or motor connected to a power system, and



FIG. 15 illustrates the use of a grounding transformer in the system shown in FIG. 14.





In FIG. 2 an example is shown of an insulated conductor, which can be used in the windings of the machine according to the invention. Such an insulated conductor comprises at least one conductor 4 composed of a number of non-insulated and insulated strands 5. Around the conductor 4 there is an inner semiconducting layer 6, which is in contact with at least some of the non-insulated strands 5A. This semiconducting layer 6 is in its turn surrounded by the main insulation of the cable in the form of an extruded solid insulating layer 7. The insulating layer is surrounded by an external semiconducting layer 8. The conductor area of the cable can vary between 80 and 3000 mm2 and the external diameter of the cable between 20 and 250 mm.



FIG. 3 shows schematically an ungrounded electric high voltage AC machine in the form of a Y-connected generator or motor 14 directly connected to a power system 16.



FIG. 4 shows grounding means in the form of an overvoltage protector, like a non-linear resistance arrester 18, connected between the neutral point 20 of the Y-connected machine 14 and ground. Such a non-linear resistance arrester 18 connected to the neutral point protects the insulated conductor used in the machine windings against transient overvoltages, such as overvoltages caused by a stroke of lightning.



FIG. 5 shows an embodiment with a high ohmic resistor 22 connected in parallel to the non-linear resistance arrester 18. The non-linear resistance arrester 18 is functioning in the same way in this embodiment as in the embodiment shown in FIG. 4 and with the resistor 22 a sensitive detection of ground faults by measuring the voltage across the resistor 22 is realised.



FIG. 6 shows an embodiment with high resistance grounding of the neutral point 20. In this embodiment a technique similar to the prior art described in connection with FIG. 1 is used. Thus a resistor 24 is connected to the secondary 26 of a transformer with the primary winding 28 of the transformer connected from the neutral point 20 of the machine 14 to ground. The resistor 24 is comparatively low ohmic and of rugged construction, as compared to a high ohmic resistor which would be needed for direct connection between the neutral point 20 and ground for obtaining the same result. The voltage class of the resistor can consequently be reduced. Also in this case a non-linear resistance arrester 18 is connected in parallel to the primary winding 28. With this embodiment mechanical stresses and fault damages are limited during line-to-ground faults by restricting the fault current. Transient overvoltages are limited to safe levels and the grounding device is more economical than direct insertion of a resistor.


Resonant grounding of the machine can be realised in a similar way by replacing the resistor 24 by a reactor having characteristics such that the capacitive current during a line-to-ground fault is neutralized by an equal component of inductive current contributed for by the reactor. Thus the net fault current is reduced by the parallel resonant circuit thus formed and the current will be essentially in phase with the fault voltage. After extinction of the fault the voltage recovery on the faulted phase will be very slow and determined by the ratio of inductive reactance to the effective resistance of the transformer/reactor combination. Accordingly any ground fault of transient nature will automatically be extinguished in such a resonant grounded system. Thus such resonant grounding means limits the ground fault current to practically zero, thus minimising the mechanical stresses Further continued operation of the machine can be permitted after the occurrence of a phase-to-ground fault until an orderly shutdown can be arranged.



FIG. 7 shows an embodiment with a non-linear resistance arrester 18 connected between the neutral point 20 and ground and a grounding transformer 30 connected on the network side of the machine 14. The grounding transformer 30 is of Y-Δ design with the neutral point of the Y-connection connected to ground, whereas the Δ-winding is isolated. Grounding transformers are normally used in systems which are ungrounded or which have a high impedance ground connection. As a system component the grounding transformer carries no load and does not affect the normal system behaviour. When unbalances occur the grounding transformer provides a low impedance in the zero sequence network. The grounding transformer is in this way equivalent to a low inductance or low resistance grounding with respect to fault current levels and transient overvoltages.


The grounding transformer can also be a so-called zigzag transformer with special winding arrangements, see e.g. Paul M. Anderson, “Analysis of Faulted Power Systems”, The Iowa State University Press/Ames, 1983, pp. 255-257.


Also a possible auxiliary power transformer can be used for such grounding purposes.



FIG. 8 shows an embodiment with a low ohmic resistor 32 connected between the neutral point 20 of the machine 14 and ground. The main advantage of such a low resistance grounding is the ability to limit transient and temporary overvoltages. The currents will, however, be higher in case of single phase ground faults. Also third harmonic currents will be higher in undisturbed operation.



FIG. 9 shows an alternative embodiment of the machine according to the invention in which the resistor 32 is replaced by a low inductance inductor 34 connected between the neutral point 20 and ground. Low inductance grounding works essentially in the same way as low ohmic grounding. The value of the inductor 34 in ohms is less than that required for resonant grounding, cf. description of FIG. 6.


As an alternative to the direct connection between the neutral point 20 and ground of the resistor 32 or the inductor 34, they may be indirectly connected with the aid of a transformer whose primary is connected between the neutral point 20 and ground and whose secondary contains the resistor or inductor, cf. the description of FIG. 6.


In FIG. 10 an embodiment is shown comprising two impedances 36 and 38 connected in series between the neutral point 20 of the machine 14 and ground, the impedance 36 having a low impedance value and the impedance 38 a high impedance value. The impedance 38 can be short-circuited by a short-circuiting device 40. In normal operation the short-circuiting device 40 is open in order to minimize third harmonic currents. In case of a ground fault the short-circuiting device 40 is controlled to short-circuit the impedance 38 and the potential in the neutral point 20 will be low and the current to ground comparatively high.


In case of an internal ground fault in the machine 14 the impedance 38 is not short-circuited. As a consequence the voltage will be high in the neutral point 20 but the current to ground will be limited. In such a situation this is to prefer since a high current can give rise to damages in this case.


