The present invention relates to electric plants comprising motors intended for connection to distribution or transmission networks, hereinafter termed power networks. The invention relates secondly to a motor intended for use in such a plant. The motors may be either synchronous or asynchronous motors.
The plant with electric motors may be a rolling mill, paper mill, pulp drying machine, mine plant, quay structure, fan, pump or compressor systems, hoisting means, traverse, crane, centrifuge, conveyor, workshop plant, steel mills, etc. Plants with electric motors shall thus be understood in their widest sense.
The magnetic circuits in electric motors usually comprise a laminated core, e.g. of sheet steel with a welded construction. To provide ventilation and cooling the core is often divided into stacks with radial and/or axial ventilation ducts. For larger motors the laminations are punched out in segments which are attached to the frame of the machine, the laminated core being held together by pressure fingers and pressure rings. The winding is disposed in slots in the laminated core, the slots generally having a cross section in the shape of a rectangle or trapezium.
In multi-phase electric motors the windings are made as either single or double layer windings. With single layer windings there is only one coil side per slot, whereas with double layer windings there are two coil sides per slot. By coil side is meant one or more conductors combined vertically or horizontally and provided with a common coil insulation, i.e. an insulation designed to withstand the rated voltage of the motor to earth.
Double-layer windings are generally made as diamond windings whereas single layer windings in the present context can be made as diamond or flat windings. Only one (possibly two) coil width exists in diamond windings whereas flat windings are made as concentric windings, i.e. with widely varying coil width. By coil width is meant the distance in arc dimension between two coil sides pertaining to the same coil.
Normally all large motors are made with double-layer winding and coils of the same size. Each coil is placed with one side in one layer and the other side in the other layer. This means that all coils cross each other in the coil end. If there are more than two layers these crossings complicate the winding work and the coil end is less satisfactory.
It is considered that coils for rotating electric motors can be manufactured with good results up to a voltage range of 10-20 kV.
Large alternating current motors are divided into synchronous and asynchronous motors, the former generally covering a higher power range up to a few tens of MW and being constructed to be supplied with a voltage of normally maximally 20 kV. The synchronous motor operates with a rotor speed that is synchronous with the network frequency. In an asynchronous motor the magnetic field rotates faster than the rotor so that the induced currents will provide torque in the direction of rotation. The two types of motors are to a great extent similar in construction. They consist of a stator with a rotor placed inside the stator. The stator is built up of a laminated core with slots punched out for the winding. The stator is placed in a bottom box attached to the foundation by its feet. The rotor is suspended in bearings mounted on the box. A stator shell is placed on the bottom box to protect the active parts. The shell is provided with openings for cooling air to enter.
The function of an alternating current motor is based on interaction between magnetic fields, electric currents and mechanical motion. The magnetic fields are localized primarily in the iron of the machine and the electric currents are localized in the windings.
A distinction is made between two main types of alternating current motors: synchronous and asynchronous machines. The principal difference between synchronous and asynchronous machines is how the torque is produced. A synchronous motor is excited by supplying energy to the rotor from the outside via brushless exciters or slip rings, whereas an asynchronous motor obtains its excitation energy from the stator current through induction. The speed of the synchronous motor is therefore not as dependent on load as in the asynchronous motor.
Depending on the construction of the rotor, there are two types of synchronous motors: those with salient poles and those with a cylindrical rotor. In high-speed 2-pole operation the mechanical stresses on the rotor will be extremely high and in that case it is favourable to use a cylindrical rotor. For motors with lower speeds, four-pole or more, the rotor diameter will be larger. In view of the lower speed and thus correspondingly lower mechanical stresses, it is more favourable for the rotor to have salient poles.
The boundary between the two types is indefinite. At higher power and with four poles, cylindrical rotors are used that are long and slim in shape. At lower power and with four poles, rotors with salient poles are used.
Asynchronous motors are also divided into two types: squirrel-cage induction motors or slip ring motors. Common to both types is that the rotor is built up of laminations with slots for the rotor winding. The difference is in the construction of the winding. The squirrel-cage induction motors have a squirrel-cage winding consisting of axial rods that are short-circuited at the ends with a short-circuiting ring. Asynchronous motors with slip rings have a three-phase winding in the rotor with phase terminals connected to the slip rings.
By designing the rotor slots in various ways the start and operating properties of the squirrel-cage induction motor can be adjusted to various operating requirements. Slip-ring asynchronous motors are primarily used under difficult starting conditions. External resistance can be connected via the slip rings. By increasing the rotor resistance the maximum torque can be moved towards lower speed, thus increasing the start torque. When starting is complete the external start resistance is short-circuited.
The choice of a large alternating current motor as regards to type, nesting class and cooling method, is dependent on the following factors, among others:
The main desire for an electric machine is that its capital cost and running costs shall be as low as possible. It is therefore desirable to keep the efficiency as high as possible at given power factors. The synchronous motor generally has higher efficiency than the asynchronous motor.
The rotor of a synchronous motor is often manufactured with salient poles. Its main use is in the power range of 1 MW to a few tens of MW, e.g. for grinding mills and refiners in the paper industry, for large pumps both in the process industry and in connection with weak networks, e.g. for irrigation installations in desert countries. The oil industry also uses large synchronous motors for pumps and compressors.
The main reason for using synchronous motors instead of the less expensive asynchronous motors is that the synchronous motor produces less stress on the network, in the form of lower start current, and that at over-excitation the synchronous motor can also be used to improve the power factor. Large synchronous motors may also have slightly higher efficiency than equivalent asynchronous motors.
The winding must be insulated, both between the winding turns in the coil and also between coil and surroundings. Various forms of plastic, varnish and glassfibre material are often used as insulating material. The coil ends are braced in order to counteract the forces appearing between the various coils, particularly at short-circuiting.
Motors of the type described above are connected to high-voltage networks of e.g. 145 kV through the use of a transformer which lowers the voltage. The use of a motor in this way, connected to the high-voltage network via a transformer entails a number of drawbacks. Among others the following drawbacks may be mentioned.
