1. Field of the Invention
The present invention relates to vacuum electron devices (VEDs). More particularly, the present invention relates to input circuits for high power RF amplifiers which employ VEDs such as Klystrodes, Inductive Output Tubes (IOTs), and the like in the television broadcast service.
2. The Background Art
Vacuum tube amplifiers generally include an input circuit having three major components: the enclosure, the input resonator, and the socket. The enclosure houses the socket and the input resonator to which high voltage connections are made. Not only does the enclosure envelope the circuit, but its function is also to contain radio frequency (RF) energy within the RF compartment.
IOTs have limited life times and must be replaced from time to time. Existing IOT-based amplifier designs generally require complete removal of the amplifier input circuit from the transmitter in order to replace the VED. This process can be cumbersome and inconvenient. During tube replacement, electrical contact fingers in the socket may be easily damaged due to incorrect alignment. With damage to the contact fingers, RF energy may leak from the amplifier. RF leakage can also generate a substantial amount of heat or arcing which may damage wiring and components. In addition, misalignment may also cause RF leakage from the amplifier enclosure due to improper seating on an electro magnetic interference (EMI) gasket.
Even if the input circuit is properly seated, the high voltage leads can couple an undesirable percentage of the input RF into the transmitter's instrumentation. Due to spatial constraints, it is difficult to isolate the RF signals within the enclosure by loading it with ferrites (filter components, chokes and bobbins). Consequently, end-users currently place such RF isolation components in the transmitter output circuit. Despite the ability to combine RF components and high voltage components under the same cover, the spatial constraint limits the ability to improve the product. Aside from RF isolation, high voltage standoff issues make it difficult to incorporate a quick and easily accessible connection box.
In operation, an alternating RF voltage is applied between the cathode 21 and grid 24 lines. The input RF voltage propagates to the input section of the VED (not shown) generating a RF voltage between the VED's grid and cathode (not shown). The VED's cathode emits electrons resulting in a bunched (density modulated) electron beam. An anode structure (not shown) operating at a high DC beam voltage accelerates the bunched beam through the anode's aperture.
The heater collet 25 is retained to cathode lines 21 and 22 through C-Clips 26 as heater collet 25 heats up cathode lines 21 and 22. Mounting screws 27 retain heater collet 25 against a high voltage insulator 28. When heater collet 25 needs to be removed for maintenance, mounting screws 27 along with C-clips 26 must be disassembled. Therefore, when a user needs to replace a component of the RF socket that houses the heater line, the entire RF socket needs to be completely removed. Such components can easily be damaged during assembly or installation of the RF socket.
Accordingly, a need exists for an improved input circuit for an RF amplifier providing a high power output which provides a good seat alignment for the VED with an EMI gasket to prevent RF leakage, an easy assembly and disassembly mechanism, a proper cooling system with RF isolation, and an easy socket interface.
A self guiding cover assembly for a vacuum electron device (VED) enclosure has a cover, a pair of guide plates, and a pair of guide elements. The cover has a top, a sidewall, an inside and an outside, and at least one electrical connector disposed on the inside of the cover for mating with a VED. The pair of guide plates is disposed on opposite sides of the outside of the sidewall of the cover. The guide plates each have a track. The pair of guide elements is mounted on opposite sides of the outside of the sidewall of the cover. The pair of guide elements each mates with the track. The cover further comprises a breach lock mechanism for seating the VED into the VED enclosure having a base. The breach lock mechanism has guide elements mounted on the VED. A first sleeve is mounted on the base and removably receives the VED. A second sleeve is mounted on the base and removably receives the first sleeve. The second sleeve has tracks for mating with the guide elements. A rotation of the second sleeve pulls the VED into the base for seating the VED.
The accompanying drawings, which are incorporated in and constitute a part of this Specification, illustrate one or more embodiments of the invention and, together with the present description, serve to explain the principles of the invention.
In the drawings:
Embodiments of the present invention are described herein in the context of high power RF amplifiers employing vacuum electron devices. Those of ordinary skill in the art will realize that the following description of the present invention is illustrative only and not intended to be in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons having the benefit of this disclosure. Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The same reference numbers will be used throughout the drawings and the following description to refer to the same or like parts.
In the interest of clarity, not all of the routine features of the implementations described herein are described. It will of course be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system and business-related goals, and these goals will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine, undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
A pair of guide plates 310 and 312 are mounted on VED enclosure 304 and opposite to sidewalls 303 and 305 of cover 302. A track 314, slot, or other form of guide may be disposed within, through, or on guide plates 310 and 312 for defining a limited range of movement of cover 302. Track 314 may preferably be in the shape of an “L” as shown. A pair of guide elements, such as a pair of shafts 316, are detachably mounted on opposite sides of the outside of sidewalls 303 and 305 of cover 302. The pair of shafts 316 may be a pair of screws attached to cover 302 with a nut (not shown). The pair of shafts 316 engages track 314 of guide plates 310 and 312. The pair of guide plates 310 and 312 allow cover 302 to restrictively move along track 314.