To be able to cope with the problems arising from third harmonics when directly connecting an AC electric machine to a three-phase power network, i.e. when no step-up transformer is used between the machine and the network, grounding means in the form of a suppression filter 35, 37, tuned to the third harmonic together with an overvoltage protector 39 can be used, see FIG. 11. The filter thus comprises a parallel resonance circuit consisting of an inductor 35 and a capacitive reactance 37. The dimensioning of the filter 35, 37 and its overvoltage protector 39 is such that the parallel circuit is capable of absorbing third harmonics from the machine 14 during normal operation, yet limiting transient and temporary overvoltages. In case of a fault the overvoltage protector 39 will limit the fault voltage such that the fault current flows through the overvoltage protector 39 if the fault is considerable. In case of a single-phase ground fault the currents will be higher as compared to e.g. the case of high resistance grounding since the fundamental impedance is low.


In FIG. 12 an embodiment is shown wherein the grounding means comprises a detuned switchable third harmonics depression filter connected in parallel to an overvoltage protector 40. Such filters can be realised in several different ways. FIG. 12 shows an example comprising two inductors 42, 44 connected in series and a capacitor 46 connected in parallel to the series-connected inductors 42, 44. Further a short-circuiting device 48 is connected across the inductor 44.


The short-circuiting device 48 is controllable to change the characteristic of the filter by short-circuiting the inductor 44 when a risk for third harmonic resonance between the filter and the machine 14 and network 16 is detected. This is described more in detail in Swedish patent application 9700347-9. In this way third harmonic currents are strongly limited in normal operation. Transient and temporary overvoltages will be limited and the currents will be higher in case of a single-phase ground fault in the same way as described in connection with FIG. 11.



FIG. 13 shows an embodiment wherein the neutral point 20 of the machine 14 is directly connected to ground, at 21. Such direct grounding limits transient and temporary overvoltages but results in high currents in case of ground faults. Third harmonic current flow from the neutral 20 of the machine to ground will be comparatively high in normal operation.


As a further alternative the grounding means of the machine according to the invention can comprise an active circuit for providing a connection of the neutral point to ground having desirable impedance properties.


In FIG. 14 a Δ-connected three-phase machine 50 is shown directly connected to the distribution or transmission network 16.


In such a situation a grounding transformer of the same kind as the one used in the embodiment shown in FIG. 7 can be connected on the network side of the machine 50.


As in the embodiment of FIG. 7 the grounding transformer can be a Y-Δ-connected transformer with the neutral point of the Y-connection ground, or a so called zigzag grounding transformer, that is a Z-0-connected transformer with the Z grounded. The grounding transformer will limit temporary overvoltages.


As in the embodiment of FIG. 7 a possible auxiliary power transformer can also be used for this purpose.

