This following pertains generally to the field of charge pumps and more particularly to high voltage charge pumps for integrated circuits.
Charge pumps use a combination of switches and capacitors to provide a DC output voltage higher or lower than its DC input voltage. To generate the required output, transfer of charge from input to output happens through capacitors and switches. During one clock half cycle, the charging half cycle, the capacitor couples in parallel to the input so as to charge up to the input voltage. During a second half cycle, the boost half cycle, the charged capacitor's bottom plate is boosted with the input voltage so as to provide an output voltage twice the level of the input voltage. This process is illustrated in
Charge pumps are used in many contexts. For example, they are used as peripheral circuits on flash and other non-volatile memories to generate many of the needed operating voltages, such as sensing, programming or erase voltages, from a lower power supply voltage. A number of charge pump designs, such as conventional Dickson-type pumps, are known in the art. But given the common reliance upon charge pumps, there is an on-going need for improvements in pump design, particularly with respect to trying to save on current consumption and reduce the amount ripple in the output of the pump.
A charge pump system includes a first charge pump section connected to receive an input voltage and a clock signal and to generate from these an output voltage. The first charge pump section includes N capacitors, each having a first (or top) plate and a second (or bottom) plate and where N is an integer greater than or equal to three, and switching circuitry connected to receive the clock signal. According to the clock signal, the switching circuitry alternately connects the capacitors in a first phase, in which the first plate of each of the capacitors is connected to receive the input voltage and the second plate of each of the capacitors is connected to ground. And in a second phase, in which the capacitors are connected in series such that the second plate of the first capacitor in the series is connected to receive the input voltage, and for each capacitor after the first in the series the second plate is connected to the first plate of the preceding capacitor in the series and the first plate of the last capacitor in the series is connected to supply the output voltage of the first charge pump section. The switching circuitry includes: a first number of PMOS transistors connected in series between the first plate of the (M−1)st capacitor in the series and the second plate of the Mth capacitor in the series, where M is an integer between one and N; and a second number of PMOS transistors having control gates connected to the first plate of the (M−1)st capacitor in the series and that are connected in series between the first plate of the Mth capacitor in the series and the second plate of the (M+1)st capacitor in the series. The second number is larger than the first number and the PMOS transistors are low voltage devices that cannot support voltage differences greater than the input voltage.
Methods are presented of generating an output voltage. A plurality of N capacitors are provided, each having a first plate and a second plate, where N is an integer greater than or equal to three. The capacitors are alternately connected in a first phase and a second phase according to a first clock signal by switching circuitry. The first phase includes: connecting the first plates of the capacitors to receive an input voltage; and connecting the second plates to ground. The second phase includes: connecting the capacitors in series such that the second plate of the first capacitor in the series is connected to receive the input voltage, and for each capacitor after the first in the series the second plate is connected to the first plate of the preceding capacitor in the series; and supplying the output voltage of the charge pump from the first plate of the last capacitor in the series. The switching circuitry includes: a first number of PMOS transistors connected in series between the first plate of the (M−1)st capacitor in the series and the second plate of the Mth capacitor in the series, where M is an integer between one and N; and a second number of PMOS transistors having control gates connected to the first plate of the (M−1)st capacitor in the series and that are connected in series between the first plate of the Mth capacitor in the series and the second plate of the (M+1)st capacitor in the series, wherein the second number is larger than the first number and the PMOS transistors cannot support voltage differences greater than the input voltage.
Various aspects, advantages, features and embodiments are included in the following description of exemplary examples thereof, which description should be taken in conjunction with the accompanying drawings. All patents, patent applications, articles, other publications, documents and things referenced herein are hereby incorporated herein by this reference in their entirety for all purposes. To the extent of any inconsistency or conflict in the definition or use of terms between any of the incorporated publications, documents or things and the present application, those of the present application shall prevail.
Non-volatile memory devices, program, read and erase operations often require high voltages in the range of 10-20V. As on-chip supply levels are often of around 3V, for example, these high voltages are generated with the charge pump circuits. To support these high voltage levels, high voltage charge pump designs typically uses high voltage devices. These devices require large amounts of area and create high parasitics, which results in more drawing more device current ICC. The following presents a high voltage (HV) charge pump that uses low voltage devices (such as for the pump capacitors and transfer switches) and relatively few HV devices. This can significantly reduce the area requirements. Although can be applied more generally to integrated circuits that need to generate high voltages from a relatively low on-chip supply level, the following is largely presented in the context of non-volatile memory circuits when reference is made to a particular application.