An object of the invention is therefore to enable the use of one or more electric motors in a plant which is directly connected to high-voltage supply networks, by which is meant here sub-transmission and distribution networks without intermediate connection of a transformer.
The benefit gained by attaining the above-mentioned object is the avoidance of an intermediate oil-filled transformer, the reactance of which otherwise consumes reactive power.
Thanks to the specially produced solid insulation, the motors in such a plant can be supplied directly with a voltage level considerably in excess of what is possible using known technology, and at a voltage that may reach the highest applicable voltages for high-voltage power networks.
The advantage is thus gained that the transformer becomes superfluous, therefore eliminating all the problems touched upon above that are inherent with a plant in which the voltage must be stepped down, as well as other significant advantages. With a plant according to the invention the overload capacity is also radically increased. This may be +100% for an hour or two, enabling motors with lower rated output to be selected, thereby also saving expense.
Higher output is also obtained through a high voltage on the motors since this is proportional to the voltage squared. The invention thus enables electric motors with higher power to be achieved. The invention thus extends the application area for electric machines to the range 1-300 MW and even enables applications at still higher power levels.
The major and essential difference between known technology and the embodiment according to the invention is thus that this is achieved with a magnetic circuit included in at least one electric motor which is arranged to be directly connected to a high supply voltage via coupling elements such as breakers and isolators. The magnetic circuit thus comprises one or more laminated cores. The winding consists of a threaded cable with one or more permanently insulated conductors having a semiconducting layer both at the conductor and outside the insulation, the outer semiconducting layer being connected to earth potential.
To solve the problems arising with direct connection of electric motors, both rotating and static motors, to all types of high-voltage power networks, at least one motor in the plant according to the invention has a number of features as mentioned above, which differ distinctly from known technology. Additional features and further embodiments are defined in the dependent claims and are discussed in the following.
The features mentioned above and other essential characteristics of the plant and at least one of the electric motors included therein according to the invention, include the following:
The use of a cable of the type described above allows the entire length of the outer sheath of the winding, as well as other parts of the plant, to be kept at earth potential. An important advantage is that the electric field is close to zero within the coil-end region outside the outer semiconducting layer. With earth potential on the outer sheath the electric field need not be controlled. This means that no field concentrations will occur either in the core, in the coil-end regions or in the transition between them.
The mixture of insulated and/or uninsulated impacted strands, or transposed strands, results in low stray losses.
The cable for high voltage used in the winding is constructed of an inner core/conductor with a plurality of strands, at least two semiconducting layers, the innermost being surrounded by an insulating layer, which is in turn surrounded by an outer semiconducting layer having an outer diameter in the order of 10-250 mm and a conductor area in the order of 40-3000 mm2.
If at least one of the motors in the plant according to the invention is constructed in the manner specified, start and control of this motor or these motors can be achieved with the start methods, known per se, described by way of example in the literature discussed in the introduction.
According to a particularly preferred embodiment of the invention, at least two of these layers, preferably all three, have the same coefficient of thermal expansion. The decisive benefit is thus gained that defects, cracks and the like are avoided during thermal movement in the winding.
According to another important preferred embodiment of the invention at least one of the motors in the plant has one or more connection voltages.
Since the insulation system, suitably permanent, is designed so that from the thermal and electrical point of view it is dimensioned for over 36 kV, the plant can be connected to high-voltage power networks without any intermediate step-down transformer, thereby achieving the advantages referred to. Such a plant is preferably, but not necessarily, constructed to include the features defined for plants as claimed in any of claims 1-22.
The above-mentioned and other advantageous embodiments of the invention are defined in the dependent claims.
The invention will be described in more detail in the following detailed description of a preferred embodiment of the construction of the magnetic circuit of an electric motor in the plant, with reference to the accompanying drawings in which
In the schematic axial view through a sector of the stator 1 according to
The cables 6 are illustrated schematically in
Thus, with one or more rotating electric motors constructed in accordance with the invention, industrial plants comprising one or more such motors can be connected directly to high-voltage supply networks, i.e. networks having supply voltages of 20 kV or higher, thereby enabling the eliminated of at least one transformer.
Using permanent insulating power cable according to the invention, between the electric motors included in the plant, and achieving a compact siting of these motors thus ensures that the electric fields are small and bushings/terminals can be entirely eliminated.