Claims
  • 1. An electric high voltage AC machine for direct connection to a distribution or transmission network, said machine including at least one flexible winding and having a neutral point and comprising at least one current-carrying conductor comprising a plurality of insulated strands and at least one uninsulated strand and a magnetically permeable, electric field confining covering surrounding the conductor; a first layer having semi-conducting properties surrounding the conductor and being in electrical contact therewith, a solid insulating layer surrounding said first layer, and an outer layer having semi-conducting properties surrounding said insulating layer, and grounding means for connecting the neutral point of said winding to ground.
  • 2. The machine according to claim 1, wherein the potential of said first layer is substantially equal to the potential of the conductor.
  • 3. The machine according to claim 1, wherein the potential of said first layer is substantially equal to the potential of the conductor.
  • 4. The machine according to claim 3, wherein said second layer is connected to a predetermined potential.
  • 5. The machine according to claim 4, wherein said predetermined potential is ground potential.
  • 6. The machine according to claim 1, wherein at least two adjacent layers have substantially equal thermal expansion coefficients.
  • 7. The machine according to claim 1, wherein said layers are adjacent to each other, an each of said layers has at least one connecting surface each being fixedly connected to the connecting surface of the adjacent layer along substantially the whole of said connecting surface.
  • 8. The machine according to claim 1, wherein said grounding means comprise means for low-resistance grounding of the winding.
  • 9. The machine according to claim 8, said machine having a Y-connected winding neutral point and wherein said low-resistance grounding means comprise a low-resistance resistor connected between the neutral point and ground.
  • 10. The machine according to claim 8, said machine having a Y-connected winding the neutral point further comprising a transformer having a primary and a secondary winding and wherein said low-resistance grounding means comprises a resistor connected in the secondary of the transformer whose primary is connected between the neutral point and ground.
  • 11. The machine according to claim 1, wherein said grounding means comprise means for low-inductance grounding of the winding.
  • 12. The machine according to claim 11, said machine having a Y-connected winding the neutral point and wherein said low-inductance grounding means comprises a low-inductance inductor connected between the neutral point and ground.
  • 13. The machine according to claim 11, said machine having a Y-connected winding neutral point, further comprising a transformer having a primary and a secondary winding and wherein said low-inductance grounding means comprises an inductor connected in the secondary of the transformer whose primary is connected between the neutral point and ground.
  • 14. The machine according to claim 1, wherein said grounding means comprise means for high-resistance grounding of the winding.
  • 15. The machine according to claim 14, said machine having a Y-connected winding neutral point and wherein said high-resistance grounding means comprise a high-resistance resistor connected between the neutral point and ground.
  • 16. The machine according to claim 14, said machine having a Y-connected winding neutral point further comprising a transformer having a primary and a secondary winding and wherein said high-resistance grounding means comprise a resistor connected in the secondary of the transformer whose primary is connected between the neutral point and ground.
  • 17. The machine according to claim 1, wherein said grounding means comprise means for high-inductance grounding of the winding.
  • 18. The machine according to claim 17, said machine having a Y-connected winding the neutral point and wherein said high-inductance grounding means comprises a high-inductance inductor connected between the neutral point and ground.
  • 19. The machine according to claim 17, said machine having a Y-connected winding neutral point further comprising a transformer having a primary and a secondary winding and wherein said high-inductance grounding means comprises an inductor connected in the secondary of the transformer whose primary is connected between the neutral point and ground.