With respect to the memory section 102, semiconductor memory devices include volatile memory devices, such as dynamic random access memory (“DRAM”) or static random access memory (“SRAM”) devices, non-volatile memory devices, such as resistive random access memory (“ReRAM”), electrically erasable programmable read only memory (“EEPROM”), flash memory (which can also be considered a subset of EEPROM), ferroelectric random access memory (“FRAM”), and magnetoresistive random access memory (“MRAM”), and other semiconductor elements capable of storing information. Each type of memory device may have different configurations. For example, flash memory devices may be configured in a NAND or a NOR configuration.
The memory devices can be formed from passive and/or active elements, in any combinations. By way of non-limiting example, passive semiconductor memory elements include ReRAM device elements, which in some embodiments include a resistivity switching storage element, such as an anti-fuse, phase change material, etc., and optionally a steering element, such as a diode, etc. Further by way of non-limiting example, active semiconductor memory elements include EEPROM and flash memory device elements, which in some embodiments include elements containing a charge storage region, such as a floating gate, conductive nanoparticles, or a charge storage dielectric material.
Multiple memory elements may be configured so that they are connected in series or so that each element is individually accessible. By way of non-limiting example, flash memory devices in a NAND configuration (NAND memory) typically contain memory elements connected in series. A NAND memory array may be configured so that the array is composed of multiple strings of memory in which a string is composed of multiple memory elements sharing a single bit line and accessed as a group. Alternatively, memory elements may be configured so that each element is individually accessible, e.g., a NOR memory array. NAND and NOR memory configurations are exemplary, and memory elements may be otherwise configured.
The semiconductor memory elements located within and/or over a substrate may be arranged in two or three dimensions, such as a two dimensional memory structure or a three dimensional memory structure.
In a two dimensional memory structure, the semiconductor memory elements are arranged in a single plane or a single memory device level. Typically, in a two dimensional memory structure, memory elements are arranged in a plane (e.g., in an x-z direction plane) which extends substantially parallel to a major surface of a substrate that supports the memory elements. The substrate may be a wafer over or in which the layer of the memory elements are formed or it may be a carrier substrate which is attached to the memory elements after they are formed. As a non-limiting example, the substrate may include a semiconductor such as silicon.
The memory elements may be arranged in the single memory device level in an ordered array, such as in a plurality of rows and/or columns. However, the memory elements may be arrayed in non-regular or non-orthogonal configurations. The memory elements may each have two or more electrodes or contact lines, such as bit lines and word lines.
A three dimensional memory array is arranged so that memory elements occupy multiple planes or multiple memory device levels, thereby forming a structure in three dimensions (i.e., in the x, y and z directions, where the y direction is substantially perpendicular and the x and z directions are substantially parallel to the major surface of the substrate).
As a non-limiting example, a three dimensional memory structure may be vertically arranged as a stack of multiple two dimensional memory device levels. As another non-limiting example, a three dimensional memory array may be arranged as multiple vertical columns (e.g., columns extending substantially perpendicular to the major surface of the substrate, i.e., in the y direction) with each column having multiple memory elements in each column. The columns may be arranged in a two dimensional configuration, e.g., in an x-z plane, resulting in a three dimensional arrangement of memory elements with elements on multiple vertically stacked memory planes. Other configurations of memory elements in three dimensions can also constitute a three dimensional memory array.
By way of non-limiting example, in a three dimensional NAND memory array, the memory elements may be coupled together to form a NAND string within a single horizontal (e.g., x-z) memory device levels. Alternatively, the memory elements may be coupled together to form a vertical NAND string that traverses across multiple horizontal memory device levels. Other three dimensional configurations can be envisioned wherein some NAND strings contain memory elements in a single memory level while other strings contain memory elements which span through multiple memory levels. Three dimensional memory arrays may also be designed in a NOR configuration and in a ReRAM configuration.
Typically, in a monolithic three dimensional memory array, one or more memory device levels are formed above a single substrate. Optionally, the monolithic three dimensional memory array may also have one or more memory layers at least partially within the single substrate. As a non-limiting example, the substrate may include a semiconductor such as silicon. In a monolithic three dimensional array, the layers constituting each memory device level of the array are typically formed on the layers of the underlying memory device levels of the array. However, layers of adjacent memory device levels of a monolithic three dimensional memory array may be shared or have intervening layers between memory device levels.
