The disclosure generally relates to electrical power systems, and more particularly to the design of an electrical power system for a vehicle.
Ground vehicles, included those suitable for off road use, have migrated toward hybrid electric technology using high voltage direct current (HVDC) distribution. Modular multilevel converters (MMCs) have been considered for HVDC to achieve low harmonic distortion with moderate switching frequency. MMCs are suitable for integration with energy storage devices. MMC topologies typically include large inductors connected to the MMC arms.
In various embodiments, a synchronous generator is disclosed. A synchronous generator may comprise a stator, inner slots disposed in the stator, outer slots disposed in the stator, a fourth winding disposed in the outer slots, the fourth winding configured to receive a first phase signal, a fifth winding disposed in the outer slots, the fifth winding configured to receive the first phase signal, a sixth winding disposed in the outer slots, the sixth winding configured to receive a second phase signal, a seventh winding disposed in the outer slots, the seventh winding configured to receive the second phase signal, an eighth winding disposed in the outer slots, the eighth winding configured to receive a third phase signal, and a ninth winding disposed in the outer slots, the ninth winding configured to receive the third phase signal.
In various embodiments, the synchronous generator may further comprise a first winding disposed in the inner slots, the first winding configured to receive the first phase signal, a second winding disposed in the inner slots, the second winding configured to receive the second phase signal, and a third winding disposed in the inner slots, the third winding configured to receive the third phase signal. The first winding may be connected in series with the fourth winding and the fifth winding, the second winding may be connected in series with the sixth winding and the seventh winding, and the third winding may be connected in series with the eighth winding and the ninth winding. The fourth winding, the fifth winding, the sixth winding, the seventh winding, the eighth winding, and the ninth winding may be inductive. The synchronous generator may comprise one of a wound field generator or a permanent magnet generator. The synchronous generator may be driven by a shaft. The synchronous generator may further comprise a control winding configured to regulate an output voltage of the synchronous generator and configured to be controlled by a controller.
In various embodiments, an electric power system (EPS) is disclosed. An EPS may comprise a modular multilevel converter (MMC), and a synchronous generator in electronic communication with the MMC. The synchronous generator may comprise a stator, inner slots disposed in the stator, outer slots disposed in the stator, a fourth winding disposed in the outer slots, the fourth winding configured to receive a first phase signal, a fifth winding disposed in the outer slots, the fifth winding configured to receive the first phase signal, a sixth winding disposed in the outer slots, the sixth winding configured to receive a second phase signal, a seventh winding disposed in the outer slots, the seventh winding configured to receive the second phase signal, an eighth winding disposed in the outer slots, the eighth winding configured to receive a third phase signal, and a ninth winding disposed in the outer slots, the ninth winding configured to receive the third phase signal.
In various embodiments, the MMC may comprise a first arm comprising a first plurality of sub-modules connected in series, the first arm connected in series with the fourth winding, a second arm comprising a second plurality of sub-modules connected in series, the second arm connected in series with the fifth winding, a third arm comprising a third plurality of sub-modules connected in series, the third arm connected in series with the sixth winding, a fourth arm comprising a fourth plurality of sub-modules connected in series, the fourth arm connected in series with the seventh winding, a fifth arm comprising a fifth plurality of sub-modules connected in series, the fifth arm connected in series with the eighth winding, and a sixth arm comprising a sixth plurality of sub-modules connected in series, the sixth arm connected in series with the ninth winding. The synchronous generator may further comprise a first winding disposed in the inner slots, the first winding configured to receive the first phase signal, a second winding disposed in the inner slots, the second winding configured to receive the second phase signal, and a third winding disposed in the inner slots, the third winding configured to receive the third phase signal. The MMC may be configured to convert a three-phase signal received from the synchronous generator to a DC signal. The EPS may further comprise a controller configured to control the MMC. The synchronous generator may further comprise a control winding configured to regulate an output voltage of the synchronous generator and configured to be controlled by the controller. Each of the sub-modules may comprises at least one of a half-bridge topology, a full H-bridge topology, a half-bridge topology mixed with a full H-bridge, a cross coupled half-bridge, a clamp-double sub-module, or a semi-full-bridge. The first winding may be connected in series with the fourth winding and the fifth winding, the second winding may be connected in series with the sixth winding and the seventh winding, and the third winding may be connected in series with the eighth winding and the ninth winding. The fourth winding, the fifth winding, the sixth winding, the seventh winding, the eighth winding, and the ninth winding may be inductive. The synchronous generator may comprise one of a wound field generator or a permanent magnet generator. The synchronous generator may be driven by a shaft.