The pair of guide plates 310 and 312 allows cover 302 to be aligned during its installation and removal. The pair of guide plates supports cover 302 when cover 302 is open by allowing the weight of cover 302 to rest on shafts 316. To prevent broken or bent contact fingers between cover 302 and VED enclosure 304, track 314 physically requires that cover 302 be lifted vertically until cover 302 clears all interfaces. Furthermore, cover 302 may rotate 90 degrees followed by a horizontal push to the rear to lock in place allowing clearance for VED removal. Different track patterns can be used to accommodate transmitters with specific constraints. In addition, other mechanical systems, such as gas struts, springs and rotary/linear actuators can be implemented to assist and/or automate the system as shown as reference numeral 401 (referred to as a “movement system”) in an example embodiment in
For transmitters with different vertical clearance requirements, an alternate track pattern or guide system can be used. By replacing the L-shaped track with an open slot as illustrated in
Other ways of aligning the cover may be a system of guideposts and eyebolts or slots, a frame mounted on the hardware, a hinge system that allows rotation to either side of the transmitter (if there is sufficient clearance), or a system to pivot the whole cover out of the transmitter.
A vertical guide assembly 713 is mounted on support plate 710 around opening 712. Vertical guide assembly 713 is preferably a hollow cylinder having slots 715 disposed transversally around its edge. The slots have one open end directed away from support plate 710. The width of slots 715 is suitable for mating with pins 708. The movement of pins 708 is constrained by the shape of slots 715. Therefore, pins 708 can only move within the defined linear shape of slots 715 once they mate with slots 715.
A sleeve 714 sits on support plate 710 around opening 712 such that sleeve 714 can rotate around vertical guide assembly 713. The diameter of sleeve 714 is larger than the diameter of vertical guide assembly such that sleeve 714 embraces vertical guide assembly 713. Sleeve 714 has several slots (only one slot 716 is shown in
Sleeve 714 is connected to a handle 724 opposite to opening 712. Handle 724 can rotate about opening 712 between two end positions. When handle 724 rotates around VED 702, sleeve 714 rotates around vertical guide assembly 713. Pin 708 is restricted to move within slot 716. In particular, pin 708 enters through opening 718, middle portion 720, and terminus 722. When pin 708 reaches middle portion 720, it must follow the slanted path that declines away from opening 718. Furthermore, pin 708 is restricted to a path movement defined by slots 715. For example, when handle 724 rotates, pin 708 is actually engaged with both vertical assembly 713 and slots 715. As handle 724 rotates, pin 708 is constrained to the space defined by the intersection of slot 716 and slot 715. This results in lowering or raising VED 702 into VED enclosure 704. When VED 702 is lowered by rotating handle 724, VED 702 is seated and sealed onto VED enclosure 704. When pin 708 reaches terminus 722, handle 724 reaches a locked position.
Adapter plate 802 seals VED enclosure 304 from the bottom (not shown). In
RF isolation is first accomplished using absorbing materials, such as tiles 1013 mounted on a flat surface within chamber 1004. Further isolation is accomplished by a partition on which panel 1010 also known as “honeycomb” or “waveguide beyond cutoff” EMI vent is mounted. Panel 1010 allows air to flow while cutting off RF from chamber 1004. Another purpose for panel 1010 is easy access for high voltage connection in chamber 1006. For example, panel 1010 can be mounted either with fasteners 1012 as illustrated in
Chamber 1006 has holes 1016 to feed high voltage wires through thus minimizing the amount of RF entering chamber 1006. Within chamber 1004, additional RF isolation components, such as filters, chokes, bobbins and ferrites, can be installed to sufficiently minimize RF coupling to the high voltage cables. Air input system 1008 provides an air flow distribution within chamber 1006 and chamber 1004 sufficient for cooling components within both chambers.
An outer cathode line 1202 in the shape of a hollow cylinder formed of a conductive material has a VED connection end 1204. A contact block 1206 is removably positioned within outer cathode line 1202. Contact block 1206 has an inner cathode contact 1208, a heater contact 1210, and a vacuum ion pump contact 1212. Contact block 1206 also has a threaded stem 1214 extending towards VED connection end 1204 of outer cathode line 1202. Vacuum ion pump contact 1212 is located at the end of threaded stem 1214.
An inner cathode line 1216 comprising a hollow cylinder formed of a conductive material and a support plate 1218 is removably positioned within outer cathode line 1202. Support plate 1218 is positioned transversely inside of inner cathode line 1216. An opening 1220 in the center of support plate 1218 removably receives threaded stem 1214.
A heater contact line 1222 having internal threads and hex for easy removal is coupled to inner cathode line 1216. Heater contact line 1222 has a threaded hollow cylinder 1224 having a flange 1226 on its exterior. Threaded stem 1214 receives threaded hollow cylinder 1224 such that heater contact line 1222 is in contact with heater contact 1210. Flange 1226 is in contact with support plate 1218. Inner cathode line 1216 is held in position against contact block 1206. Heater contact line 1222 has threads 1228 near the VED connection. Threads 1228 are used for applying torque to heater contact line 1222 using a tool.