  • 20. The machine according to claim 1, said machine having a Y-connected winding neutral point, further comprising a transformer having a primary and a secondary winding and wherein said grounding means comprises a reactor connected in the secondary of the transformer whose primary is connected between the neutral point and ground, said reactor having characteristics such that capacitive current during a ground fault is substantially neutralized by an equal component of inductive current contributed for by the reactor.
  • 21. The machine according to claim 1, wherein said grounding means comprises means for changing the impedance of the connection to ground in response to a ground fault.
  • 22. The machine according to claim 1, wherein said grounding means comprises an active circuit.
  • 23. The machine according to claim 1, wherein said grounding means comprises a Y-Δgrounding transformer connected to the network side of the machine.
  • 24. The machine according to claim 1, wherein said grounding means comprise a zigzag grounding transformer connected to the network side of the machine.
  • 25. The machine according to claim 1, said machine having a Y-connected winding neutral point wherein said grounding means comprise a suppression filter tuned for the n:th harmonic.
  • 26. The machine according to claim 1, said machine having a Y-connected winding neutral point wherein said grounding means comprise a switchable suppression filter detuned for the n:th harmonic.
  • 27. The machine according to claim 25, wherein said n:th harmonic is the third harmonic.
  • 28. The machine according to claim 1, said machine having a Y-connected winding neutral point wherein said grounding means comprise an overvoltage protector connected between said neutral point and ground.
  • 29. The machine according to claim 1, said machine having a Y-connected winding neutral point wherein an overvoltage protector is connected between said neutral point and ground in parallel to said grounding means.
  • 30. A distribution or transmission network, which comprises at least one machine according to claim 1.
  • 31. An electric AC machine having a magnetic circuit for high voltage comprising: a magnetic core and at least one winding, wherein said winding is formed of a flexible cable comprising at least one current-carrying conductor and a magnetically permeable, electric field confining covering surrounding the conductor, each conductor having a number of insulated conductor elements and at least one uninsulated conductor element, and inner semi-conducting layer surrounding the conductor and being in electric contact with at least one of the conductor elements, an insulating layer of solid insulating material surrounding said inner semi-conducting layer, and an outer semi-conducting layer surrounding said insulating layer, and grounding means for connection to at least one selected point of said winding to ground.
  • 32. The machine according to claim 31, wherein said grounding means comprise means for direct grounding of the winding.
  • 33. A high voltage electric machine comprising at least one winding, wherein said winding comprises a flexible cable including at least one current-carrying conductor comprising a plurality of insulated strands and at least one uninsulated strand, and a magnetically permeable, electric field confining covering surrounding the conductor including an inner semi-conducting layer surrounding the conductor and being in electrical contact therewith, a solid insulating layer surrounding the inner layer, and an outer semi-conducting layer surrounding the insulating layer, said inner and outer layers forming equipotential surfaces around the conductor, said cable forming at least one uninterrupted turn in the corresponding winding of said machine.
  • 34. The machine of claim 33, wherein the cover is formed of a plurality of layers including an insulating layer and wherein said plurality of layers are substantially void free.
  • 35. The machine of claim 33, wherein the cover is an electrical contact with the conductor.
  • 36. The machine of claim 35, wherein the layers of the cover have substantially the same temperature coefficient of expansion.
  • 37. The machine of claim 33, wherein the cover is heat resistant such that the machine is operable of 100% overload for two hours.
  • 38. The machine of claim 33, wherein the machine, when energized, produces an electric field and the cover confines the electric field so that the cable is operable free of sensible end winding loss.
  • 39. The machine of claim 33, wherein the machine, when energized, produces an electric field and the cover confined the electric field so that the winding is operable free of partial discharge and field control.
  • 40. The machine of claim 33, wherein the winding comprises multiple uninterrupted turns.
  • 41. The machine of claim 33, wherein the cable comprises a transmission line.
Priority Claims (4)
Number Date Country Kind
9602078 May 1996 SE national