In various embodiments, a method of converting a synchronous generator three-phase signal to a direct current (DC) signal is disclosed. A method of converting a synchronous generator three-phase signal to a DC signal may comprise transmitting a first phase signal through a first winding of a stator, transmitting the first phase signal from the first winding to a fourth winding of the stator and a fifth winding of the stator, and the first winding connected in series with the fourth winding and the fifth winding, and transmitting the first phase signal from the synchronous generator to a modular multilevel converter (MMC).
In various embodiments, the method may further comprise transmitting a second phase signal through a second winding of the stator, transmitting the second phase signal from the second winding to a sixth winding of the stator and a seventh winding of the stator, and the second winding connected in series with the sixth winding and the seventh winding, transmitting the second phase signal from the synchronous generator to the MMC, transmitting a third phase signal through a third winding of the stator, transmitting the third phase signal from the third winding to an eighth winding of the stator and a ninth winding of the stator, and the third winding connected in series with the eighth winding and the ninth winding, and transmitting the third phase signal from the synchronous generator to the MMC.
The foregoing features, elements, steps, or methods may be combined in various combinations without exclusivity, unless expressly indicated herein otherwise. These features, elements, steps, or methods as well as the operation of the disclosed embodiments will become more apparent in light of the following description and accompanying drawings.
The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the drawing figures, wherein like numerals denote like elements.
The detailed description of various embodiments herein makes reference to the accompanying drawings, which show various embodiments by way of illustration. While these various embodiments are described in sufficient detail to enable those skilled in the art to practice the inventions, it should be understood that other embodiments may be realized and that logical, chemical and mechanical changes may be made without departing from the spirit and scope of the inventions. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact.
In the detailed description herein, references to “one embodiment”, “an embodiment”, “various embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
System program instructions and/or controller instructions may be loaded onto a non-transitory, tangible computer-readable medium having instructions stored thereon that, in response to execution by a controller, cause the controller to perform various operations. The term “non-transitory” is to be understood to remove only propagating transitory signals per se from the claim scope and does not relinquish rights to all standard computer-readable media that are not only propagating transitory signals per se. Stated another way, the meaning of the term “non-transitory computer-readable medium” and “non-transitory computer-readable storage medium” should be construed to exclude only those types of transitory computer-readable media which were found in In Re Nuijten to fall outside the scope of patentable subject matter under 35 U.S.C. § 101.
As used herein, “electronic communication” means communication of electronic signals with physical coupling (e.g., “electrical communication” or “electrically coupled”) or without physical coupling and via an electromagnetic field (e.g., “inductive communication” or “inductively coupled” or “inductive coupling”). In that regard, use of the term “electronic communication” includes both “electrical communication” and “inductive communication.”
In various embodiments, MMCs of the present disclosure make use of low voltage semiconductor power sub-modules and low voltage batteries and/or capacitors to provide electric power to high voltage loads. Electronic power systems (EPSs) of the present disclosure comprise synchronous generators having inductive windings (or arm inductors) disposed in outer slots of a stator which are connected to the appropriate arms of the MMC. Little or no electromagnetic fields (EMFs) are induced in these inductive windings by the rotor field excitation system. In this regard, MMCs of the present disclosure may result in improved packaging by removing arm inductors from the MMC. EPSs of the present disclosure have significant reduction in electromagnetic induction (EMI) emissions, which may result in weight and size improvement of EMI filters. EPSs of the present disclosure may comprise low harmonic distortion with moderate switching frequency.
