This description relates to high voltage switchgear.
Conventional vacuum fault interrupters provide high voltage fault interruption. Such a vacuum fault interrupter, which also may be referred to as a vacuum interrupter, generally includes a stationary electrode assembly having an electrical contact, and a movable electrode assembly having its own electrical contact and arranged on a common longitudinal axis with respect to the stationary electrode assembly. The movable electrode assembly generally moves along the common longitudinal axis such that the electrical contacts come into and out of contact with one another. In this way, a vacuum interrupter placed in a current path can be used to interrupt excessively high current and thereby prevent damage to an external circuit.
To determine when to move the electrical contacts out of contact with one another, conventional vacuum interrupters often use some type of current and/or voltage-sensing device.
In one general aspect, a vacuum switching device includes a vacuum assembly. Switching contacts are disposed within the vacuum assembly, and one of the switching contacts is a switching contact that is movable along an axis. The vacuum switching device also includes a rod disposed along the axis and operable to actuate movement of the movable switching contact along the axis, and a sensor disposed within the rod and encapsulated by a filling compound.
Implementations may include one or more of the following features. For example, the filling compound may be made of an elastomeric polymer compound. The sensor may include a resistive element, and the rod may include a radially-wound epoxy glass tube.
A metallic fitting may be press-fit into an end of the rod and connected to the sensor, and a cross pin may be inserted through the rod and the metallic fitting to hold the metallic fitting in place. In this implementation, a conductive guard sleeve may be electrically connected to the metallic fitting by the cross pin. Further, the metallic fitting may be grounded, so that the conductive guard sleeve is also grounded. Also, a voltage-sensing resistor may be electrically connected to the metallic end fitting via a pin socket assembly.
The rod may be encased in a ribbed silicone sleeve, and the device may include a vacuum fault interrupter.
In another general aspect, an operating rod for a vacuum switching device may be made by inserting a sensor into a hollow tube, connecting a first portion of the sensor to a first end fitting attached to a first end of the tube, connecting a second portion of the sensor to an electrical connection extending outside of the tube, and filling the tube with a filling compound.
Implementations may include one or more of the following features. For example, the filling compound may be an elastomeric polymer compound.
In inserting a sensor, a resistive element may be threaded through a length of the hollow tube. One end of the resistive element may be attached to a pin socket assembly attached to the first end fitting.
Also in inserting a sensor, at least one hole may be drilled through a portion of the tube near the first end of the tube, the first end fitting may be press-fit into the first end of the tube, and a pin may be inserted through the hole and into the first end fitting.
A ribbed rubber skirt may be pulled over the operating rod. The tube may be a radially-wound epoxy glass tube.
In filling the tube with the filling compound, the filling compound may be injected through the silicone rubber skirt and into the tube. Further, filling the tube with the filling compound may also include drilling a hole in the tube near the second end of the tube, standing the tube with the first end facing in a downward direction, and injecting the filling compound at a point near the first end, such that air displaced by the filling compound is removed from the tube through the hole. In this implementation, the hole may be used to facilitate formation of the electrical connection to the second portion of the sensor.
According to another general aspect, an operating rod for use in a vacuum switching device includes a radially-wound, epoxy glass tube, a sensor extending through a length of the tube, and a filling compound within the tube and encasing the sensor.
Implementations may include one or more of the following features. For example, a silicone sleeve may encase a first portion of the operating rod, and a grounded guard sleeve may be around a second portion of the operating rod.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
Referring to
The vacuum fault interrupter 105 is affixed to an operating rod 120 that is contained within a dielectric-filled cavity 125 (dielectric, not shown, may be gaseous or liquid) and extends through an opening 130. The operating rod 120 is connected to an external device (not shown) operable to cause axial movement thereof and to a movable electrical contact assembly 135 so as to move a movable electrical contact of the assembly 135 into or out of contact with a stationary electrical contact within the vacuum interrupter 105 (interior of vacuum interrupter not shown).
The movable electrical contact assembly 135 is instrumental in actuating a movement of an electrical contact within vacuum interrupter 105 to thereby interrupt a flow of current within vacuum interrupter 105.
A current interchange assembly 140 permits current flow between the moving electrical contact assembly 135 and a stationary conductor 145. In general, the assembly facilitates current flow between two points and may include, for example, a roller contact, a sliding contact, or a flexible connector.