Then again, two dimensional arrays may be formed separately and then packaged together to form a non-monolithic memory device having multiple layers of memory. For example, non-monolithic stacked memories can be constructed by forming memory levels on separate substrates and then stacking the memory levels atop each other. The substrates may be thinned or removed from the memory device levels before stacking, but as the memory device levels are initially formed over separate substrates, the resulting memory arrays are not monolithic three dimensional memory arrays. Further, multiple two dimensional memory arrays or three dimensional memory arrays (monolithic or non-monolithic) may be formed on separate chips and then packaged together to form a stacked-chip memory device.
Associated circuitry is typically required for operation of the memory elements and for communication with the memory elements. As non-limiting examples, memory devices may have circuitry used for controlling and driving memory elements to accomplish functions such as programming and reading. This associated circuitry may be on the same substrate as the memory elements and/or on a separate substrate. For example, a controller for memory read-write operations may be located on a separate controller chip and/or on the same substrate as the memory elements.
It will be recognized that the following is not limited to the two dimensional and three dimensional exemplary structures described but cover all relevant memory structures within the spirit and scope as described herein. More detail on such memory devices and systems is given in U.S. patent application Ser. No. 14/528,711 filed on Oct. 30, 2014.
Returning to the specifics of charge pumps, any of the various charge pump types (Dickson, voltage doubler, four-phase) can be used in generating boosted voltage levels, but the exemplary embodiments described here uses the sort of topology illustrated with respect to
The second operating phase, or transfer phase, is shown is shown in
HV devices require significantly more area than low voltage (LV) devices for given specifications.
The capacitors C1401, C2403, and C3405 are each respectively has their upper plate connectable to the input voltage VIN through the transistors M1411, M3413, and M5415. In this example, VIN is a regulated supply of, for example, ˜4V or so, which would be around the design rule limit for the LV devices in this example. VIN can be generated from the on-chip supply level of, say 3˜3.3V, from a preceding pump section of the system, such as described below with respect to
During initialization phase of the first half cycle, each of the pump capacitors will be charged to VIN individually. During next half cycle, all low voltage pump capacitors are connected in series, so that Max(V12)=˜2 VIN, Max(V13)=˜3 VIN and Max(V14)=˜4 VIN. More accurately,
where IL is load current, T is the CLK time period and C1, C2, C3 are the respective stage pump capacitances. The voltage across the top plates/bottom plates of the pump capacitors increases as the number of stages increases. Due to this, to discharge bottom plates use HV devices (M2, M4), as well as for charging the top plate uses the HV devices (M1, M3, M5).
Transferring the charge between the stages will be done through the LV PMOS switches of the series connected pair 431 and 433 between C1401 and C2403; and series connected set of three 435, 437, and 439 between C2403 and C3405. The gates of 431 and 433 are connected to VIN, so that the source side of the pair is at VIN during initialization and these gates will be off, but then turn on when V01 goes high and the capacitors are connected in series. The three PMOS switches 435, 437, and 439 have their gates connected to V12 and will act similarly. During the charging phase, the V02 node charged to 0V and C1 is charged to VIN. During the transfer phase, when V01 goes high, V12 will go high (2 VIN); but as V02 is charging from 0V to 2 VIN, this will result in a somewhat smaller high voltage pulse due to parasitics. This pulse results in high voltage (HV) stress on PMOS device and to avoid this HV stress on source to drain and source to body the PMOS switches' bulk can connected to source terminal for 431, 433 and also for 435, 437, and 439. This will provide a distribution of the high voltage on the series connected LV PMOS devices, so that the devices can be used without violating EDR rules.
The final output VOUT will be connected to the V14 node through the low threshold voltage HV diode M6441 to ensure proper charge transfer without having to rely upon non-overlapping clock signals between the pump legs (that is, the show half-side and the non-represented off-phase half-side). An output capacitor 443 can also be included.
The embodiment of
The exemplary embodiment of
Returning to
With respect to the number of PMOS devices between each pair of capacitors in the sequence, the PMOS transistors are acting as switches during the series connection of capacitors and the switches are arranged such that the voltage drop across each switch Vgs (gate to source voltage) is same. This allows for the same strength of PMOS to be used at each level, with the number used stepped up as the voltage of each stage steps up; but, more generally, if desired some number of these devices could be replace with ones able to withstand higher voltages. For example, so sort of intermediate voltage device could be used to reduce the number of devices at each stage, but again at the cost of increasing layout area. To use LV devices, the potential difference across the devices will be below what is specified in the design rules for the chip, and allows the pump section to use LV capacitors for C1, C2, C3 because at any point of operation the voltage across them will not be over VIN.