With respect to
With reference to
In various embodiments, MMC 130 may comprise a high voltage direct current (HVDC) converter. MMC 130 may be configured to convert a three-phase signal generated by synchronous generator 110 to a DC signal. MMC 130 may include a plurality of arms, wherein each arm comprises an array of sub-modules. MMC 130 may include first arm 118, second arm 120, third arm 122, fourth arm 124, fifth arm 126, and sixth arm 128. First arm 118 may comprise first plurality of sub-modules 132. Second arm 120 may comprise second plurality of sub-modules 134. Third arm 122 may comprise third plurality of sub-modules 136. Fourth arm 124 may comprise fourth plurality of sub-modules 138. Fifth arm 126 may comprise fifth plurality of sub-modules 140. Sixth arm 128 may comprise sixth plurality of sub-modules 142. A controller 150 may control MMC 130. A DC load 148 may receive electric power from MMC 130.
With combined reference to
With reference to
With reference to
With combined reference to
Winding A, winding A1, and winding A2 may be configured to receive first phase signal 112. Winding B, winding B1, and winding B2 may be configured to receive second phase signal 114. Winding C, winding C1, and winding C2 may be configured to receive third phase signal 116.
With reference to
With combined reference to
With reference to
With reference to
With reference to
With combined reference to
Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent various functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the inventions. The scope of the inventions is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to “at least one of A, B, or C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C. Different cross-hatching is used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element is intended to invoke 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Number | Name | Date | Kind |
---|---|---|---|
3896349 | Lozenko | Jul 1975 | A |
4649337 | Stucker | Mar 1987 | A |
4780659 | Bansal | Oct 1988 | A |
5198698 | Paul | Mar 1993 | A |
5311419 | Shires | May 1994 | A |
5318142 | Bates | Jun 1994 | A |
5430362 | Carr | Jul 1995 | A |
5536987 | Hayashi | Jul 1996 | A |
5642021 | Liang | Jun 1997 | A |
5917295 | Mongeau | Jun 1999 | A |
6058031 | Lyons | May 2000 | A |
6101102 | Brand | Aug 2000 | A |
6144190 | Scott | Nov 2000 | A |
6229243 | Roesel, Jr. | May 2001 | B1 |
6456946 | O'Gorman | Sep 2002 | B1 |
6697271 | Corzine | Feb 2004 | B2 |
6873134 | Canter | Mar 2005 | B2 |
6965183 | Dooley | Nov 2005 | B2 |
7057376 | Cook et al. | Jun 2006 | B2 |
7521814 | Nasr | Apr 2009 | B2 |
7593243 | Ganev et al. | Nov 2009 | B2 |
7619237 | Rozman et al. | Nov 2009 | B2 |
7672147 | Schutten | Mar 2010 | B1 |
7746024 | Rozman et al. | Jun 2010 | B2 |
7777384 | Gieras | Aug 2010 | B2 |
7906866 | Anghel et al. | Mar 2011 | B2 |
8085003 | Gieras | Dec 2011 | B2 |
8093857 | Kolomeitsev | Jan 2012 | B1 |
8115446 | Piccard | Feb 2012 | B2 |
8330413 | Lazarovich | Dec 2012 | B2 |
8358111 | Rozman et al. | Jan 2013 | B2 |
8513911 | Jones et al. | Aug 2013 | B2 |
8738268 | Karimi et al. | May 2014 | B2 |
8816641 | Andrea et al. | Aug 2014 | B2 |
8829723 | Gravoc et al. | Sep 2014 | B2 |
8896252 | Yamada | Nov 2014 | B2 |
8982593 | Nondahl et al. | Mar 2015 | B2 |
9059647 | Rozman et al. | Jun 2015 | B2 |
9088230 | Rozman et al. | Jul 2015 | B2 |