9602079 May 1996 SE national
9700335 Feb 1997 SE national
9700347 Feb 1997 SE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCTSE97/00891 5/27/1997 WO 00 4/9/1998
Publishing Document Publishing Date Country Kind
WO9745926 12/4/1997 WO A
US Referenced Citations (327)
Number Name Date Kind
681800 Lasche Sep 1901 A
847008 Kitsee Mar 1907 A
1304451 Burnham May 1919 A
1418856 Williamson Jun 1922 A
1481585 Beard Jan 1924 A
1508456 Lenz Sep 1924 A
1728915 Blankenship et al. Sep 1929 A
1742985 Burnham Jan 1930 A
1747507 George Feb 1930 A
1756672 Barr Apr 1930 A
1762775 Ganz Jun 1930 A
1781308 Vos Nov 1930 A
1861182 Hendey et al. May 1932 A
1904885 Seeley Apr 1933 A
1974406 Apple et al. Sep 1934 A
2006170 Juhlin Jun 1935 A
2206856 Shearer Jul 1940 A
2217430 Baudry Oct 1940 A
2241832 Wahlquist May 1941 A
2251291 Reichelt Aug 1941 A
2256897 Davidson et al. Sep 1941 A
2295415 Monroe Sep 1942 A
2409893 Pendleton et al. Oct 1946 A
2415652 Norton Feb 1947 A
2424443 Evans Jul 1947 A
2436306 Johnson Feb 1948 A
2446999 Camilli Aug 1948 A
2459322 Johnston Jan 1949 A
2462651 Lord Feb 1949 A
2498238 Berberich et al. Feb 1950 A
2650350 Heath Aug 1953 A
2721905 Monroe Oct 1955 A
2749456 Luenberger Jun 1956 A
2780771 Lee Feb 1957 A
2846599 McAdam Aug 1958 A
2885581 Pileggi May 1959 A
2943242 Schaschl et al. Jun 1960 A
2947957 Spindler Aug 1960 A
2952679 Stratton Nov 1960 A
2959699 Smith et al. Nov 1960 A
2975309 Seidner Mar 1961 A
3014139 Shildneck Dec 1961 A
3098893 Pringle et al. Jul 1963 A
3130335 Rejda Apr 1964 A
3143269 Van Eldik Aug 1964 A
3157806 Wiedemann Nov 1964 A
3158770 Coggeshall et al. Nov 1964 A
3197723 Dortort Jul 1965 A
3268766 Amos Aug 1966 A
3304599 Nordin Feb 1967 A
3354331 Broeker et al. Nov 1967 A
3365657 Webb Jan 1968 A
3372283 Jaecklin Mar 1968 A
3392779 Tilbrook Jul 1968 A
3411027 Rosenberg Nov 1968 A
3418530 Cheever Dec 1968 A
3435262 Bennett et al. Mar 1969 A
3437858 White Apr 1969 A
3444407 Yates May 1969 A
3447002 Ronnevig May 1969 A
3484690 Wald Dec 1969 A
3541221 Aupoix et al. Nov 1970 A
3560777 Moeller Feb 1971 A
3571690 Lataisa Mar 1971 A
3593123 Williamson Jul 1971 A
3631519 Salahshourian Dec 1971 A
3644662 Salahshourian Feb 1972 A
3651244 Silver et al. Mar 1972 A
3651402 Leffmann Mar 1972 A
3660721 Baird May 1972 A
3666876 Forster May 1972 A
3670192 Andersson et al. Jun 1972 A
3675056 Lenz Jul 1972 A
3684821 Miyauchi et al. Aug 1972 A
3684906 Lexz Aug 1972 A
3699238 Hansen et al. Oct 1972 A
3716652 Lusk et al. Feb 1973 A
3716719 Angelery et al. Feb 1973 A
3727085 Gcetz et al. Apr 1973 A
3740600 Turley Jun 1973 A
3743867 Smith, Jr. Jul 1973 A
3746954 Myles et al. Jul 1973 A
3758699 Lusk et al. Sep 1973 A
3778891 Amasino et al. Dec 1973 A
3781739 Meyer Dec 1973 A
3787607 Schlafly Jan 1974 A
3792399 McLyman Feb 1974 A
3801843 Corman et al. Apr 1974 A
3809933 Sugawara et al. May 1974 A
3813764 Tanaka et al. Jun 1974 A
3828115 Hvizd, Jr. Aug 1974 A
3881647 Wolfe May 1975 A
3884154 Marten May 1975 A
3891880 Britsch Jun 1975 A
3902000 Forsyth et al. Aug 1975 A
3912957 Reynolds Oct 1975 A
3932779 Madsen Jan 1976 A
3932791 Oswald Jan 1976 A
3943392 Keuper et al. Mar 1976 A
3947278 Youtsey Mar 1976 A
3965408 Higuchi et al. Jun 1976 A
3968388 Lambrecht et al. Jul 1976 A
3971543 Shanahan Jul 1976 A
3974314 Fuchs Aug 1976 A
3993860 Snow et al. Nov 1976 A
3995785 Arick et al. Dec 1976 A
4001616 Lonseth et al. Jan 1977 A
4008367 Sunderhauf Feb 1977 A
4008409 Rhudy et al. Feb 1977 A
4031310 Jachimowicz Jun 1977 A
4039740 Iwata Aug 1977 A
4041431 Enoksen Aug 1977 A
4047138 Steigerwald Sep 1977 A
4064419 Peterson Dec 1977 A
4084307 Schultz et al. Apr 1978 A
4085347 Lichius Apr 1978 A
4088953 Sarian May 1978 A
4091138 Takagi et al. May 1978 A
4091139 Quirk May 1978 A
4099227 Liptak Jul 1978 A
4103075 Adam Jul 1978 A
4106069 Trautner et al. Aug 1978 A
4107092 Carnahan et al. Aug 1978 A
4109098 Olsson et al. Aug 1978 A
4121148 Platzer Oct 1978 A
4132914 Khutoretsky Jan 1979 A
4134036 Curtiss Jan 1979 A
4134055 Akamatsu Jan 1979 A
4134146 Stetson Jan 1979 A
4149101 Lesokhin et al. Apr 1979 A
4152615 Calfo et al. May 1979 A
4160193 Richmond Jul 1979 A
4164672 Flick Aug 1979 A
4164772 Hingorani Aug 1979 A
4177397 Lill Dec 1979 A
4177418 Brueckner et al. Dec 1979 A
4184186 Barkan Jan 1980 A
4200817 Bratoljic Apr 1980 A
4200818 Ruffing et al. Apr 1980 A
4206434 Hase Jun 1980 A
4207427 Beretta et al. Jun 1980 A
4207482 Neumeyer et al. Jun 1980 A
4208597 Mulach et al. Jun 1980 A
4229721 Koloczek et al. Oct 1980 A
4238339 Khutoretsky et al. Dec 1980 A
4239999 Vinokurov et al. Dec 1980 A
4245182 Aotsu et al. Jan 1981 A
4246694 Raschbichler et al. Jan 1981 A
4255684 Mischler et al. Mar 1981 A
4258280 Starcevic Mar 1981 A
4262209 Berner Apr 1981 A
4274027 Higuchi et al. Jun 1981 A
4281264 Keim et al. Jul 1981 A