The charge pump structures presented here maintain the voltage across the each pump capacitor, and each of the PMOS switches, at VIN. This helps to reduce any design rule (EDR) issue with using LV devices within the HV pump. The bottom plate to substrate (n-well-p-sub) junction of the pump capacitor and PMOS bulk to substrate (n-well-p-sub) should be designed to withstand the voltages (e.g., ˜3 VIN for the bottom plate of C3) involved.
In the topology used here, the charge will be taken from the supply in first half cycle, and during the next half cycle, this charge is immediately placed in output which results in faster output ramp-up. Alternatively to meet same ramp-up specifications pump size can be reduced, resulting in area and ICC savings. As the design does not require using a boosted voltage on the gates between stages, as in common in other topologies, the additional circuitry needed to provide these boosted voltages is not needed, reducing relative area and ICC requirements. Additionally, relative to HV pump design that require cross connections between legs, such for voltage doubler arrangements, not have such signal cross connections reduces parasitic routing capacitances.
The foregoing detailed description has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the above to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The described examples were chosen in order to explain the principals involved and its practical application, to thereby enable others to best utilize the various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
3697860 | Baker | Oct 1972 | A |
4271461 | Hoffmann et al. | Jun 1981 | A |
4511811 | Gupta | Apr 1985 | A |
4583157 | Kirsch et al. | Apr 1986 | A |
4621315 | Vaughn et al. | Nov 1986 | A |
4636748 | Latham, II | Jan 1987 | A |
4736121 | Cini et al. | Apr 1988 | A |
4888738 | Wong et al. | Dec 1989 | A |
5140182 | Ichimura | Aug 1992 | A |
5168174 | Naso et al. | Dec 1992 | A |
5175706 | Edme | Dec 1992 | A |
5263000 | Buskirk et al. | Nov 1993 | A |
5335198 | Buskirk et al. | Aug 1994 | A |
5392205 | Zavaleta | Feb 1995 | A |
5432469 | Tedrow et al. | Jul 1995 | A |
5436587 | Cernea | Jul 1995 | A |
5483434 | Seesink | Jan 1996 | A |
5508971 | Cernea | Apr 1996 | A |
5521547 | Tsukada | May 1996 | A |
5539351 | Gilsdorf et al. | Jul 1996 | A |
5553030 | Tedrow et al. | Sep 1996 | A |
5563779 | Cave et al. | Oct 1996 | A |
5563825 | Cernea et al. | Oct 1996 | A |
5568424 | Cernea et al. | Oct 1996 | A |
5570315 | Tanaka et al. | Oct 1996 | A |
5592420 | Cernea et al. | Jan 1997 | A |
5596532 | Cernea et al. | Jan 1997 | A |
5602794 | Javanifard et al. | Feb 1997 | A |
5621685 | Cernea et al. | Apr 1997 | A |
5625544 | Kowshik | Apr 1997 | A |
5635776 | Imi | Jun 1997 | A |
5644534 | Soejima | Jul 1997 | A |
5693570 | Cernea et al. | Dec 1997 | A |
5712778 | Moon | Jan 1998 | A |
5732039 | Javanifard et al. | Mar 1998 | A |
5734286 | Takeyama et al. | Mar 1998 | A |
5734290 | Chang et al. | Mar 1998 | A |
5767735 | Javanifard et al. | Jun 1998 | A |
5781473 | Javanifard et al. | Jul 1998 | A |
5801987 | Dinh | Sep 1998 | A |