9118206 | Peterson et al. | Aug 2015 | B2 |
9193273 | Frank et al. | Nov 2015 | B1 |
9209741 | Gao et al. | Dec 2015 | B2 |
9287745 | Akatsu | Mar 2016 | B2 |
9325229 | Rozman et al. | Apr 2016 | B2 |
9731609 | Ambrosio | Aug 2017 | B2 |
9868409 | Cook | Jan 2018 | B2 |
9985562 | Rozman | May 2018 | B1 |
20010054882 | Nakamura | Dec 2001 | A1 |
20020053851 | Kreuzer | May 2002 | A1 |
20020190695 | Wall | Dec 2002 | A1 |
20060006655 | Kanazawa | Jan 2006 | A1 |
20060087869 | Weger | Apr 2006 | A1 |
20080019062 | Dooley | Jan 2008 | A1 |
20080103632 | Saban et al. | May 2008 | A1 |
20080164851 | Ganev | Jul 2008 | A1 |
20090009019 | Li et al. | Jan 2009 | A1 |
20090085531 | Ooiwa | Apr 2009 | A1 |
20090146595 | Immler | Jun 2009 | A1 |
20100133816 | Abolhassani et al. | Jun 2010 | A1 |
20100244599 | Saban | Sep 2010 | A1 |
20100276993 | King | Nov 2010 | A1 |
20110121769 | Rozman | May 2011 | A1 |
20110141773 | Larsen | Jun 2011 | A1 |
20110176340 | Sakakibara | Jul 2011 | A1 |
20120098261 | Rozman | Apr 2012 | A1 |
20120119711 | Rozman | May 2012 | A1 |
20120126758 | Fang | May 2012 | A1 |
20130049648 | Rozman | Feb 2013 | A1 |
20130320943 | Meehan | Dec 2013 | A1 |
20140197639 | Bala | Jul 2014 | A1 |
20140208579 | Wang | Jul 2014 | A1 |
20140226382 | Saito | Aug 2014 | A1 |
20140346897 | Nangemannjoerg | Nov 2014 | A1 |
20140347898 | Raju et al. | Nov 2014 | A1 |
20140369092 | Nguyen | Dec 2014 | A1 |
20150016159 | Deboy | Jan 2015 | A1 |
20150061606 | Pan | Mar 2015 | A1 |
20150061607 | Pan | Mar 2015 | A1 |
20150180252 | Stempin | Jun 2015 | A1 |
20150236634 | Han | Aug 2015 | A1 |
20150298627 | Nordlander | Oct 2015 | A1 |
20150311719 | Andresen | Oct 2015 | A1 |
20150349598 | Gieras et al. | Dec 2015 | A1 |
20180109193 | Hirota | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
202395465 | Aug 2012 | CN |
203056806 | Jul 2013 | CN |
104158212 | Jan 2015 | CN |
104269875 | Jan 2015 | CN |
105656269 | Jun 2016 | CN |
3408394 | Dec 1985 | DE |
0881752 | Dec 1998 | EP |
2114001 | Nov 2009 | EP |
2259422 | Dec 2010 | EP |
2341608 | Jul 2011 | EP |
2579437 | Apr 2013 | EP |
2725689 | Apr 2014 | EP |
2815913 | Dec 2014 | EP |
2920260 | Feb 2009 | FR |
828734 | Feb 1960 | GB |
2506719 | Apr 2014 | GB |
2007209199 | Aug 2007 | JP |
2015080283 | Apr 2015 | JP |
2012016062 | Feb 2012 | WO |
2014026840 | Feb 2014 | WO |
2014157719 | Oct 2014 | WO |
2016194790 | Dec 2016 | WO |
Entry |
---|
Almendro (DE 3408394 A) English Translation (Year: 1985). |
USPTO, Non-Final Office Action dated Dec. 14, 2018 in U.S. Appl. No. 15/236,890. |
USPTO, First Action Interview Office Action dated May 16, 2018 in U.S. Appl. No. 15/453,350. |
USPTO, Notice of Allowance dated Apr. 11, 2018 in U.S. Appl. No. 15/453,383. |
European Patent Office, European Search Report dated Mar. 14, 2018 in Application No. 17196186.5-1201. |
U.S. Appl. No. 15/207,901, filed Jul. 12, 2016 and entitled Integrated Modular Electric Power System for a Vehicle. |
U.S. Appl. No. 15/236,890, filed Aug. 15, 2016 and entitled Active Rectifier Topology. |
U.S. Appl. No. 15/249,639, filed Aug. 29, 2016 and entitled Power Generating Systems Having Synchronous Generator Multiplex Windings and Multilevel Inverters. |
U.S. Appl. No. 15/348,335, filed Nov. 10, 2016 and entitled Electric Power Generating System With a Syncrhonous Generator. |