Number | Date | Country | Kind |
---|---|---|---|
9602079 | May 1996 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE97/00887 | 5/27/1997 | WO | 00 | 3/26/1998 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO97/45925 | 12/4/1997 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
681800 | Lasche | Sep 1901 | A |
847008 | Kitsee | Mar 1907 | A |
878165 | Tingley | Feb 1908 | A |
1304451 | Burnham | May 1919 | A |
1418856 | Williamson | Jun 1922 | A |
1481585 | Beard | Jan 1924 | A |
1508456 | Lenz | Sep 1924 | A |
1728915 | Blankenship et al. | Sep 1929 | A |
1742985 | Burnham | Jan 1930 | A |
1747507 | George | Feb 1930 | A |
1756672 | Barr | Apr 1930 | A |
1762775 | Ganz | Jun 1930 | A |
1781308 | Vos | Nov 1930 | A |
1861182 | Hendey et al. | May 1932 | A |
1904885 | Seeley | Apr 1933 | A |
1974406 | Apple et al. | Sep 1934 | A |
2006170 | Juhlin | Jun 1935 | A |
2206856 | Shearer | Jul 1940 | A |
2217430 | Baudry | Oct 1940 | A |
2241832 | Wahlquist | May 1941 | A |
2251291 | Reichelt | Aug 1941 | A |
2256897 | Davidson et al. | Sep 1941 | A |
2295415 | Monroe | Sep 1942 | A |
2409893 | Pendleton et al. | Oct 1946 | A |
2415652 | Norton | Feb 1947 | A |
2424443 | Evans | Jul 1947 | A |
2436306 | Johnson | Feb 1948 | A |
2446999 | Camilli | Aug 1948 | A |
2459322 | Johnston | Jan 1949 | A |
2462651 | Lord | Feb 1949 | A |
2498238 | Berberich et al. | Feb 1950 | A |
2650350 | Heath | Aug 1953 | A |
2721905 | Monroe | Oct 1955 | A |
2749456 | Luenberger | Jun 1956 | A |
2780771 | Lee | Feb 1957 | A |
2846599 | McAdam | Aug 1958 | A |
2885581 | Pileggi | May 1959 | A |
2943242 | Schaschl et al. | Jun 1960 | A |
2947957 | Spindler | Aug 1960 | A |
2959699 | Smith et al. | Nov 1960 | A |
2962679 | Stratton | Nov 1960 | A |
2975309 | Seidner | Mar 1961 | A |
3014139 | Shildneck | Dec 1961 | A |
3098893 | Pringle et al. | Jul 1963 | A |
3130335 | Rejda | Apr 1964 | A |
3143269 | Van Eldik | Aug 1964 | A |
3157806 | Wiedemann | Nov 1964 | A |
3158770 | Coggeshall et al. | Nov 1964 | A |
3197723 | Dortort | Jul 1965 | A |
3268766 | Amos | Aug 1966 | A |
3304599 | Nordin | Feb 1967 | A |
3354331 | Broeker et al. | Nov 1967 | A |
3365657 | Webb | Jan 1968 | A |
3372283 | Jaecklin | Mar 1968 | A |
3392779 | Tilbrook | Jul 1968 | A |
3411027 | Rosenberg | Nov 1968 | A |
3418530 | Cheever | Dec 1968 | A |
3435262 | Bennett et al. | Mar 1969 | A |
3437858 | White | Apr 1969 | A |
3444407 | Yates | May 1969 | A |
3447002 | Ronnevig | May 1969 | A |
3484690 | Wald | Dec 1969 | A |
3487455 | Laurell et al. | Dec 1969 | A |
3541221 | Aupoix et al. | Nov 1970 | A |
3560777 | Moeller | Feb 1971 | A |
3571690 | Lataisa | Mar 1971 | A |
3593123 | Williamson | Jul 1971 | A |
3631519 | Salahshourian | Dec 1971 | A |
3644662 | Salahshourian | Feb 1972 | A |
3651244 | Silver et al. | Mar 1972 | A |
3651402 | Leffmann | Mar 1972 | A |
3660721 | Baird | May 1972 | A |
3666876 | Forster | May 1972 | A |
3670192 | Andersson et al. | Jun 1972 | A |
3675056 | Lenz | Jul 1972 | A |
3684821 | Miyauchi et al. | Aug 1972 | A |
3684906 | Lexz | Aug 1972 | A |
3699238 | Hansen et al. | Oct 1972 | A |
3716652 | Lusk et al. | Feb 1973 | A |
3716719 | Angelery et al. | Feb 1973 | A |
3727085 | Goetz et al. | Apr 1973 | A |
3740600 | Turley | Jun 1973 | A |
3743867 | Smith, Jr. | Jul 1973 | A |
3746954 | Myles et al. | Jul 1973 | A |
3758699 | Lusk et al. | Sep 1973 | A |
3778891 | Amasino et al. | Dec 1973 | A |
3781739 | Meyer | Dec 1973 | A |
3787607 | Schlafly | Jan 1974 | A |
3792399 | McLyman | Feb 1974 | A |
3801843 | Corman et al. | Apr 1974 | A |
3809933 | Sugawara et al. | May 1974 | A |
3813764 | Tanaka et al. | Jun 1974 | A |
3828115 | Hvizd, Jr. | Aug 1974 | A |
3881647 | Wolfe | May 1975 | A |
3884154 | Marten | May 1975 | A |
3887860 | Bernhardt et al. | Jun 1975 | A |
3891880 | Britsch | Jun 1975 | A |
3902000 | Forsyth et al. | Aug 1975 | A |
3912957 | Reynolds | Oct 1975 | A |
3932779 | Madsen | Jan 1976 | A |
3932791 | Oswald | Jan 1976 | A |
3943392 | Keuper et al. | Mar 1976 | A |
3947278 | Youtsey | Mar 1976 | A |