5812017 | Golla et al. | Sep 1998 | A |
5818766 | Song | Oct 1998 | A |
5828596 | Takata et al. | Oct 1998 | A |
5903495 | Takeuchi et al. | May 1999 | A |
5943226 | Kim | Aug 1999 | A |
5945870 | Chu et al. | Aug 1999 | A |
5969565 | Naganawa | Oct 1999 | A |
5969988 | Tanzawa et al. | Oct 1999 | A |
5973546 | Le et al. | Oct 1999 | A |
5978283 | Hsu et al. | Nov 1999 | A |
5982222 | Kyung | Nov 1999 | A |
6008690 | Takeshima et al. | Dec 1999 | A |
6011440 | Bell et al. | Jan 2000 | A |
6016073 | Ghilardelli et al. | Jan 2000 | A |
6018264 | Jin et al. | Jan 2000 | A |
6023187 | Camacho et al. | Feb 2000 | A |
6026002 | Viehmann | Feb 2000 | A |
6100557 | Hung et al. | Aug 2000 | A |
6104225 | Taguchi et al. | Aug 2000 | A |
6107862 | Mukainakano et al. | Aug 2000 | A |
6134145 | Wong | Oct 2000 | A |
6147566 | Pizzuto et al. | Nov 2000 | A |
6151229 | Taub et al. | Nov 2000 | A |
6154088 | Chevallier et al. | Nov 2000 | A |
6157242 | Fukui et al. | Dec 2000 | A |
6188590 | Chang et al. | Feb 2001 | B1 |
6198645 | Kotowski et al. | Mar 2001 | B1 |
6208198 | Lee | Mar 2001 | B1 |
6249445 | Sugasawa | Jun 2001 | B1 |
6249898 | Koh et al. | Jun 2001 | B1 |
6272029 | Hirose | Aug 2001 | B1 |
6275096 | Hsu et al. | Aug 2001 | B1 |
6278294 | Taniguchi | Aug 2001 | B1 |
6285622 | Haraguchi et al. | Sep 2001 | B1 |
6288601 | Tomishima | Sep 2001 | B1 |
6297687 | Sugimura | Oct 2001 | B1 |
6307425 | Chevallier et al. | Oct 2001 | B1 |
6314025 | Wong | Nov 2001 | B1 |
6320428 | Atsumi et al. | Nov 2001 | B1 |
6320796 | Voo | Nov 2001 | B1 |
6320797 | Liu | Nov 2001 | B1 |
6329869 | Matano | Dec 2001 | B1 |
6333873 | Kumanoya et al. | Dec 2001 | B1 |
6341087 | Kunikiyo | Jan 2002 | B1 |
6344959 | Milazzo | Feb 2002 | B1 |
6344984 | Miyazaki | Feb 2002 | B1 |
6356062 | Elmhurst et al. | Mar 2002 | B1 |
6356499 | Banba et al. | Mar 2002 | B1 |
6359798 | Han et al. | Mar 2002 | B1 |
6369642 | Zeng | Apr 2002 | B1 |
6370075 | Haeberli et al. | Apr 2002 | B1 |
6385107 | Bedarida et al. | May 2002 | B1 |
6400202 | Fifield et al. | Jun 2002 | B1 |
6404274 | Hosono et al. | Jun 2002 | B1 |
6411157 | Hsu et al. | Jun 2002 | B1 |
6424570 | Le et al. | Jul 2002 | B1 |
6445243 | Myono | Sep 2002 | B2 |
6456154 | Sugimura | Sep 2002 | B2 |
6456170 | Segawa et al. | Sep 2002 | B1 |
6476666 | Palusa et al. | Nov 2002 | B1 |
6486728 | Kleveland | Nov 2002 | B2 |
6501325 | Meng | Dec 2002 | B1 |
6518830 | Gariboldi et al. | Feb 2003 | B2 |
6522191 | Cha | Feb 2003 | B1 |
6525614 | Tanimoto | Feb 2003 | B2 |
6525949 | Johnson et al. | Feb 2003 | B1 |
6531792 | Oshio | Mar 2003 | B2 |
6538930 | Ishii et al. | Mar 2003 | B2 |
6545529 | Kim | Apr 2003 | B2 |
6556465 | Haeberli et al. | Apr 2003 | B2 |
6577535 | Pasternak | Jun 2003 | B2 |
6606267 | Wong | Aug 2003 | B2 |
6661682 | Kim et al. | Dec 2003 | B2 |
6703891 | Tanaka et al. | Mar 2004 | B2 |
6724241 | Bedarida et al. | Apr 2004 | B1 |
6734718 | Pan | May 2004 | B1 |
6737887 | Forbes et al. | May 2004 | B2 |
6737907 | Hsu et al. | May 2004 | B2 |
6760262 | Haeberli et al. | Jul 2004 | B2 |
6762640 | Katsuhisa | Jul 2004 | B2 |
6781440 | Huang | Aug 2004 | B2 |