A compliant material 150, which may be, for example, a silicone sleeve, encases the vacuum interrupter 105. In one implementation, the compliant material 150 is adhered to the vacuum interrupter 105 by, for example, a silane-based adhesive such as SILQUEST A-1100 silane (that is, gamma-aminopropyl triethoxysilane). A rigid encapsulation material 155, which may be, for example, an epoxy encapsulation material, is used to enclose the whole of the vacuum switching device of
In one implementation, operating rod 120 is manufactured from a tube made from a high-rigidity, insulating, polymeric material. The polymeric-material tube may be a filament-wound, epoxy glass reinforced tube (i.e., a fiberglass tube), having an internal cavity. Space within this internal cavity may be used to hold one or more resistors, which may then be used as a resistive, high-voltage sensor. Around such resistors, a low viscosity, liquid polymer compound may be injected, and subsequently cured to assume a stable polymer state. In this implementation, one end of one of the resistors may be connected to the moving contact assembly 135. An end of another one of the resistors (or the same resistor) may be connected to a highly flexible wire 160, and through this wire to a parallel connection of an overvoltage protection device 165 and a low-arm resistor 170. Thus, in this implementation, the sensor output voltage Vout measured across the low-arm resistor 170 is equal to:
In this way, a reliable, low-cost, easily-manufactured voltage sensor may be incorporated into the operating rod 120. Moreover, the elastic nature of the polymer compound greatly reduces an effect of mechanical impacts on the voltage sensors that result from motion and impacts associated with operation of operating rod 120. Details of the structure, operation, and assembly of the operating rod 120 are discussed below.
A first fitting 225 and a second fitting 230 are metal pieces pre-fabricated to securely cap tube 205 while helping to provide an electrical contact to interior components of tube 205 and provide electrical connection to an outer conductive sleeve 245 (discussed below) through cross pins 235. Fittings 225 and 230 may be composed of, for example, steel. In one implementation, steel fittings 225 and 230 are knurled and press-fitted into the epoxy glass tube 205. The steel fittings 225 and 230 are further affixed to the tube 205 by inserting cross pins 235 through corresponding holes drilled in the tube 205 and fittings 225 and 230, as shown.
Such a process of press-fitting the steel fittings 225 and 230 into the inner diameter of the epoxy glass tube 205, and subsequent addition of cross pins 235 through the epoxy glass tube and end fittings, provides a high degree of mechanical strength at the connection of the steel fittings 225 and 230 to the epoxy glass tube 205. Such a strong and reliable mechanical joint is capable of transferring high impact forces from the steel fittings 225 and 230 to the epoxy glass tube 205, where such forces are expected due to the operation of the vacuum interrupter 105, as outlined above.
Moreover, the steel fittings 225 and 230 may be machined and pre-threaded for easy and reliable assembly to, respectively, the moving electrical contact assembly 135 (see
At the other end of epoxy glass tube 205, an electrical connection is made between a resistor lead 250 and a high elasticity wire 255. This connection may be made prior to inserting the resistor assembly into the epoxy glass tube 205, by means of, for example, a solder connection or a crimped splice connector. The highly elastic wire 255 is used to bring the voltage signal out of the epoxy glass tube through a slot (not shown) machined in the inner diameter of conductive sleeve 245. Fitting 230 is typically mechanically and electrically connected to a grounded mechanism linkage. Since sleeve 245 is electrically connected to fitting 230 through pins 235, sleeve 245 is thus electrically grounded as well. Alternatively, a separate ground lead (high elasticity wire) may be used to provide this ground connection.
Free space remaining within a cavity of epoxy glass tube 205 (that is, between the epoxy glass tube 205 and the resistors 210 and 215) is filled with an elastomeric compound 260. Compound 260 remains elastic over a relatively wide temperature range (for example, −50 to +100° C.), possesses high dielectric properties (for example, >400 volts/mil), and is cured to a high degree so as to have few, if any, voids. Compound 260 provides damping for mechanical/shock energy transferred through operating rod 120, and provides excellent bonding to all encapsulated parts, in particular, the epoxy glass tube 205 and the high-voltage resistors 210 and 215.
The grounded sleeve 245 provides a function of “guarding” or “shielding” of any leakage current which may flow over the surface of the silicone skirt 505. This provides and maintains an accurate output of the voltage sensor, regardless of varying leakage current which may occur over surface of silicone skirt 505 (such as that expected during high humidity conditions or other deterioration of dielectric properties of silicone skirt 505 or its interface with the epoxy glass tube 205). The length of the sleeve 245 may be such that it covers the exit of elastic lead 255 and is able to conduct any leakage currents to ground.