4292558 Flick et al. Sep 1981 A
4307311 Grozinger Dec 1981 A
4308476 Schuler Dec 1981 A
4308575 Mase Dec 1981 A
4310966 Breitenbach Jan 1982 A
4314168 Breitenbach Feb 1982 A
4317001 Silver et al. Feb 1982 A
4320645 Stanley Mar 1982 A
4321426 Schaeffer Mar 1982 A
4321518 Akamatsu Mar 1982 A
4330726 Albright et al. May 1982 A
4337922 Streiff et al. Jul 1982 A
4341989 Sandberg et al. Jul 1982 A
4347449 Beau Aug 1982 A
4347454 Gellert et al. Aug 1982 A
4353612 Meyers Oct 1982 A
4357542 Kirschbaum Nov 1982 A
4360748 Raschbichler et al. Nov 1982 A
4361723 Hvizd, Jr. et al. Nov 1982 A
4365178 Lexz Dec 1982 A
4367425 Mendelsohn et al. Jan 1983 A
4367890 Spirk Jan 1983 A
4368418 Demello et al. Jan 1983 A
4369389 Lambrecht Jan 1983 A
4371745 Sakashita Feb 1983 A
4384944 Silver et al. May 1983 A
4387316 Katsekas Jun 1983 A
4401920 Taylor et al. Aug 1983 A
4403163 Armerding et al. Sep 1983 A
4404486 Keim et al. Sep 1983 A
4411710 Mochizuki et al. Oct 1983 A
4421284 Pan Dec 1983 A
4425521 Rosenberry, Jr. et al. Jan 1984 A
4426771 Wang et al. Jan 1984 A
4429244 Nikiten et al. Jan 1984 A
4431960 Zucker Feb 1984 A
4432029 Lundqvist Feb 1984 A
4437464 Crow Mar 1984 A
4443725 Derderian et al. Apr 1984 A
4470884 Carr Sep 1984 A
4473765 Butman, Jr. et al. Sep 1984 A
4475075 Munn Oct 1984 A
4477690 Nikitin et al. Oct 1984 A
4481438 Keim Nov 1984 A
4484106 Taylor et al. Nov 1984 A
4488079 Dailey et al. Dec 1984 A
4490651 Taylor et al. Dec 1984 A
4503284 Minnick et al. Mar 1985 A
4508251 Harada et al. Apr 1985 A
4510077 Elton Apr 1985 A
4517471 Sachs May 1985 A
4520287 Wang et al. May 1985 A
4523249 Arimoto Jun 1985 A
4538131 Baier et al. Aug 1985 A
4546210 Akiba et al. Oct 1985 A
4551780 Canay Nov 1985 A
4557038 Wcislo et al. Dec 1985 A
4560896 Vogt et al. Dec 1985 A
4565929 Baskin et al. Jan 1986 A
4571453 Takaoka et al. Feb 1986 A
4588916 Lis May 1986 A
4590416 Porche et al. May 1986 A
4594630 Rabinowitz et al. Jun 1986 A
4607183 Rieber et al. Aug 1986 A
4615109 Wcislo et al. Oct 1986 A
4615778 Elton Oct 1986 A
4618795 Cooper et al. Oct 1986 A
4619040 Wang et al. Oct 1986 A
4622116 Elton et al. Nov 1986 A
4633109 Feigel Dec 1986 A
4650924 Kauffman et al. Mar 1987 A
4652963 Fahlen Mar 1987 A
4654551 Farr Mar 1987 A
4656316 Meltsch Apr 1987 A
4656379 McCarty Apr 1987 A
4677328 Kumakura Jun 1987 A
4687882 Stone et al. Aug 1987 A
4692731 Osinga Sep 1987 A
4723083 Elton Feb 1988 A
4723104 Rohatyn Feb 1988 A
4724345 Elton et al. Feb 1988 A
4732412 van der Linden et al. Mar 1988 A
4737704 Kalinnikov et al. Apr 1988 A
4745314 Nakano May 1988 A
4761602 Leibovich Aug 1988 A
4766365 Bolduc et al. Aug 1988 A
4771168 Gundersen et al. Sep 1988 A
4785138 Brietenbach et al. Nov 1988 A
4795933 Sakai Jan 1989 A
4827172 Kobayashi May 1989 A
4845308 Womack, Jr. et al. Jul 1989 A
4847747 Abbondanti Jul 1989 A
4853565 Elton et al. Aug 1989 A
4859810 Cloetens et al. Aug 1989 A
4859989 McPherson Aug 1989 A
4860430 Raschbichler et al. Aug 1989 A
4864266 Feather et al. Sep 1989 A
4883230 Lindstrom Nov 1989 A
4890040 Gundersen Dec 1989 A
4894284 Yamanouchi et al. Jan 1990 A
4914386 Zocholl Apr 1990 A
4918347 Takaba Apr 1990 A
4918835 Weislo Apr 1990 A
4924342 Lee May 1990 A
4926079 Niemela et al. May 1990 A
4942326 Butler, III et al. Jul 1990 A
4949001 Campbell Aug 1990 A
4982147 Lauw Jan 1991 A
4994952 Silva et al. Feb 1991 A
4997995 Simmons et al. Mar 1991 A
5012125 Conway Apr 1991 A
5030813 Stanisz Jul 1991 A
5036165 Elton et al. Jul 1991 A
5036238 Tajima Jul 1991 A
5066881 Elton et al. Nov 1991 A
5067046 Elton et al. Nov 1991 A
5083360 Valencic et al. Jan 1992 A
5086246 Dymond et al. Feb 1992 A
5091609 Swada et al. Feb 1992 A
5094703 Takaoka et al. Mar 1992 A
5095175 Yoshida et al. Mar 1992 A
5097241 Smith et al. Mar 1992 A
5097591 Wcislo et al. Mar 1992 A
5111095 Hendershot May 1992 A
5124607 Rieber et al. Jun 1992 A
5136459 Fararooy Aug 1992 A
5140290 Dersch Aug 1992 A
5153460 Bovino et al. Oct 1992 A
5168662 Nakamura et al. Dec 1992 A
5171941 Shimizu et al. Dec 1992 A
5182537 Thuis Jan 1993 A
5187428 Hutchison et al. Feb 1993 A
5231249 Kimura et al. Jul 1993 A
5235488 Koch Aug 1993 A
5246783 Spenadel et al. Sep 1993 A
5264778 Kimmel et al. Nov 1993 A
5287262 Klein Feb 1994 A
5304883 Denk Apr 1994 A
5305961 Errard et al. Apr 1994 A
5321308 Johncock Jun 1994 A
5323330 Asplund et al. Jun 1994 A
5325008 Grant Jun 1994 A
5325259 Paulsson Jun 1994 A
5327637 Britenbach et al. Jul 1994 A
5341281 Skibinski Aug 1994 A
5343139 Gyugyi et al. Aug 1994 A
5355046 Weigelt Oct 1994 A
5365132 Hann et al. Nov 1994 A
5387890 Estop et al. Feb 1995 A
5397513 Steketee, Jr. Mar 1995 A
5399941 Grothaus et al. Mar 1995 A
5400005 Bobry Mar 1995 A
5408169 Jeanneret Apr 1995 A
5449861 Fujino et al. Sep 1995 A
5452170 Ohde et al. Sep 1995 A
5468916 Litenas et al. Nov 1995 A