3965408 | Higuchi et al. | Jun 1976 | A |
3968388 | Lambrecht et al. | Jul 1976 | A |
3971543 | Shanahan | Jul 1976 | A |
3974314 | Fuchs | Aug 1976 | A |
3993860 | Snow et al. | Nov 1976 | A |
3995785 | Arick et al. | Dec 1976 | A |
4001616 | Lonseth et al. | Jan 1977 | A |
4008367 | Sunderhauf | Feb 1977 | A |
4008409 | Rhudy et al. | Feb 1977 | A |
4031310 | Jachimowicz | Jun 1977 | A |
4039740 | Iwata | Aug 1977 | A |
4041431 | Enoksen | Aug 1977 | A |
4047138 | Steigerwald | Sep 1977 | A |
4064419 | Peterson | Dec 1977 | A |
4084307 | Schultz et al. | Apr 1978 | A |
4085347 | Lichius | Apr 1978 | A |
4088953 | Sarian | May 1978 | A |
4091138 | Takagi et al. | May 1978 | A |
4091139 | Quirk | May 1978 | A |
4099227 | Liptak | Jul 1978 | A |
4103075 | Adam | Jul 1978 | A |
4106069 | Trautner et al. | Aug 1978 | A |
4107092 | Carnahan et al. | Aug 1978 | A |
4109098 | Olsson et al. | Aug 1978 | A |
4121148 | Platzer | Oct 1978 | A |
4132914 | Khutoretsky | Jan 1979 | A |
4134036 | Curtiss | Jan 1979 | A |
4134055 | Akamatsu | Jan 1979 | A |
4134146 | Stetson | Jan 1979 | A |
4149101 | Lesokhin et al. | Apr 1979 | A |
4152615 | Calfo et al. | May 1979 | A |
4160193 | Richmond | Jul 1979 | A |
4164672 | Flick | Aug 1979 | A |
4164772 | Hingorani | Aug 1979 | A |
4177397 | Lill | Dec 1979 | A |
4177418 | Brueckner et al. | Dec 1979 | A |
4184186 | Barkan | Jan 1980 | A |
4200817 | Bratoljic | Apr 1980 | A |
4200818 | Ruffing et al. | Apr 1980 | A |
4206434 | Hase | Jun 1980 | A |
4207427 | Beretta et al. | Jun 1980 | A |
4207482 | Neumeyer et al. | Jun 1980 | A |
4208597 | Mulach et al. | Jun 1980 | A |
4229721 | Koloczek et al. | Oct 1980 | A |
4238339 | Khutoretsky et al. | Dec 1980 | A |
4239999 | Vinokurov et al. | Dec 1980 | A |
4245182 | Aotsu et al. | Jan 1981 | A |
4246694 | Raschbichler et al. | Jan 1981 | A |
4255684 | Mischler et al. | Mar 1981 | A |
4258280 | Starcevic | Mar 1981 | A |
4262209 | Berner | Apr 1981 | A |
4274027 | Higuchi et al. | Jun 1981 | A |
4281264 | Keim et al. | Jul 1981 | A |
4292558 | Flick et al. | Sep 1981 | A |
4308476 | Schuler | Dec 1981 | A |
4308575 | Mase | Dec 1981 | A |
4310966 | Breitenbach | Jan 1982 | A |
4314168 | Breitenbach | Feb 1982 | A |
4317001 | Silver et al. | Feb 1982 | A |
4320645 | Stanley | Mar 1982 | A |
4321426 | Schaeffer | Mar 1982 | A |
4321518 | Akamatsu | Mar 1982 | A |
4330726 | Albright et al. | May 1982 | A |
4337922 | Streiff et al. | Jul 1982 | A |
4341989 | Sandberg et al. | Jul 1982 | A |
4347449 | Beau | Aug 1982 | A |
4347454 | Gellert et al. | Aug 1982 | A |
4355255 | Herr et al. | Oct 1982 | A |
4357542 | Kirschbaum | Nov 1982 | A |
4360748 | Raschbichler et al. | Nov 1982 | A |
4361723 | Hvizd, Jr. et al. | Nov 1982 | A |
4363612 | Walchhutter | Dec 1982 | A |
4365178 | Lenz | Dec 1982 | A |
4365506 | Hyde | Dec 1982 | A |
4367425 | Mendelsohn et al. | Jan 1983 | A |
4367890 | Spirk | Jan 1983 | A |
4368418 | DeMello et al. | Jan 1983 | A |
4369389 | Lambrecht | Jan 1983 | A |
4371745 | Sakashita | Feb 1983 | A |
4384944 | Silver et al. | May 1983 | A |
4387316 | Katsekas | Jun 1983 | A |
4401920 | Taylor et al. | Aug 1983 | A |
4403163 | Armerding et al. | Sep 1983 | A |
4404486 | Keim et al. | Sep 1983 | A |
4411710 | Mochizuki et al. | Oct 1983 | A |
4421284 | Pan | Dec 1983 | A |
4425521 | Rosenberry, Jr. et al. | Jan 1984 | A |
4426771 | Wang et al. | Jan 1984 | A |
4429244 | Nikiten et al. | Jan 1984 | A |
4431960 | Zucker | Feb 1984 | A |
4432029 | Lundqvist | Feb 1984 | A |
4437464 | Crow | Mar 1984 | A |
4443725 | Derderian et al. | Apr 1984 | A |
4470884 | Carr | Sep 1984 | A |
4473765 | Butman, Jr. et al. | Sep 1984 | A |
4475075 | Munn | Oct 1984 | A |
4477690 | Nikitin et al. | Oct 1984 | A |
4481438 | Keim | Nov 1984 | A |
4484106 | Taylor et al. | Nov 1984 | A |
4488079 | Dailey et al. | Dec 1984 | A |
4490651 | Taylor et al. | Dec 1984 | A |
4503284 | Minnick et al. | Mar 1985 | A |
4508251 | Harada et al. | Apr 1985 | A |
4510077 | Elton | Apr 1985 | A |
4517471 | Sachs | May 1985 | A |
4520287 | Wang et al. | May 1985 | A |