6798274 | Tanimoto | Sep 2004 | B2 |
6819162 | Pelliconi | Nov 2004 | B2 |
6834001 | Myono | Dec 2004 | B2 |
6841981 | Smith et al. | Jan 2005 | B2 |
6859091 | Nicholson | Feb 2005 | B1 |
6878981 | Eshel | Apr 2005 | B2 |
6891764 | Li | May 2005 | B2 |
6894554 | Ito | May 2005 | B2 |
6922096 | Cernea | Jul 2005 | B2 |
6927441 | Pappalardo et al. | Aug 2005 | B2 |
6933768 | Hasumann | Aug 2005 | B2 |
6944058 | Wong | Sep 2005 | B2 |
6954386 | Narui et al. | Oct 2005 | B2 |
6975135 | Bui | Dec 2005 | B1 |
6985397 | Tokui | Jan 2006 | B2 |
6990031 | Hashimoto et al. | Jan 2006 | B2 |
6995603 | Chen et al. | Feb 2006 | B2 |
6999327 | Smith et al. | Feb 2006 | B2 |
7002381 | Chung | Feb 2006 | B1 |
7023260 | Thorp et al. | Apr 2006 | B2 |
7030683 | Pan et al. | Apr 2006 | B2 |
7046076 | Daga et al. | May 2006 | B2 |
7092263 | Chang | Aug 2006 | B2 |
7113023 | Cernea | Sep 2006 | B2 |
7116154 | Guo | Oct 2006 | B2 |
7116155 | Pan | Oct 2006 | B2 |
7119624 | Gomez | Oct 2006 | B2 |
7120051 | Gorobets et al. | Oct 2006 | B2 |
7123078 | Seo | Oct 2006 | B2 |
7129538 | Lee et al. | Oct 2006 | B2 |
7129759 | Fukami | Oct 2006 | B2 |
7135910 | Cernea | Nov 2006 | B2 |
7135911 | Imamiya | Nov 2006 | B2 |
7135934 | Sanchez et al. | Nov 2006 | B2 |
7145382 | Ker et al. | Dec 2006 | B2 |
7180794 | Matsue | Feb 2007 | B2 |
7205682 | Kuramori | Apr 2007 | B2 |
7208996 | Suzuki et al. | Apr 2007 | B2 |
7215179 | Yamazoe et al. | May 2007 | B2 |
7224591 | Kaishita et al. | May 2007 | B2 |
7227780 | Komori et al. | Jun 2007 | B2 |
7239192 | Tailliet | Jul 2007 | B2 |
7253675 | Aksin et al. | Aug 2007 | B2 |
7253676 | Fukuda et al. | Aug 2007 | B2 |
7259612 | Saether | Aug 2007 | B2 |
7276960 | Peschke | Oct 2007 | B2 |
7279957 | Yen | Oct 2007 | B2 |
7345335 | Watanabe | Mar 2008 | B2 |
7348829 | Choy et al. | Mar 2008 | B2 |
7368979 | Govindu et al. | May 2008 | B2 |
7382176 | Ayres et al. | Jun 2008 | B2 |
7391630 | Acatrinei | Jun 2008 | B2 |
7397677 | Collins et al. | Jul 2008 | B1 |
7436241 | Chen et al. | Oct 2008 | B2 |
7466188 | Fifield | Dec 2008 | B2 |
7468628 | Im et al. | Dec 2008 | B2 |
7495471 | Perisetty | Feb 2009 | B2 |
7495500 | Al-Shamma et al. | Feb 2009 | B2 |
7515488 | Thorp et al. | Apr 2009 | B2 |
7521978 | Kim et al. | Apr 2009 | B2 |
7554311 | Pan | Jun 2009 | B2 |
7558129 | Thorp et al. | Jul 2009 | B2 |
7579902 | Frulio et al. | Aug 2009 | B2 |
7579903 | Oku | Aug 2009 | B2 |
7586362 | Pan et al. | Sep 2009 | B2 |
7602233 | Pietri et al. | Oct 2009 | B2 |
7667529 | Consuelo et al. | Feb 2010 | B2 |
7671572 | Chung | Mar 2010 | B2 |
7683700 | Huynh et al. | Mar 2010 | B2 |
7696812 | Al-Shamma et al. | Apr 2010 | B2 |
7702043 | Smith et al. | Apr 2010 | B2 |
7741898 | Hsu | Jun 2010 | B2 |
7742358 | Nakai et al. | Jun 2010 | B2 |
7772914 | Jung | Aug 2010 | B2 |
7795952 | Lui et al. | Sep 2010 | B2 |
7830203 | Chang et al. | Nov 2010 | B2 |
7928796 | Namekawa | Apr 2011 | B2 |
7944277 | Sinitsky et al. | May 2011 | B1 |
7944279 | Waffaoui | May 2011 | B1 |
7948301 | Cook et al. | May 2011 | B2 |
7956673 | Pan | Jun 2011 | B2 |
7956675 | Saitoh et al. | Jun 2011 | B2 |