5499178 Mohan Mar 1996 A
5500632 Halser, III Mar 1996 A
5510942 Bock et al. Apr 1996 A
5530307 Horst Jun 1996 A
5533658 Benedict et al. Jul 1996 A
5534754 Poumey Jul 1996 A
5545853 Hildreth Aug 1996 A
5550410 Titus Aug 1996 A
5583387 Takeuchi et al. Dec 1996 A
5587126 Steketee, Jr. Dec 1996 A
5598137 Alber et al. Jan 1997 A
5607320 Wright Mar 1997 A
5612510 Hildreth Mar 1997 A
5663605 Evans et al. Sep 1997 A
5672926 Brandes et al. Sep 1997 A
5689223 Demarmels et al. Nov 1997 A
5807447 Forrest Sep 1998 A
5834699 Buck et al. Nov 1998 A
Foreign Referenced Citations (431)
Number Date Country
399790 Jul 1995 AT
565063 Feb 1957 BE
391071 Apr 1965 CH
534448 Feb 1973 CH
539328 Jul 1973 CH
657482 Aug 1986 CH
40414 Aug 1887 DE
277012 Jul 1914 DE
336418 Jun 1920 DE
372390 Mar 1923 DE
386561 Dec 1923 DE
387973 Jan 1924 DE
406371 Nov 1924 DE
425551 Feb 1926 DE
426793 Mar 1926 DE
432169 Jul 1926 DE
433749 Sep 1926 DE
435608 Oct 1926 DE
435609 Oct 1926 DE
441717 Mar 1927 DE
443011 Apr 1927 DE
460124 May 1928 DE
482506 Sep 1929 DE
501181 Jul 1930 DE
523047 Apr 1931 DE
568508 Jan 1933 DE
572030 Mar 1933 DE
584639 Sep 1933 DE
586121 Oct 1933 DE
604972 Nov 1934 DE
629301 Apr 1936 DE
673545 Mar 1939 DE
719009 Mar 1942 DE
846583 Aug 1952 DE
875227 Apr 1953 DE
975999 Jan 1963 DE
1465719 May 1969 DE
1807391 May 1970 DE
2050674 May 1971 DE
1638176 Jun 1971 DE
2155371 May 1973 DE
2400698 Jul 1975 DE
2520511 Nov 1976 DE
2656389 Jun 1978 DE
2721905 Nov 1978 DE
137164 Aug 1979 DE
138840 Nov 1979 DE
2824951 Dec 1979 DE
2835386 Feb 1980 DE
2839517 Mar 1980 DE
2854520 Jun 1980 DE
3009102 Sep 1980 DE
2913697 Oct 1980 DE
2920478 Dec 1980 DE
3028777 Mar 1981 DE
2939004 Apr 1981 DE
3006382 Aug 1981 DE
3008818 Sep 1981 DE
209313 Apr 1984 DE
3305225 Aug 1984 DE
3309051 Sep 1984 DE
3441311 May 1986 DE
3543106 Jun 1987 DE
2917717 Aug 1987 DE
3612112 Oct 1987 DE
3726346 Feb 1989 DE
3925337 Feb 1991 DE
4023903 Nov 1991 DE
4022476 Jan 1992 DE
4233558 Mar 1994 DE
4402184 Aug 1995 DE
4409794 Aug 1995 DE
4412761 Oct 1995 DE
4420322 Dec 1995 DE
19620906 Jan 1996 DE
4438186 May 1996 DE
19020222 Mar 1997 DE
19547229 Jun 1997 DE
468827 Jul 1997 DE
134022 Dec 2001 DE
049104 Apr 1982 EP
0493704 Apr 1982 EP
0056580 Jul 1982 EP
078908 May 1983 EP
0120154 Oct 1984 EP
0130124 Jan 1985 EP
0142813 May 1985 EP
0155405 Sep 1985 EP
0102513 Jan 1986 EP
0174783 Mar 1986 EP
0185788 Jul 1986 EP
0277358 Aug 1986 EP
0234521 Sep 1987 EP
0244059 Nov 1987 EP
0246377 Nov 1987 EP
0265868 May 1988 EP
0274691 Jul 1988 EP
0280759 Sep 1988 EP
0282876 Sep 1988 EP
0309096 Mar 1989 EP
0314850 May 1989 EP
0316911 May 1989 EP
0317248 May 1989 EP
0335430 Oct 1989 EP
0342554 Nov 1989 EP
0221404 May 1990 EP
0375101 Jun 1990 EP
0406437 Jan 1991 EP
0439410 Jul 1991 EP
0440865 Aug 1991 EP
0469155 Feb 1992 EP
0490705 Jun 1992 EP
0503817 Sep 1992 EP
0571155 Nov 1993 EP
0620570 Oct 1994 EP
0620630 Oct 1994 EP
0642027 Mar 1995 EP
0671632 Sep 1995 EP
0676777 Oct 1995 EP
0677915 Oct 1995 EP
0684679 Nov 1995 EP
0684682 Nov 1995 EP
0695019 Jan 1996 EP
0732787 Sep 1996 EP
0738034 Oct 1996 EP
0739087 Oct 1996 EP
0740315 Oct 1996 EP
0749190 Dec 1996 EP
0751605 Jan 1997 EP
0739087 Mar 1997 EP
0749193 Mar 1997 EP
0780926 Jun 1997 EP
0802542 Oct 1997 EP
0913912 May 1999 EP
805544 Apr 1936 FR
841351 Jan 1938 FR
847899 Dec 1938 FR
916959 Dec 1946 FR
1011924 Apr 1949 FR
1126975 Mar 1955 FR
1238795 Jul 1959 FR
2108171 May 1972 FR
2251938 Jun 1975 FR
2305879 Oct 1976 FR
2376542 Jul 1978 FR
2467502 Apr 1981 FR
2481531 Oct 1981 FR
2556146 Jun 1985 FR
2594271 Aug 1987 FR
2708157 Jan 1995 FR
123906 Mar 1919 GB
268271 Mar 1927 GB
293861 Nov 1928 GB
292999 Apr 1929 GB
319313 Jul 1929 GB
518993 Mar 1940 GB
537609 Jun 1941 GB
540456 Oct 1941 GB
589071 Jun 1947 GB
666883 Feb 1952 GB
685416 Jan 1953 GB
702892 Jan 1954 GB
715225 Sep 1954 GB
723457 Feb 1955 GB
739962 Nov 1955 GB
763761 Dec 1956 GB
805721 Dec 1958 GB
827600 Feb 1960 GB
854725 Nov 1960 GB
870583 Jun 1961 GB
913386 Dec 1962 GB
965741 Aug 1964 GB
992249 May 1965 GB
1024583 Mar 1966 GB
1053337 Dec 1966 GB
1059123 Feb 1967 GB
1103098 Feb 1968 GB
1103099 Feb 1968 GB
1117401 Jun 1968 GB
1135242 Dec 1968 GB
1147049 Apr 1969 GB
1157885 Jul 1969 GB
1174659 Dec 1969 GB
1236082 Jun 1971 GB
1268770 Mar 1972 GB
1319257 Jun 1973 GB
1322433 Jul 1973 GB
1340983 Dec 1973 GB
1341050 Dec 1973 GB
1365191 Aug 1974 GB
1395152 May 1975 GB
1424982 Feb 1976 GB
1426594 Mar 1976 GB
1438610 Jun 1976 GB
1445284 Aug 1976 GB
1479904 Jul 1977 GB
1493163 Nov 1977 GB
1502938 Mar 1978 GB
1525745 Sep 1978 GB
2000625 Jan 1979 GB
1548633 Jul 1979 GB
2046142 Nov 1979 GB
2022327 Dec 1979 GB
2025150 Jan 1980 GB
2034101 May 1980 GB
1574796 Sep 1980 GB
2070341 Sep 1981 GB
2070470 Sep 1981 GB
2071433 Sep 1981 GB
2081523 Feb 1982 GB
2099635 Dec 1982 GB
2105925 Mar 1983 GB
2106306 Apr 1983 GB