4523249 | Arimoto | Jun 1985 | A |
4538131 | Baier et al. | Aug 1985 | A |
4546210 | Akiba et al. | Oct 1985 | A |
4551780 | Canay | Nov 1985 | A |
4557038 | Wcislo et al. | Dec 1985 | A |
4560896 | Vogt et al. | Dec 1985 | A |
4565929 | Baskin et al. | Jan 1986 | A |
4571453 | Takaoka et al. | Feb 1986 | A |
4588916 | Lis | May 1986 | A |
4590416 | Porche et al. | May 1986 | A |
4594630 | Rabinowitz et al. | Jun 1986 | A |
4607183 | Rieber et al. | Aug 1986 | A |
4615109 | Wcislo et al. | Oct 1986 | A |
4615778 | Elton | Oct 1986 | A |
4618795 | Cooper et al. | Oct 1986 | A |
4619040 | Wang et al. | Oct 1986 | A |
4622116 | Elton et al. | Nov 1986 | A |
4633109 | Feigel | Dec 1986 | A |
4650924 | Kauffman et al. | Mar 1987 | A |
4652963 | Fahlen | Mar 1987 | A |
4656316 | Meltsch | Apr 1987 | A |
4656379 | McCarty | Apr 1987 | A |
4677328 | Kumakura | Jun 1987 | A |
4687882 | Stone et al. | Aug 1987 | A |
4692731 | Osinga | Sep 1987 | A |
4723083 | Elton | Feb 1988 | A |
4723104 | Rohatyn | Feb 1988 | A |
4724345 | Elton et al. | Feb 1988 | A |
4732412 | van der Linden et al. | Mar 1988 | A |
4737704 | Kalinnikov et al. | Apr 1988 | A |
4745314 | Nakano | May 1988 | A |
4761602 | Leibovich | Aug 1988 | A |
4766365 | Bolduc et al. | Aug 1988 | A |
4771168 | Gundersen et al. | Sep 1988 | A |
4785138 | Breitenbach et al. | Nov 1988 | A |
4795933 | Sakai | Jan 1989 | A |
4827172 | Kobayashi | May 1989 | A |
4845308 | Womack, Jr. et al. | Jul 1989 | A |
4847747 | Abbondanti | Jul 1989 | A |
4853565 | Elton et al. | Aug 1989 | A |
4859810 | Cloetens et al. | Aug 1989 | A |
4859989 | McPherson | Aug 1989 | A |
4860430 | Raschbichler et al. | Aug 1989 | A |
4864266 | Feather et al. | Sep 1989 | A |
4883230 | Lindstrom | Nov 1989 | A |
4890040 | Gundersen | Dec 1989 | A |
4894284 | Yamanouchi et al. | Jan 1990 | A |
4914386 | Zocholl | Apr 1990 | A |
4918347 | Takaba | Apr 1990 | A |
4918835 | Raschbichler et al. | Apr 1990 | A |
4924342 | Lee | May 1990 | A |
4926079 | Niemela et al. | May 1990 | A |
4942326 | Butler, III et al. | Jul 1990 | A |
4949001 | Campbell | Aug 1990 | A |
4982147 | Lauw | Jan 1991 | A |
4994952 | Silva et al. | Feb 1991 | A |
4997995 | Simmons et al. | Mar 1991 | A |
5012125 | Conway | Apr 1991 | A |
5030813 | Stanisz | Jul 1991 | A |
5036165 | Elton et al. | Jul 1991 | A |
5036238 | Tajima | Jul 1991 | A |
5066881 | Elton et al. | Nov 1991 | A |
5067046 | Elton et al. | Nov 1991 | A |
5083360 | Valencic et al. | Jan 1992 | A |
5086246 | Dymond et al. | Feb 1992 | A |
5091609 | Sawada et al. | Feb 1992 | A |
5094703 | Takaoka et al. | Mar 1992 | A |
5095175 | Yoshida et al. | Mar 1992 | A |
5097241 | Smith et al. | Mar 1992 | A |
5097591 | Wcislo et al. | Mar 1992 | A |
5111095 | Hendershot | May 1992 | A |
5124607 | Rieber et al. | Jun 1992 | A |
5136459 | Fararooy | Aug 1992 | A |
5140290 | Dersch | Aug 1992 | A |
5153460 | Bovino et al. | Oct 1992 | A |
5168662 | Nakamura et al. | Dec 1992 | A |
5171941 | Shimizu et al. | Dec 1992 | A |
5182537 | Thuis | Jan 1993 | A |
5187428 | Hutchison et al. | Feb 1993 | A |
5231249 | Kimura et al. | Jul 1993 | A |
5235488 | Koch | Aug 1993 | A |
5246783 | Spenadel et al. | Sep 1993 | A |
5264778 | Kimmel et al. | Nov 1993 | A |
5287262 | Klein | Feb 1994 | A |
5304883 | Denk | Apr 1994 | A |
5305961 | Errard et al. | Apr 1994 | A |
5321308 | Johncock | Jun 1994 | A |
5323330 | Asplund et al. | Jun 1994 | A |
5325008 | Grant | Jun 1994 | A |
5325259 | Paulsson | Jun 1994 | A |
5327637 | Britenbach et al. | Jul 1994 | A |
5341281 | Skibinski | Aug 1994 | A |
5343139 | Gyugyi et al. | Aug 1994 | A |
5355046 | Weigelt | Oct 1994 | A |
5365132 | Hann et al. | Nov 1994 | A |
5387890 | Estop et al. | Feb 1995 | A |
5397513 | Steketee, Jr. | Mar 1995 | A |
5399941 | Grothaus et al. | Mar 1995 | A |
5400005 | Bobry | Mar 1995 | A |
5408169 | Jeanneret | Apr 1995 | A |
5449861 | Fujino et al. | Sep 1995 | A |
5452170 | Ohde et al. | Sep 1995 | A |
5468916 | Litenas et al. | Nov 1995 | A |
5499178 | Mohan | Mar 1996 | A |
5500632 | Halser, III | Mar 1996 | A |