7969235 | Pan | Jun 2011 | B2 |
7973592 | Pan | Jul 2011 | B2 |
7986160 | Hoang et al. | Jul 2011 | B2 |
8040184 | Tschuiya | Oct 2011 | B2 |
8044705 | Nandi et al. | Oct 2011 | B2 |
8093953 | Pierdomenico et al. | Jan 2012 | B2 |
8159091 | Yeates | Apr 2012 | B2 |
8193853 | Hsieh et al. | Jun 2012 | B2 |
8242834 | Chuang et al. | Aug 2012 | B2 |
8258857 | Adkins et al. | Sep 2012 | B2 |
8294509 | Pan et al. | Oct 2012 | B2 |
8339183 | Htoo et al. | Dec 2012 | B2 |
8339185 | Cazzaniga et al. | Dec 2012 | B2 |
8358150 | Snyder et al. | Jan 2013 | B1 |
8395440 | Sandhu et al. | Mar 2013 | B2 |
8405450 | Ucciardello et al. | Mar 2013 | B2 |
8493040 | Gunther et al. | Jul 2013 | B2 |
8537593 | Huynh et al. | Sep 2013 | B2 |
8604868 | Ucciardello et al. | Dec 2013 | B2 |
8643358 | Yoon | Feb 2014 | B2 |
8699247 | Nguyen et al. | Apr 2014 | B2 |
8710908 | Lin et al. | Apr 2014 | B2 |
8717699 | Ferris | May 2014 | B1 |
8817553 | Yu et al. | Aug 2014 | B2 |
20020008566 | Taito et al. | Jan 2002 | A1 |
20020014908 | Lauterbach | Feb 2002 | A1 |
20020075063 | Hwang | Jun 2002 | A1 |
20020075706 | Foss et al. | Jun 2002 | A1 |
20020101744 | DeMone | Aug 2002 | A1 |
20020130701 | Kleveland | Sep 2002 | A1 |
20020130704 | Myono et al. | Sep 2002 | A1 |
20020140463 | Cheung | Oct 2002 | A1 |
20020163376 | Pappalardo et al. | Nov 2002 | A1 |
20030128560 | Saiki et al. | Jul 2003 | A1 |
20030214346 | Pelliconi | Nov 2003 | A1 |
20030231566 | Smith et al. | Dec 2003 | A1 |
20040046603 | Bedarida et al. | Mar 2004 | A1 |
20040263238 | Thorp et al. | Dec 2004 | A1 |
20050024125 | McNitt et al. | Feb 2005 | A1 |
20050030088 | Cernea | Feb 2005 | A1 |
20050093614 | Lee | May 2005 | A1 |
20050104572 | Smith et al. | May 2005 | A1 |
20050146375 | Ker et al. | Jul 2005 | A1 |
20050162145 | Smith et al. | Jul 2005 | A1 |
20050195017 | Chen et al. | Sep 2005 | A1 |
20050237103 | Cernea | Oct 2005 | A1 |
20050248386 | Pan et al. | Nov 2005 | A1 |
20060098505 | Cho et al. | May 2006 | A1 |
20060114053 | Sohara et al. | Jun 2006 | A1 |
20060119393 | Hua et al. | Jun 2006 | A1 |
20060202828 | Shanks et al. | Sep 2006 | A1 |
20060244518 | Byeon et al. | Nov 2006 | A1 |
20060250177 | Thorp | Nov 2006 | A1 |
20070001745 | Yen | Jan 2007 | A1 |
20070053216 | Alenin | Mar 2007 | A1 |
20070069805 | Choi et al. | Mar 2007 | A1 |
20070126494 | Pan | Jun 2007 | A1 |
20070139099 | Pan | Jun 2007 | A1 |
20070139100 | Pan | Jun 2007 | A1 |
20070152738 | Stopel et al. | Jul 2007 | A1 |
20070210853 | Maejima | Sep 2007 | A1 |
20070211502 | Komiya | Sep 2007 | A1 |
20070222498 | Choy et al. | Sep 2007 | A1 |
20070229149 | Pan et al. | Oct 2007 | A1 |
20080012627 | Kato | Jan 2008 | A1 |
20080024096 | Pan | Jan 2008 | A1 |
20080024198 | Bitonti et al. | Jan 2008 | A1 |
20080042731 | Daga et al. | Feb 2008 | A1 |
20080068067 | Govindu et al. | Mar 2008 | A1 |
20080111604 | Boerstler et al. | May 2008 | A1 |
20080116963 | Jung | May 2008 | A1 |
20080136500 | Frulio et al. | Jun 2008 | A1 |
20080157731 | Pan | Jul 2008 | A1 |
20080157852 | Pan | Jul 2008 | A1 |
20080157859 | Pan | Jul 2008 | A1 |
20080174360 | Hsu | Jul 2008 | A1 |