2106721 Apr 1983 GB
2136214 Sep 1984 GB
2140195 Nov 1984 GB
2150153 Jun 1985 GB
2268337 Jan 1994 GB
2273819 Jun 1994 GB
2283133 Apr 1995 GB
2289992 Dec 1995 GB
2308490 Jun 1997 GB
2332557 Jun 1999 GB
175494 Nov 1981 HU
60206121 Mar 1959 JP
57043529 Aug 1980 JP
57126117 May 1982 JP
59076156 Oct 1982 JP
59159642 Feb 1983 JP
6264964 Sep 1985 JP
1129737 May 1989 JP
62320631 Jun 1989 JP
2017474 Jan 1990 JP
3245748 Feb 1990 JP
4179107 Nov 1990 JP
318253 Jan 1991 JP
424909 Jan 1992 JP
5290947 Apr 1992 JP
6196343 Dec 1992 JP
6233442 Feb 1993 JP
6325629 May 1993 JP
7057951 Aug 1993 JP
7264789 Mar 1994 JP
8167332 Dec 1994 JP
7161270 Jun 1995 JP
8264039 Nov 1995 JP
9200989 Jan 1996 JP
8036952 Feb 1996 JP
8167360 Jun 1996 JP
67199 Mar 1972 LU
90308 Sep 1937 SE
305899 Nov 1968 SE
255156 Feb 1969 SE
341428 Dec 1971 SE
453236 Jan 1982 SE
457792 Jun 1987 SE
502417 Dec 1993 SE
266037 Oct 1965 SU
792302 Jan 1971 SU
425268 Sep 1974 SU
646403 Feb 1979 SU
1019553 Jan 1980 SU
694939 Jan 1982 SU
955369 Aug 1983 SU
1189322 Oct 1986 SU
1511810 May 1987 SU
WO8202617 Aug 1982 WO
WO8502302 May 1985 WO
WO9011389 Oct 1990 WO
WO9012409 Oct 1990 WO
PCTDE 9000279 Nov 1990 WO
WO9101059 Jan 1991 WO
WO9101585 Feb 1991 WO
WO9107807 Mar 1991 WO
PCT SE 9100077 Apr 1991 WO
WO9109442 Jun 1991 WO
WO 9111841 Aug 1991 WO
WO8115862 Oct 1991 WO
WO 9115755 Oct 1991 WO
WO9201328 Jan 1992 WO
WO9203870 Mar 1992 WO
WO9321681 Oct 1993 WO
WO9406194 Mar 1994 WO
WO9518058 Jul 1995 WO
WO9522153 Aug 1995 WO
WO9524049 Sep 1995 WO
WO9622606 Jul 1996 WO
WO9622607 Jul 1996 WO
PCT CN 9600010 Oct 1996 WO
WO9630144 Oct 1996 WO
WO9710640 Mar 1997 WO
WO9711831 Apr 1997 WO
WO9716881 May 1997 WO
WO 9729494 Aug 1997 WO
WO45908 Dec 1997 WO
WO9745288 Dec 1997 WO
WO9745847 Dec 1997 WO
WO9745848 Dec 1997 WO
WO9745906 Dec 1997 WO
WO9745907 Dec 1997 WO
WO9745912 Dec 1997 WO
WO9745914 Dec 1997 WO
WO9745915 Dec 1997 WO
WO9745916 Dec 1997 WO
WO9745918 Dec 1997 WO
WO9745919 Dec 1997 WO
WO9745920 Dec 1997 WO
WO9745921 Dec 1997 WO
WO9745922 Dec 1997 WO
WO9745923 Dec 1997 WO
WO9745924 Dec 1997 WO
WO9745925 Dec 1997 WO
WO9745926 Dec 1997 WO
WO9745927 Dec 1997 WO
WO9745928 Dec 1997 WO
WO9745929 Dec 1997 WO
WO9745930 Dec 1997 WO
WO9745931 Dec 1997 WO
WO9745932 Dec 1997 WO
WO9745933 Dec 1997 WO
WO9745934 Dec 1997 WO
WO9745935 Dec 1997 WO
WO9745936 Dec 1997 WO
WO9745937 Dec 1997 WO
WO9745938 Dec 1997 WO
WO9745939 Dec 1997 WO
WO9747067 Dec 1997 WO
PCTFR 9800468 May 1998 WO
WO9820595 May 1998 WO
WO9820596 May 1998 WO
WO9820597 May 1998 WO
WO 9820598 May 1998 WO
WO9820600 May 1998 WO
WO 9820602 May 1998 WO
WO9821385 May 1998 WO
WO9827634 Jun 1998 WO
WO9827635 Jun 1998 WO
WO9827636 Jun 1998 WO
WO9829927 Jul 1998 WO
WO9829928 Jul 1998 WO
WO9829929 Jul 1998 WO
WO9829930 Jul 1998 WO
WO9829931 Jul 1998 WO
WO9829932 Jul 1998 WO
WO9833731 Aug 1998 WO
WO9833736 Aug 1998 WO
WO9833737 Aug 1998 WO
WO9834238 Aug 1998 WO
WO 9834239 Aug 1998 WO
WO9834240 Aug 1998 WO
WO9834241 Aug 1998 WO
WO9834242 Aug 1998 WO
WO9834243 Aug 1998 WO
WO9834244 Aug 1998 WO
WO9834245 Aug 1998 WO
WO9834246 Aug 1998 WO
WO9834247 Aug 1998 WO
WO9834248 Aug 1998 WO
WO9834249 Aug 1998 WO
WO9834250 Aug 1998 WO
WO9834309 Aug 1998 WO
WO9834312 Aug 1998 WO
WO9834315 Aug 1998 WO
WO9834321 Aug 1998 WO
WO9834322 Aug 1998 WO
WO9834323 Aug 1998 WO
WO9834325 Aug 1998 WO
WO9834326 Aug 1998 WO
WO9834327 Aug 1998 WO
WO9834328 Aug 1998 WO
WO9834329 Aug 1998 WO
WO9834330 Aug 1998 WO
WO9834331 Aug 1998 WO
WO 9840627 Sep 1998 WO
WO 9843336 Oct 1998 WO
WO9917309 Apr 1999 WO
WO9917311 Apr 1999 WO
WO9917312 Apr 1999 WO
WO9917313 Apr 1999 WO
WO9917314 Apr 1999 WO
WO9917315 Apr 1999 WO
WO9917316 Apr 1999 WO
WO9917422 Apr 1999 WO
WO9917424 Apr 1999 WO
WO9917425 Apr 1999 WO
WO9917426 Apr 1999 WO
WO9917427 Apr 1999 WO
WO9917428 Apr 1999 WO
WO9917429 Apr 1999 WO
WO9917432 Apr 1999 WO
WO9917433 Apr 1999 WO
WO9919963 Apr 1999 WO
WO9919969 Apr 1999 WO
WO9919970 Apr 1999 WO
PCTSE 9802148 May 1999 WO
WO9927546 Jun 1999 WO
WO9928919 Jun 1999 WO
WO9928921 Jun 1999 WO
WO 9928922 Jun 1999 WO
WO9928923 Jun 1999 WO
WO9928924 Jun 1999 WO
WO9928925 Jun 1999 WO
WO9928926 Jun 1999 WO
WO9928927 Jun 1999 WO
WO9928928 Jun 1999 WO
WO9928929 Jun 1999 WO
WO9928930 Jun 1999 WO
WO9928931 Jun 1999 WO
WO9928934 Jun 1999 WO
WO9928994 Jun 1999 WO
WO 9929005 Jun 1999 WO
WO9929005 Jun 1999 WO
WO9929008 Jun 1999 WO
WO9929011 Jun 1999 WO
WO9929012 Jun 1999 WO
WO9929013 Jun 1999 WO
WO9929014 Jun 1999 WO
WO9929015 Jun 1999 WO
WO9929016 Jun 1999 WO
WO9929017 Jun 1999 WO
WO9929018 Jun 1999 WO
WO9929019 Jun 1999 WO
WO9929020 Jun 1999 WO
WO9929021 Jun 1999 WO
WO9929022 Jun 1999 WO
WO 9929023 Jun 1999 WO
WO9929024 Jun 1999 WO
WO 9929025 Jun 1999 WO
WO9929026 Jun 1999 WO
WO9929029 Jun 1999 WO
WO9929034 Jun 1999 WO
Related Publications (1)
Number Date Country
20020047439 A1 Apr 2002 US