5510942 | Bock et al. | Apr 1996 | A |
5530307 | Horst | Jun 1996 | A |
5533658 | Benedict et al. | Jul 1996 | A |
5534754 | Poumey | Jul 1996 | A |
5545853 | Hildreth | Aug 1996 | A |
5550410 | Titus | Aug 1996 | A |
5583387 | Takeuchi et al. | Dec 1996 | A |
5587126 | Steketee, Jr. | Dec 1996 | A |
5598137 | Alber et al. | Jan 1997 | A |
5607320 | Wright | Mar 1997 | A |
5612510 | Hildreth | Mar 1997 | A |
5663605 | Evans et al. | Sep 1997 | A |
5672926 | Brandes et al. | Sep 1997 | A |
5689223 | Demarmels et al. | Nov 1997 | A |
5807447 | Forrest | Sep 1998 | A |
5834699 | Buck et al. | Nov 1998 | A |
Number | Date | Country |
---|---|---|
399790 | Jul 1995 | AT |
565063 | Feb 1957 | BE |
391071 | Apr 1965 | CH |
SU 266037 | Oct 1965 | CH |
534448 | Feb 1973 | CH |
539328 | Jul 1973 | CH |
SU 646403 | Feb 1979 | CH |
657482 | Aug 1986 | CH |
SU 1189322 | Oct 1986 | CH |
DD137164 | Aug 1979 | DD |
DD138840 | Nov 1979 | DD |
40414 | Aug 1887 | DE |
134022 | Dec 1901 | DE |
277012 | Jul 1914 | DE |
336418 | Jun 1920 | DE |
372390 | Mar 1923 | DE |
386561 | Dec 1923 | DE |
387973 | Jan 1924 | DE |
406371 | Nov 1924 | DE |
425551 | Feb 1926 | DE |
426793 | Mar 1926 | DE |
432169 | Jul 1926 | DE |
433749 | Sep 1926 | DE |
435608 | Oct 1926 | DE |
435609 | Oct 1926 | DE |
441717 | Mar 1927 | DE |
443011 | Apr 1927 | DE |
460124 | May 1928 | DE |
482506 | Sep 1929 | DE |
501181 | Jul 1930 | DE |
523047 | Apr 1931 | DE |
568508 | Jan 1933 | DE |
572030 | Mar 1933 | DE |
584639 | Sep 1933 | DE |
586121 | Oct 1933 | DE |
604972 | Nov 1934 | DE |
629301 | Apr 1936 | DE |
673545 | Mar 1939 | DE |
719009 | Mar 1942 | DE |
846583 | Aug 1952 | DE |
875227 | Apr 1953 | DE |
975999 | Jan 1963 | DE |
1465719 | May 1969 | DE |
1807391 | May 1970 | DE |
2050674 | May 1971 | DE |
1638176 | Jun 1971 | DE |
2155371 | May 1973 | DE |
2400698 | Jul 1975 | DE |
2520511 | Nov 1976 | DE |
2656389 | Jun 1978 | DE |
2721905 | Nov 1978 | DE |
2824951 | Dec 1979 | DE |
2835386 | Feb 1980 | DE |
2839517 | Mar 1980 | DE |
2854520 | Jun 1980 | DE |
3009102 | Sep 1980 | DE |
2913697 | Oct 1980 | DE |
2920478 | Dec 1980 | DE |
3028777 | Mar 1981 | DE |
2939004 | Apr 1981 | DE |
3006382 | Aug 1981 | DE |
3008818 | Sep 1981 | DE |
209313 | Apr 1984 | DE |
3305225 | Aug 1984 | DE |
3309051 | Sep 1984 | DE |
3441311 | May 1986 | DE |
3543106 | Jun 1987 | DE |
2917717 | Aug 1987 | DE |
3612112 | Oct 1987 | DE |
3726346 | Feb 1989 | DE |
3925337 | Feb 1991 | DE |
4023903 | Nov 1991 | DE |
4022476 | Jan 1992 | DE |
4233558 | Mar 1994 | DE |
4402184 | Aug 1995 | DE |
4409794 | Aug 1995 | DE |
4412761 | Oct 1995 | DE |
4420322 | Dec 1995 | DE |
19620906 | Jan 1996 | DE |
4438186 | May 1996 | DE |
19020222 | Mar 1997 | DE |
19547229 | Jun 1997 | DE |
468827 | Jul 1997 | DE |
049104 | Apr 1982 | EP |
0493704 | Apr 1982 | EP |
0056580 | Jul 1982 | EP |
078908 | May 1983 | EP |
0120154 | Oct 1984 | EP |
0130124 | Jan 1985 | EP |
0142813 | May 1985 | EP |
0155405 | Sep 1985 | EP |
0102513 | Jan 1986 | EP |
0174783 | Mar 1986 | EP |
0185788 | Jul 1986 | EP |
0277358 | Aug 1986 | EP |
0234521 | Sep 1987 | EP |
0244069 | Nov 1987 | EP |
0246377 | Nov 1987 | EP |
0265868 | May 1988 | EP |
0274691 | Jul 1988 | EP |
0280759 | Sep 1988 | EP |
0282876 | Sep 1988 | EP |
0309096 | Mar 1989 | EP |
0314860 | May 1989 | EP |
0316911 | May 1989 | EP |
0317248 | May 1989 | EP |
0335430 | Oct 1989 | EP |
0342554 | Nov 1989 | EP |
0221404 | May 1990 | EP |
0375101 | Jun 1990 | EP |
0406437 | Jan 1991 | EP |
0439410 | Jul 1991 | EP |
0440865 | Aug 1991 | EP |
0469155 | Feb 1992 | EP |
0490705 | Jun 1992 | EP |
0503817 | Sep 1992 | EP |
0571155 | Nov 1993 | EP |
0620570 | Oct 1994 | EP |
0620630 | Oct 1994 | EP |
0642027 | Mar 1995 | EP |
0671632 | Sep 1995 | EP |
0676777 | Oct 1995 | EP |
0677915 | Oct 1995 | EP |
0684679 | Nov 1995 | EP |
0684682 | Nov 1995 | EP |
0695019 | Jan 1996 | EP |
0732787 | Sep 1996 | EP |
0738034 | Oct 1996 | EP |
0739087 | Oct 1996 | EP |
0740315 | Oct 1996 | EP |
0749190 | Dec 1996 | EP |
0751605 | Jan 1997 | EP |
0739087 | Mar 1997 | EP |
