The subject matter disclosed herein relates to high voltage bushing assemblies.
When power is provided to a device or structure, a bushing assembly may be used to help isolate the power line from the building or structure. For example, bushings are used to provide high voltages to turbines. Bushings include a conductor, an insulating sleeve around the conductor, and a device to affix the insulating sleeve to the building or structure. The conductor passes through the insulating sleeve and into the building or structure.
According to one aspect of the invention, a bushing assembly comprises an insulating sleeve to surround a conductor; a flange located on an outside surface of the insulating sleeve; and a first band of semiconductive glaze located on the outer surface of the insulating sleeve spaced apart from a first end of the insulating sleeve.
According to another aspect of the invention, a high-voltage bushing system comprises a bushing having an insulating sleeve to surround a conductor and a flange on an outside surface of the insulating sleeve to mount the bushing to a structure, the outside surface of the insulating sleeve having at least one band of semiconductive glaze located spaced apart from an end of the insulating sleeve; and a current transformer spaced apart from the bushing to monitor a current of the conductor.
According to yet another aspect of the invention, a high-voltage bushing assembly comprises an insulating sleeve to surround a conductor; at least one band of semiconductive glaze on a surface of the insulating sleeve; and non-semiconductive glaze on portions of the surface of the insulating sleeve that do not include the at least one band of semiconductive glaze.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
At a first end 2 of the bushing 1, between an exposed portion of the conductor 10 and the flange 30, are a first set of annular ribs or ridges 21 and a first semiconductive-glazed band 22. A non-semiconductive-glazed portion 25 is located between the exposed portion of the conductor 10 and the ridges 21. At a second end 3 of the bushing 1 on the other side of the flange 30, are a second set of annular ribs or ridges 24 and a second semiconductive-glazed band 23. A non-semiconductive-glazed portion 26 is located between the second set of ridges 24 and an exposed portion of the conductor 10. Throughout the specification and claims, the first and second sets of annular ribs or ridges 21 and 24 are referred to as ribs, ridges, ribbed/ridged portions, sets of ribs/ridges, annular ribs/ridges, and the like.
The flange 30 includes a base portion 31 having a substantially cylindrical or conic shape, and an extended portion 32 extending from the base portion 31. In one embodiment, the extended portion has a substantially disk-like shape. In some embodiments, the flange 30 includes additional features, such as supporting braces and holes for mounting or fixing the flange 30 to a surface. In another embodiment, the base portion 31 of the flange 30 is parallel to the surface of the insulating sleeve 20. For example, each of the outer surfaces of the insulating sleeve 20 and the base portion 31 of the flange 30 may be cylindrically or conically shaped, and the base portion 31 of the flange 30 may extend along a portion of the outer surface of the insulating sleeve 20 and surround the insulating sleeve 20.
The semiconductive-glazed bands 22 and 23 are portions of the bushing 1 in which semiconductive materials are incorporated into a glaze that makes up an outer layer of the insulating sleeve 20. In some embodiments, the portions of the bushing 1 that do not include the semiconductive-glazed bands 22 and 23, such as the ridged portions 21 and 24 and the portions 25 and 26, are glazed with a non-semiconductive glaze. Applying a semiconductive glaze to the insulating sleeve 20 bonds the semiconductor material to the insulating sleeve 20 stronger than if applied as a layer by other means, such as by chemically depositing or coating a semiconductive material on a previously-glazed insulating sleeve 20 or a non-glazed insulating sleeve 20.
The semiconductive-glazed bands 22 and 23 are located on either side of the flange 30. In one embodiment, the semiconductive-glazed bands 22 and 23 are located immediately adjacent to the flange 30. In other words, in one embodiment, no non-semiconductive-glazed portion is located between the flange 30 and the semiconductive-glazed bands 22 and 23. By locating the semiconductive-glazed bands 22 and 23 adjacent to the flange 30, the corona and flashover resistance of the bushing 1 is substantially increased.
In the embodiment illustrated in
The semiconductive-glazed bands 22 and 23 are bands that circumscribe the insulating sleeve 20. The glazed portions of the insulating sleeve 20 that surround the bands 22 and 23 include a normal glaze that does not include semiconductive materials. The normal glaze has a relatively high surface resistivity, such a surface resistivity in the range from 1012-1014 ohms/square (“ohms/sq”). According to one embodiment, the surface resistivity of the semiconductive-glazed bands 22 and 23 is in a range from 108-109 ohms/sq. In one embodiment, the semiconductive-glazed bands 22 and 23 are homogeneous, or comprising each only one band having one resistivity rather than multiple bands having different resistivities.
According to one embodiment, the semiconductive glaze increases the porcelain surface temperature to several degrees Celsius higher because of the nature of resistivity-based voltage grading, which prevents moisture condensation and ambient pollution deposits, which further improves corona resistance of the bushing 1.
In some embodiments, the semiconductor glaze is made with voltage-grading materials having a surface resistivity that decreases with increased electric fields or temperatures. An example of the voltage-grading materials includes iron-titanium oxide. Other examples include tin oxide, silicon carbide, silicon nitride, aluminum nitride, boron nitride, boron oxide, molybdenum oxide, molybdenum disulfide, Ba2O3, and aluminum carbide. In one embodiment, the linear thermal expansion of the semiconducting glaze is smaller than that of the base material, such as porcelain, of the insulating sleeve 20.