The subassembly is inserted through a first end of the epoxy glass tube 205 and pushed through the length of the epoxy glass tube 205, such that an end of elastic wire 255 is pulled through hole 410 at the other end of the epoxy glass tube 205, and the steel fitting 225 is properly positioned at the first end (615).
Subsequently, the second steel fitting 230 is placed into the remaining end of the epoxy glass tube 205 (620). Next, the prefabricated steel fittings 225 and 230 are pressed into their respective ends of epoxy glass tube 205 (625).
The elastomeric compound 260 then is injected into the cavity of the epoxy glass tube 205 (630). In one technique, epoxy glass tube 205 is placed on its end, with steel fitting 225 on the bottom. By steadily injecting the polymer compound 260 into the lower end of epoxy glass tube 205 through hole 405, air within the cavity of epoxy glass tube 205 is pushed in an upward direction by the rising polymer compound 260. In this way, the cavity within epoxy glass tube 205 is completely filled. It should be understood that in this implementation, air being displaced by the rising polymer compound 260 is released through hole 410 in epoxy glass tube 205.
Thereafter, the polymer compound 260 is allowed to cure (635). If the technique for inserting the polymer compound 260 just described is followed, epoxy glass tube 205 may be left in the described upright position for the curing process to occur. Epoxy glass tube 205 having end fittings 225 and 230 already press-fitted into its respective ends then has sleeve 245 assembled, and both ends of tube 205 are drilled as necessary to include pins 235 (640). Finally, the silicone rubber skirt 505 is pulled over the entire assembly associated with the epoxy glass tube 205 (645).
In the above-described technique, the elastomeric compound 260 may be, for example, PolyButadiene (synthetic rubber), such as DolPhon CB1120 manufactured by the John C. Dolph Company of Monmouth Junction, N.J. Other materials may be used as elastomeric compound 260, such as silicone rubber, polyurethane, or silicone gel.
Implementations described above have various features. For example, the fact that the sensor is implemented within the operating rod 120, as opposed to outside of the operating rod (perhaps contained within an encapsulation material) allows for overall reduced dimension and ease of assembly of the assembly shown in
As another example, the implementations are relatively low in cost. In particular, epoxy glass tube 205 is easy to manufacture and very inexpensive. When radially-wound, such a epoxy glass tube is nonetheless very strong and reliable during operations, and is also very light in weight (which may allow for faster operation). Moreover, the epoxy glass material of epoxy glass tube 205 is resistant to the types of mechanical and thermal shock typically encountered during operation of vacuum interrupter 105.
Further resistance to mechanical shock during operation is provided by the elastomeric compound 260. Such a compound also offers a very low coefficient of thermal expansion over a wide range of operating temperatures. With the impact strength and low weight just described, implementations enable high speed interrupter operation with reduced contact bounce, and therefore increase interrupter lifetime and reliability. Moreover, implementations described have a straight forward and easily-implemented manufacturing process, and a relatively small part count. Also, the elastomeric compound that carries the mechanical forces around the centrally positioned resistors 210 and 215 has a high degree of thermal matching with respect to the resistors.
Finally, it should be understood that, although the above description has largely been provided in terms of vacuum interrupters, the features described above may be equally applicable in any high-powered, vacuum-based switching device, and in various other settings, such as use of this type of operating rod in a fluid-filled cavity 125. Possible fluids include insulating oil, SF6, and/or air.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other implementations are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4150270 | Zunick | Apr 1979 | A |
4161012 | Cunningham | Jul 1979 | A |
4241373 | Mara et al. | Dec 1980 | A |
5252913 | Falkowski et al. | Oct 1993 | A |
5276285 | Pham et al. | Jan 1994 | A |
5585611 | Harvey et al. | Dec 1996 | A |
5698831 | Abdelgawad et al. | Dec 1997 | A |
5729888 | Abdelgawad et al. | Mar 1998 | A |
5808258 | Luzzi | Sep 1998 | A |
5917167 | Bestel | Jun 1999 | A |
6239399 | Perret | May 2001 | B1 |
6331687 | Dunk et al. | Dec 2001 | B1 |
Number | Date | Country |
---|---|---|
29723039 | Mar 1998 | DE |
2442450 | Jun 1980 | FR |
Number | Date | Country | |
---|---|---|---|
20040155014 A1 | Aug 2004 | US |