0749193 | Mar 1997 | EP |
0780926 | Jun 1997 | EP |
0802542 | Oct 1997 | EP |
0913912 | May 1999 | EP |
805544 | Apr 1936 | FR |
841351 | Jan 1938 | FR |
847899 | Dec 1938 | FR |
916959 | Dec 1946 | FR |
1011924 | Apr 1949 | FR |
1126975 | Mar 1955 | FR |
1238795 | Jul 1959 | FR |
2108171 | May 1972 | FR |
2251938 | Jun 1975 | FR |
2305879 | Oct 1976 | FR |
2376542 | Jul 1978 | FR |
2467502 | Apr 1981 | FR |
2481531 | Oct 1981 | FR |
2556146 | Jun 1985 | FR |
2594271 | Aug 1987 | FR |
2708157 | Jan 1995 | FR |
123906 | Mar 1919 | GB |
268271 | Mar 1927 | GB |
293861 | Nov 1928 | GB |
292999 | Apr 1929 | GB |
319313 | Jul 1929 | GB |
468827 | Jul 1937 | GB |
518993 | Mar 1940 | GB |
537609 | Jun 1941 | GB |
540456 | Oct 1941 | GB |
589071 | Jun 1947 | GB |
666883 | Feb 1952 | GB |
685416 | Jan 1953 | GB |
702892 | Jan 1954 | GB |
715226 | Sep 1954 | GB |
723457 | Feb 1955 | GB |
739962 | Nov 1955 | GB |
763761 | Dec 1956 | GB |
805721 | Dec 1958 | GB |
827600 | Feb 1960 | GB |
854728 | Nov 1960 | GB |
870583 | Jun 1961 | GB |
913386 | Dec 1962 | GB |
965741 | Aug 1964 | GB |
992249 | May 1965 | GB |
1024583 | Mar 1966 | GB |
1053337 | Dec 1966 | GB |
1059123 | Feb 1967 | GB |
1103098 | Feb 1968 | GB |
1103099 | Feb 1968 | GB |
1117401 | Jun 1968 | GB |
1135242 | Dec 1968 | GB |
1147049 | Apr 1969 | GB |
1157885 | Jul 1969 | GB |
1174659 | Dec 1969 | GB |
1236082 | Jun 1971 | GB |
1268770 | Mar 1972 | GB |
1319257 | Jun 1973 | GB |
1322433 | Jul 1973 | GB |
1340983 | Dec 1973 | GB |
1341050 | Dec 1973 | GB |
1365191 | Aug 1974 | GB |
1395152 | May 1975 | GB |
1424982 | Feb 1976 | GB |
1426594 | Mar 1976 | GB |
1438610 | Jun 1976 | GB |
1445284 | Aug 1976 | GB |
1479904 | Jul 1977 | GB |
1493163 | Nov 1977 | GB |
1502938 | Mar 1978 | GB |
1525745 | Sep 1978 | GB |
2000625 | Jan 1979 | GB |
1548633 | Jul 1979 | GB |
2046142 | Nov 1979 | GB |
2022327 | Dec 1979 | GB |
2025150 | Jan 1980 | GB |
2034101 | May 1980 | GB |
1574796 | Sep 1980 | GB |
2070341 | Sep 1981 | GB |
2070470 | Sep 1981 | GB |
2071433 | Sep 1981 | GB |
2081523 | Feb 1982 | GB |
2099635 | Dec 1982 | GB |
2105925 | Mar 1983 | GB |
2106306 | Apr 1983 | GB |
2106721 | Apr 1983 | GB |
2136214 | Sep 1984 | GB |
2140195 | Nov 1984 | GB |
2150153 | Jun 1985 | GB |
2268337 | Jan 1994 | GB |
2273819 | Jun 1994 | GB |
2283133 | Apr 1995 | GB |
2289992 | Dec 1995 | GB |
2308490 | Jun 1997 | GB |
2332557 | Jun 1999 | GB |
175494 | Nov 1981 | HU |
60206121 | Mar 1959 | JP |
57043529 | Aug 1980 | JP |
57126117 | May 1982 | JP |
59076156 | Oct 1982 | JP |
59159642 | Feb 1983 | JP |
6264964 | Sep 1985 | JP |
1129737 | May 1989 | JP |
62320631 | Jun 1989 | JP |
2017474 | Jan 1990 | JP |
3245748 | Feb 1990 | JP |
4179107 | Nov 1990 | JP |
318253 | Jan 1991 | JP |
424909 | Jan 1992 | JP |
5290947 | Apr 1992 | JP |
6196343 | Dec 1992 | JP |
6233442 | Feb 1993 | JP |
6325629 | May 1993 | JP |
7057951 | Aug 1993 | JP |
7264789 | Mar 1994 | JP |
8167332 | Dec 1994 | JP |
7161270 | Jun 1995 | JP |
8264039 | Nov 1995 | JP |
9200989 | Jan 1996 | JP |
8036952 | Feb 1996 | JP |
8167360 | Jun 1996 | JP |
67199 | Mar 1972 | LU |
90308 | Sep 1937 | SE |
305899 | Nov 1968 | SE |
255156 | Feb 1969 | SE |
341428 | Dec 1971 | SE |
453236 | Jan 1982 | SE |
457792 | Jun 1987 | SE |
502417 | Dec 1993 | SE |
792302 | Jan 1971 | SU |
425268 | Sep 1974 | SU |
1019553 | Jan 1980 | SU |
694939 | Jan 1982 | SU |
955369 | Aug 1983 | SU |
1511810 | May 1987 | SU |
WO8202617 | Aug 1982 | WO |
WO8502302 | May 1985 | WO |
WO9011389 | Oct 1990 | WO |
WO9012409 | Oct 1990 | WO |
PCTDE 9000279 | Nov 1990 | WO |
WO9101059 | Jan 1991 | WO |
WO9101585 | Feb 1991 | WO |
WO9107807 | Mar 1991 | WO |
PCT SE 9100077 | Apr 1991 | WO |
WO9109442 | Jun 1991 | WO |
WO 9111841 | Aug 1991 | WO |
WO8115862 | Oct 1991 | WO |
WO 9115755 | Oct 1991 | WO |
WO9201328 | Jan 1992 | WO |
WO9203870 | Mar 1992 | WO |
WO9321681 | Oct 1993 | WO |
WO9406194 | Mar 1994 | WO |
WO9518058 | Jul 1995 | WO |
WO9522153 | Aug 1995 | WO |
WO9524049 | Sep 1995 | WO |
WO9622606 | Jul 1996 | WO |
WO9622607 | Jul 1996 | WO |