U.S. Appl. No. 15/397,354, filed Jan. 3, 2017 And entitled Electric Power Generating System With a Permanent Magnet Generator. |
U.S. Appl. No. 15/453,350, filed Mar. 8, 2017 And entitled Electric Power Generating System With a Permanent Magnet Generator and Combination of Active and Passive Rectifiers. |
U.S. Appl. No. 15/453,383, filed Mar. 8, 2017 And entitled Electric Power Generating System With a Synchronous Generator and a Tunable Filter. |
Xu, et al., “Reliability analysis and redundancy configuration of MMC with hybrid submodule topologies,” IEEE Trans. Power Electron, vol. 31, No. 4, pp. 2720-2729, Apr. 2016. |
Gupta, et al., “Multilevel inverter topologies with reduced device count: a review,” IEEEE Trans. Power Electron, vol. 31, No. 1, pp. 135-151, Jan. 2016. |
Soong, et al., “Assessment of Fault Tolerance in Modular Multilevel Converters with Integrated Energy Storage,” IEEE Trans. Power Electron., vol. 31, No. 6, pp. 4085-4095, Jun. 2016. |
USPTO, Notice of Allowance dated Sep. 12, 2018 in U.S. Appl. No. 15/453,350. |
USPTO, Final Rejection Office Action dated Oct. 4, 2018 in U.S. Appl. No. 15/236,890. |
European Patent Office, European Search Report dated Mar. 19, 2018 in Application No. 17200650.4-1202. |
European Patent Office, European Search Report dated May 4, 2018 in Application No. 18150104.0-1202. |
Pre-Interview First Office Action dated Apr. 16, 2018 in U.S. Appl. No. 15/453,350. |
European Patent Office, European Search Report dated Jul. 30, 2018 in Application No. 18160703.7-1202. |
Balog R et al.: “Automatic tuning of coupled inductor filters”, Power Electronics Specialists Conference; [Annual Power Electronics Specialists Conference], vol. 2, Jun. 23, 2002 (Jun. 23, 2002), pp. 591-596. |
Nishida Yet Al: “A new harmonic reducing three-phase diode rectifier for high voltage and high power applications”, Industry Applications Conference, 1997. Thirty-Second IAS Annual Meeting, IAS 97., Conference Record of the 1997 IEEE New Orleans, LA, USA, Oct. 5-9, 1997, New York, NY, USA, IEEE, US, vol. 2, Oct. 5, 1997 (Oct. 5, 1997), pp. 1624-1632. |
European Patent Office, European Search Report dated Mar. 19, 2018 in Application No. 17174627.4. |
Khomfoi, Surin and Leon M. Tolbert, Chapter 31 Multilevel Power Converters, The University of Tennessee, pp. 31-1-31-50 (2007). |
European Patent Office, European Search Report dated Apr. 22, 2016 in Application No. 15168153.3. |
USPTO, Non-Final Office Action dated Mar. 9, 2018 in U.S. Appl. No. 15/236,890. |
European Patent Office, European Search Report dated Jan. 16, 2018 in Application No. 17185067.0. |
European Patent Office, European Search Report dated Jan. 22, 2018 in Application No. 17184013.5. |
M. Popescu, D. G. Dorrell, L. Alberti, N. Bianchi, D.A. Stalton, and D. Hawkins, Thermal Analysis of Duplex Three-Phase Induction Motor Under Fault Operating Conditions, IEEE Trans. On Industry Applications, vol. 49, No. 4, Jul./Aug. 2013, pp. 1523-1. |
USPTO, Notice of Allowance dated Feb. 15, 2018 in U.S. Appl. No. 15/207,901. |
USPTO, Non-Final Office Action dated Mar. 14, 2019 in U.S. Appl. No. 15/249,639. |
USPTO, Non-Final Office Action dated Apr. 5, 2019 in U.S. Appl. No. 15/397,354. |
USPTO, Final Office Action dated Jun. 27, 2019 in U.S. Appl. No. 15/236,890. |
USPTO, Advisory Action dated Sep. 18, 2019 in U.S. Appl. No. 15/236,890. |
Number | Date | Country | |
---|---|---|---|
20180131304 A1 | May 2018 | US |