This new configuration allows all parts to be easily accessible by removing heater contact line 1222 with a simple tool. Heater contact line 1222 is fastened to contact block 1206 using screw threads 1228 and holds inner cathode line 1216 in place. As described above, the threaded stem 1214 of the contact block 1206 receives the threaded hollow cylinder 1224 of the heater contact line 1222. Thus, by removing the contact line 1222 using the tool (by applying torque via the screw thread 1228 in a direction opposite to that of fastening), the inner cathode line 1216 (with filter components 1230 attached) can also be easily removed. Filter components 1230 are mounted with an electrically nonconductive standoff, i.e. ceramic or nylon, and connected to an outer cathode line contact 1232 and an inner cathode line contact 1234 with contact fingers. The outer cathode line contact 1232 engages with the top portion of the outer cathode line 1202 when assembled. Contact block 1206 also uses fingers, i.e., the inner cathode contact 1208 and the heater contact 1210, to contact the inner cathode line 1216 and the heater contact line 1222, respectively. For the heater contact line 1222, a wave washer or a plate washer with a tab for mounting may be used for contact. Contact block 1206 may be mounted to outer cathode line 1202 using flat-head screws 1240 radially inward. Screws 1240 are oriented that way instead of on the top of outer cathode line 1202 to avoid improper seating of a high voltage blocker 1242 to outer cathode line 1202. The vacuum ion pump contact 1212 provides a DC voltage required to operate an appendage vacuum ion pump (not shown) located on the VED (not shown). Vacuum ion pump contact 1212′ may be mounted onto contact block 1206 via fasteners 1250 and modified to receive heater contact line 1222 as illustrated in
While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art having the benefit of this disclosure that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.
The present application is a divisional of U.S. patent application Ser. No. 09/778,387, filed Feb. 6, 2001, now U.S. Pat. No. 7,029,286, issued Apr. 18 2006, entitled, “Cover Assembly for Vacuum Electron Device” in the names of Wilson W. Toy, Christopher Yates, Paul Krzeminski, Robert N. Tornoe, Edmund T. Davis and assigned to Communication and Power Industries, a Delaware Corporation, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/180,798, filed Feb. 7, 2000.
Number | Name | Date | Kind |
---|---|---|---|
1382914 | Hoxie | Jun 1921 | A |
1537228 | Gargan | May 1925 | A |
1747938 | Hull | Feb 1930 | A |
1839876 | Hartman | Jan 1932 | A |
1875132 | Peterson | Aug 1932 | A |
2164507 | Espe | Jul 1939 | A |
2357214 | McDole | Aug 1944 | A |
2462370 | Drake | Feb 1949 | A |
2521945 | Rado | Sep 1950 | A |
2710904 | Crane et al. | Jun 1955 | A |
2893704 | Passman | Jul 1959 | A |
2922957 | Haszard | Jan 1960 | A |
3027535 | Persson | Mar 1962 | A |
3039203 | Winkler | Jun 1962 | A |
3189212 | Bellek | Jun 1965 | A |
3273021 | Stark, Jr. et al. | Sep 1966 | A |
3364838 | Bradley | Jan 1968 | A |
3444419 | Hansen et al. | May 1969 | A |
3686425 | Zerwes et al. | Aug 1972 | A |
3716815 | Riches | Feb 1973 | A |
3816911 | Knappenberger | Jun 1974 | A |
3848088 | Bentz | Nov 1974 | A |
4254335 | Tondello et al. | Mar 1981 | A |
4370515 | Donaldson | Jan 1983 | A |
4494095 | Noji et al. | Jan 1985 | A |
4672160 | Katoh | Jun 1987 | A |
5150001 | Crewe | Sep 1992 | A |
5376020 | Jones | Dec 1994 | A |
5416381 | Scarpetti, Jr. et al. | May 1995 | A |
5450173 | Bekanich | Sep 1995 | A |
5614694 | Gorenz, Jr. et al. | Mar 1997 | A |
5762224 | Benn et al. | Jun 1998 | A |
5767625 | Shrader et al. | Jun 1998 | A |
5844784 | Moran et al. | Dec 1998 | A |
5961203 | Schuda | Oct 1999 | A |
5968455 | Brickley | Oct 1999 | A |
6057635 | Nishimura et al. | May 2000 | A |
6297446 | Cherniski et al. | Oct 2001 | B1 |
6300610 | Han et al. | Oct 2001 | B1 |
6449150 | Boone | Sep 2002 | B1 |
6676277 | Gordin | Jan 2004 | B1 |
Number | Date | Country |
---|---|---|
0 753 878 | Jan 1997 | EP |
0 948 024 | Oct 1999 | EP |
2 277 193 | Oct 1994 | GB |
Number | Date | Country | |
---|---|---|---|
20060154504 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
60180798 | Feb 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09778387 | Feb 2001 | US |
Child | 11370279 | US |