PCTCN 9600010 | Oct 1996 | WO |
WO9630144 | Oct 1996 | WO |
WO9710640 | Mar 1997 | WO |
WO9711831 | Apr 1997 | WO |
WO9716881 | May 1997 | WO |
WO 9729494 | Aug 1997 | WO |
WO45908 | Dec 1997 | WO |
WO9745288 | Dec 1997 | WO |
WO9745847 | Dec 1997 | WO |
WO9745848 | Dec 1997 | WO |
WO9745906 | Dec 1997 | WO |
WO9745907 | Dec 1997 | WO |
WO9745912 | Dec 1997 | WO |
WO9745914 | Dec 1997 | WO |
WO9745915 | Dec 1997 | WO |
WO9745916 | Dec 1997 | WO |
WO9745918 | Dec 1997 | WO |
WO9745919 | Dec 1997 | WO |
WO9745920 | Dec 1997 | WO |
WO9745921 | Dec 1997 | WO |
WO9745922 | Dec 1997 | WO |
WO9745923 | Dec 1997 | WO |
WO9745924 | Dec 1997 | WO |
WO9745925 | Dec 1997 | WO |
WO9745926 | Dec 1997 | WO |
WO9745927 | Dec 1997 | WO |
WO9745928 | Dec 1997 | WO |
WO9745929 | Dec 1997 | WO |
WO9745930 | Dec 1997 | WO |
WO9745931 | Dec 1997 | WO |
WO9745932 | Dec 1997 | WO |
WO9745933 | Dec 1997 | WO |
WO9745934 | Dec 1997 | WO |
WO9745935 | Dec 1997 | WO |
WO9745936 | Dec 1997 | WO |
WO9745937 | Dec 1997 | WO |
WO9745938 | Dec 1997 | WO |
WO9745939 | Dec 1997 | WO |
WO9747067 | Dec 1997 | WO |
WO9820595 | May 1998 | WO |
WO9820596 | May 1998 | WO |
WO9820597 | May 1998 | WO |
WO 9820598 | May 1998 | WO |
WO9820600 | May 1998 | WO |
WO 9820602 | May 1998 | WO |
WO9821385 | May 1998 | WO |
PCTFR 9800468 | Jun 1998 | WO |
WO9827634 | Jun 1998 | WO |
WO9827635 | Jun 1998 | WO |
WO9827636 | Jun 1998 | WO |
WO9829927 | Jul 1998 | WO |
WO9829928 | Jul 1998 | WO |
WO9829929 | Jul 1998 | WO |
WO9829930 | Jul 1998 | WO |
WO9829931 | Jul 1998 | WO |
WO9829932 | Jul 1998 | WO |
WO9833731 | Aug 1998 | WO |
WO9833736 | Aug 1998 | WO |
WO9833737 | Aug 1998 | WO |
WO9834238 | Aug 1998 | WO |
WO 9834239 | Aug 1998 | WO |
WO9834240 | Aug 1998 | WO |
WO9834241 | Aug 1998 | WO |
WO9834242 | Aug 1998 | WO |
WO9834243 | Aug 1998 | WO |
WO9834244 | Aug 1998 | WO |
WO9834245 | Aug 1998 | WO |
WO9834246 | Aug 1998 | WO |
WO9834247 | Aug 1998 | WO |
WO9834248 | Aug 1998 | WO |
WO9834249 | Aug 1998 | WO |
WO9834250 | Aug 1998 | WO |
WO9834309 | Aug 1998 | WO |
WO9834312 | Aug 1998 | WO |
WO9834321 | Aug 1998 | WO |
WO9834322 | Aug 1998 | WO |
WO9834323 | Aug 1998 | WO |
WO9834325 | Aug 1998 | WO |
WO9834326 | Aug 1998 | WO |
WO9834327 | Aug 1998 | WO |
WO9834328 | Aug 1998 | WO |
WO9834329 | Aug 1998 | WO |
WO9834330 | Aug 1998 | WO |
WO9834331 | Aug 1998 | WO |
WO 984062 | Sep 1998 | WO |
WO9834315 | Oct 1998 | WO |
WO 9843536 | Oct 1998 | WO |
WO9917309 | Apr 1999 | WO |
WO9917311 | Apr 1999 | WO |
WO9917312 | Apr 1999 | WO |
WO9917313 | Apr 1999 | WO |
WO9917314 | Apr 1999 | WO |
WO9917315 | Apr 1999 | WO |
WO9917316 | Apr 1999 | WO |
WO9917422 | Apr 1999 | WO |
WO9917424 | Apr 1999 | WO |
WO9917425 | Apr 1999 | WO |
WO9917426 | Apr 1999 | WO |
WO9917427 | Apr 1999 | WO |
WO9917428 | Apr 1999 | WO |
WO9917429 | Apr 1999 | WO |
WO9917432 | Apr 1999 | WO |
WO9917433 | Apr 1999 | WO |
WO9919963 | Apr 1999 | WO |
WO9919969 | Apr 1999 | WO |
WO9919970 | Apr 1999 | WO |
PCTSE 9802148 | Jun 1999 | WO |
WO9927546 | Jun 1999 | WO |
WO9928919 | Jun 1999 | WO |
WO9928921 | Jun 1999 | WO |
WO 9928922 | Jun 1999 | WO |
WO9928923 | Jun 1999 | WO |
WO9928924 | Jun 1999 | WO |
WO9928925 | Jun 1999 | WO |
WO9928926 | Jun 1999 | WO |
WO9928927 | Jun 1999 | WO |
WO9928928 | Jun 1999 | WO |
WO9928929 | Jun 1999 | WO |
WO9928930 | Jun 1999 | WO |
WO9928931 | Jun 1999 | WO |
WO9928934 | Jun 1999 | WO |
WO9928994 | Jun 1999 | WO |
WO 9929005 | Jun 1999 | WO |
WO9929005 | Jun 1999 | WO |
WO9929008 | Jun 1999 | WO |
WO9929011 | Jun 1999 | WO |
WO9929012 | Jun 1999 | WO |
WO9929013 | Jun 1999 | WO |
WO9929014 | Jun 1999 | WO |
WO9929015 | Jun 1999 | WO |
WO9929016 | Jun 1999 | WO |
WO9929017 | Jun 1999 | WO |
WO9929018 | Jun 1999 | WO |
WO9929019 | Jun 1999 | WO |
WO9929020 | Jun 1999 | WO |
WO9929021 | Jun 1999 | WO |
WO9929022 | Jun 1999 | WO |
WO 9929023 | Jun 1999 | WO |
WO9929024 | Jun 1999 | WO |
WO 9929025 | Jun 1999 | WO |
WO9929026 | Jun 1999 | WO |
WO9929029 | Jun 1999 | WO |
WO9929034 | Jun 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20020047413 A1 | Apr 2002 | US |