20080186081 | Yamahira et al. | Aug 2008 | A1 |
20080218134 | Kawakami et al. | Sep 2008 | A1 |
20080239802 | Thorp et al. | Oct 2008 | A1 |
20080239856 | Thorp et al. | Oct 2008 | A1 |
20080278222 | Conte et al. | Nov 2008 | A1 |
20080307342 | Furches et al. | Dec 2008 | A1 |
20090033306 | Tanzawa | Feb 2009 | A1 |
20090051413 | Chu et al. | Feb 2009 | A1 |
20090058506 | Nandi et al. | Mar 2009 | A1 |
20090058507 | Nandi et al. | Mar 2009 | A1 |
20090063918 | Chen et al. | Mar 2009 | A1 |
20090091366 | Baek et al. | Apr 2009 | A1 |
20090121780 | Chen et al. | May 2009 | A1 |
20090121782 | Oyama et al. | May 2009 | A1 |
20090153230 | Pan et al. | Jun 2009 | A1 |
20090153231 | Pan et al. | Jun 2009 | A1 |
20090153232 | Fort et al. | Jun 2009 | A1 |
20090167418 | Raghavan | Jul 2009 | A1 |
20090174441 | Gebara et al. | Jul 2009 | A1 |
20090184697 | Park | Jul 2009 | A1 |
20090219077 | Pietri et al. | Sep 2009 | A1 |
20090219079 | Bergler et al. | Sep 2009 | A1 |
20090296488 | Nguyen et al. | Dec 2009 | A1 |
20090315598 | Namekawa | Dec 2009 | A1 |
20090315616 | Nguyen et al. | Dec 2009 | A1 |
20090322413 | Huynh et al. | Dec 2009 | A1 |
20100019832 | Pan | Jan 2010 | A1 |
20100033232 | Pan | Feb 2010 | A1 |
20100074034 | Cazzaniga | Mar 2010 | A1 |
20100085794 | Chen et al. | Apr 2010 | A1 |
20100118625 | Matano | May 2010 | A1 |
20100127761 | Matano | May 2010 | A1 |
20100157706 | Cho | Jun 2010 | A1 |
20100244935 | Kim et al. | Sep 2010 | A1 |
20100283549 | Wang | Nov 2010 | A1 |
20100302877 | Bang | Dec 2010 | A1 |
20110026329 | Wada | Feb 2011 | A1 |
20110068857 | Ucciardello et al. | Mar 2011 | A1 |
20110133820 | Pan | Jun 2011 | A1 |
20110133821 | Honda | Jun 2011 | A1 |
20110148509 | Pan et al. | Jun 2011 | A1 |
20110156803 | Yap et al. | Jun 2011 | A1 |
20110169557 | Yamahira et al. | Jul 2011 | A1 |
20110176370 | Izumi et al. | Jul 2011 | A1 |
20110254615 | Raghunathan et al. | Oct 2011 | A1 |
20120230071 | Kaneda | Sep 2012 | A1 |
20120274394 | Chan | Nov 2012 | A1 |
20130162229 | Chan | Jun 2013 | A1 |
20130181521 | Khlat | Jul 2013 | A1 |
20130221938 | Conte et al. | Aug 2013 | A1 |
20140084936 | Pan et al. | Mar 2014 | A1 |
20140085985 | Pan et al. | Mar 2014 | A1 |
20140375293 | Pan et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
101764518 | Jun 2010 | CN |
101882928 | Nov 2010 | CN |
10 2007 026290 | Jul 2008 | DE |
0 382 929 | Aug 1990 | EP |
0 780 515 | Jun 1997 | EP |
1 362 320 | Nov 2003 | EP |
1 925 062 | May 2008 | EP |
2007-020268 | Jan 2007 | JP |
101902059 | Dec 2010 | JP |
WO-0106336 | Jan 2001 | WO |
WO-02065380 | Aug 2002 | WO |
WO-2006132757 | Dec 2006 | WO |
WO-2007026289 | Mar 2007 | WO |
Entry |
---|
Ang et al., “An On-Chip Voltage Regulator Using Switched Decoupling Capacitors,” Feb. 2000 IEEE International Solid-State Circuits Conference, 2 pages. |
Pan, “Charge Pump Circuit Design,” McGraw-Hill, 2006, 26 pages. |
Pylarinos et al., “Charge Pumps: An Overview,” Department of Electrical and Computer Engineering, University of Toronto, Proceedings of Symposium May 2003, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20170033682 A1 | Feb 2017 | US |