In one embodiment of the present invention, electrically conductive adhesive 40 is applied at both ends of the flange 30 adjacent to the semiconductive-glazed bands 22 and 23. The electrically conductive adhesive 40 electrically connects the flange 30 to the semiconductive-glazed bands 22 and 23.
The flange 30 is mounted to the substrate 27 by a highly thermally-insulating (e.g., having a high thermal rating) epoxy-glass bonding material 52. In one embodiment, the substrate 27 includes a protrusion 28 that abuts a ridge of the flange 30 to hold a position of the flange 30 with respect to the substrate 27. The thermally-insulating epoxy 52 fills a space between the substrate 27 and the base portion 31 of the flange 30 corresponding to the height of the protrusion 28. The flange 30 further includes at least six holes 33 to mount the bushing 1 to a surface.
The semiconductor glazed portions 22 and 23 have lengths of d2 and d1, respectively. In one embodiment, the combined length d1+d2 is less than or equal to 12 inches long. For example, in one embodiment the first semiconductor glaze portion 22 is 5.5 inches long, and the second semiconductor glaze portion is 3.5 inches long.
According to one embodiment, an inner surface or wall 29 of the substrate 27 is glazed with a semiconductive glaze. The semiconductive glaze of the inner surface 29 has a surface resistivity that is less than the surface resistivity of the semiconductive glaze bands 22 and 23. For example, if the surface resistivity of the semiconductive glaze bands 22 and 23 is in a range between 108-109 ohms/sq, then a surface resistivity of the semiconductive glaze of the inner surface 29 may be in a range between 105-107 ohms/sq. The non-conducting glaze, or each glazed portion of the insulating sleeve 20 that does not include the semiconductive glaze, including the portions 25 and 26, and the ribbed portions 21 and 24, may have a surface resistivity in a range between 1012-1014 ohms/sq.
An electrically conductive adhesive 40 whose surface resistivity can be as low as 1-10×10−3 ohms/sq, is coated on an end surface 35 of the flange 30. The electrically conductive adhesive 40 electrically connects the flange to the semiconductive glaze of the glazed portion 71. The adhesive can be silicone or epoxy-based matrix filled with carbon black, or for endurance, with silver particles to achieve the performance required.
Table 1 illustrates a comparison of electric field distribution on an outer surface of a bushing 1 having the second semiconductive-glazed band 23 and a bushing having no semiconductive-glazed band.
The values of Table 1 correspond to a bushing attached to a structure filled with hydrogen (H2), such as a turbo generator, so that the part of the bushing on one side of the flange is exposed to ambient air and the part of the bushing on the other side of the flange is exposed to the pressurized hydrogen. The values of Table 1 correspond to the side exposed to the hydrogen.
In the examples illustrated in Table 1, a voltage provided to the conductor 10 of 14.6 kV corresponds to a testing voltage which is 1.05× the maximal rated voltage of 24 kV/1.732 per IEC 60137 requirement, and the voltage of 68 kV corresponds to a high potential (Hipot) testing voltage that simulates a potential spike that may occur during operation, which is about three times the rated voltage of the bushing. In each example corresponding to embodiments of the present invention in which the second semiconductive-glazed band 23 is present, the electric field generated on the outer surface of the bushing 1 is substantially less than when a non-semiconductive glaze is used, thereby reducing significantly flashover and coronal discharge whose inception (triggering) strength requires a field of 75 kV/inch.
Table 2 illustrates a comparison of electric field distribution on an outer surface of a bushing 1 having the first semicondutive-glazed band 22 and a bushing that does not have the first semiconductive-glazed band 22.
The values of Table 2 correspond to a bushing attached to a structure filled with hydrogen (H2), such as a turbine, so that the part of the bushing on one side of the flange is exposed to air and the part of the bushing on the other side of the flange is exposed to the pressurized hydrogen. The values of Table 2 correspond to the side exposed to the air.
In the examples illustrated in Table 2, the voltage provided to the conductor 10 of 14.6 kV corresponds to a testing voltage which is 1.05× the maximal rated voltage of 24 kV/1.732 per IEC 60137 requirement, and the voltage of 68 kV corresponds to a HiPot testing voltage that simulates a potential spike that may occur during operation, which is about three times the rated voltage of the bushing voltage spike that may occur during operation. In each example corresponding to embodiments of the present invention in which the semiconductive-glazed band 22 is present, the electric field generated on the outer surface of the bushing 1 is substantially less than when a non-semiconductive glaze is used, thereby reducing substantially the tendency of flashover and coronal discharge on the ambient air side. Without the voltage grading generated with the semiconductive bands of the above-described embodiments, the non-semiconductive glazed bushing would have an electric field of 85 kV/inch that is higher the corona inception field strength and thus would trigger frequently corona discharge at rated voltage during the operation. It is known the corona discharge eats the epoxy-glass bonding material and porcelain creepage ridges, resulting potentially reduced life and reliability in service.
The utility of this bushing design can be further illustrated in
According to the above embodiments, a bushing has improved resistance to corona discharges and flashovers by glazing the bushing with a semiconductive glaze. The outer surface of the bushing includes bands of semiconductive glaze on either side of a flange. The inner surface of the bushing includes a semiconductor glaze having a resistivity different from that of the bands of the outer surface of the bushing. An electrically conductive adhesive is coated on ends of the flange to electrically connect the flange to the semiconductive-glazed bands.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.