X-ray tubes are typically constructed as high-vacuum tubes. Because of the high vacuum, sparkovers, and the resultant short circuit, between the cathode and the anode of the X-ray tube when the X-ray voltage, which is in the kilovolt range, is applied are fundamentally prevented. Slight quantities of residual gases, which contaminate the high vacuum, however, are unavoidable. This is true particularly because over the course of operation of the X-ray tube, gaseous ingredients of material emerge in the interior of the tube. The residual gases can be ionized by the X-ray voltage. The ionization may cause a sparkover and thus the short circuit inside the X-ray tube.
The courses over time of the short-circuit currents and the resultant events for charge compensation in the lines of the high-voltage supply sometimes have very steep flanks, since they proceed very quickly. The resultant interference spectrum therefore extends into the upper megahertz range and is extremely broadbanded. Moreover, the short-circuit currents and charge compensation currents cause vibrations associated with over-voltages, and these vibrations fade only very slowly.
Because of such interference signals and over-voltages in the high-voltage circuit of the X-ray device, problems in the function of the electronics and the computer system can occur. Often, component failures also occur, above all in the high-voltage circuit of the X-ray generator. Besides the downtimes in operation and expensive damage to the X-ray device, these problems also cause an increased radiation exposure to patients to be examined, who because of system failures must be examined repeatedly.
The disclosed embodiments relate to a high-voltage supply for an X-ray device, which substantially comprises electrical lines that are disposed between a high-voltage circuit and an X-ray tube of the X-ray device.
An especially advantageous variant of this feature is obtained by providing that the unilateral terminal resistor is disposed on the X-ray tube side of each high-voltage line. As a result, it is possible to maintain the high output impedance of the X-ray generator that must be adhered to for the sake of good operation.
From European Patent Disclosure EP 0 497 517, an X-ray device is known in which one resistor that limits the electrical voltage is provided toward ground on each side of the X-ray tube. These resistors, however, cause power losses in the heating current for heating the cathode.
From German Patent Disclosure DE 24 02 125 and Japanese Patent Disclosure JP 54090987, X-ray devices are also known in which voltage-limiting components are provided, but without taking into account the cathode heating current.
According to the disclosed embodiments, an X-ray device in which interference signals and over-voltages, which occur because of short circuits in the X-ray tube, are damped so severely that functional problems of the electronics and component damage inside the X-ray device are avoided, and in which at the same time power losses of a cathode heating current are kept slight.
Fundamentally, in the disclosed embodiments, vibration and interference signals are damped in the high-voltage supply of the X-ray device, or in other words between the X-ray generator and the X-ray tube. The damping is accomplished by the provision of terminal resistors at the high-voltage lines of the high-voltage supply. Damping by means of terminal resistors is especially uncomplicated and simple to achieve. A heating current transformer is connected to the X-ray tube via additional filter inductors, which are disposed parallel to the terminal resistor on the cathode side.
One advantageous feature is attained if the high-voltage lines of the high-voltage supply are provided with a terminal resistor not on both ends but on only one end, or in other words unilaterally. Even a unilateral terminal resistor can in fact accomplish fast enough fading of the interference signals.
An especially advantageous variant of this feature is obtained by providing that the unilateral terminal resistor is disposed on the X-ray tube side of each high-voltage line. As a result, it is possible to maintain the high output impedance of the X-ray generator that may result in good operation.
In a further advantageous feature of the disclosed embodiments, the impedance of the terminal resistors is adapted to the line impedance of the particular line. Adequate damping is obtained in particular if the impedance of the terminal resistors is equivalent to the impedance of the high-voltage lines.
In
The X-ray tube 15 is connected to the X-ray generator 1 by a high-voltage supply located between them, where the high-voltage supply substantially includes an anodic coaxial high-voltage line 11 and a cathodic coaxial high-voltage line 13. The coaxial construction of the high-voltage lines 11 and 13 is represented in the drawing as a box instead of as a line. The anodic high-voltage line 11 connects the output of the X-ray generator 1 to the anode 17 of the X-ray tube 15. Analogously, the cathodic high-voltage line 13 connects the cathode 19 of the X-ray tube 15. The X-ray tube 15 can be embodied with two beams, that is, as a dual-focus tube, which is why the cathode 19 is shown with two coils in the drawing. The two coils of the cathode 19 are supplied with heating current by the heating transformer 21.
To reduce the problems caused in conjunction with short circuits that occur in the X-ray tube 15, it is known on the one hand to provide high-impedance damping resistors 9 (RD) in the kilo-ohm range on the X-ray generator 1, and on the other, to be careful to provide clean grounding of all the components in the entire X-ray generator, so as to assure unambiguous reference potentials and to avoid induction loops. Above all, “dragging” of the interference potentials should be avoided. The clean grounding of all the components is represented by the multiple grounding 23 of the coaxial high-voltage lines.
The occurrence of a short circuit in the X-ray tube thus means the same as saying that the load resistance 33 (RL) vanishes; that is, RL=0. As a consequence of the vanishing of the load resistance 33 (RL), the voltage at the high-voltage lines 11 and 13 collapses, because the charges that are located on the high-voltage lines 11 and 13 can flow out via the short circuit in the X-ray tube. This type of discharge of an equally charged line is a standard problem that is very well known in the literature. The discharge process can be described in approximate terms by saying that half of the charges move to the left on the line and the other half of the charges move to the right. As a result, waves with half the output voltage (that is, U0/2) move to the left and right away from one another on each line. This is indicated in
In the high-voltage circuit, the waves moving apart from one another strike impedance discontinuities to both the left and the right. On the left, these are the damping resistors 9 (RD), and on the right they are the short circuit in the X-ray tube, that is, the load resistance 33 (RL), which has assumed the value RL=0. The discontinuities in impedance reflect the waves proceeding away from one another, and a short circuit results in a reflection factor r=−1. Waves reflected at a short circuit are therefore known to change their sign; that is, in the present case, they change their voltage from +U0/2 to −U0/2. The reflected waves then converge again and meet and then run apart once again until they are reflected again from the discontinuities in the line impedance. For the waves traveling back and forth, an oscillation duration results that is dependent on the length of each of the high-voltage lines 11 and 13. After one-quarter of this oscillation duration, the high-voltage line assumes the voltage 0 over its entire length; after half the oscillation duration, it assumes the voltage −U0, and after three-quarters of the oscillation duration, it resumes the voltage of 0 again, until the oscillation process begins to repeat after one entire oscillation duration. The oscillation continues infinitely in principle, but in reality is damped by line losses.
For the sake of simplicity, the process has been described for only the anodic high-voltage line 11, but the processes on the cathodic high-voltage line 13 proceed fundamentally analogously, with the opposite sign.
As a result, on the high-voltage lines 11 and 13, an oscillation is obtained in which no over-voltages occur on the applicable line itself, but the line alternatingly assumes the voltages +U0 and −U0. At the damping resistors 9 (RD), twice the voltage therefore occurs in the course of the oscillation, or in other words 2U0. For a length of the high-voltage lines of 12 m, for instance, an oscillation duration of 266 nanoseconds results, that is, a frequency on the order of magnitude of a few megahertz. This oscillation, which can be conceived of as an interference signal, and the over-voltages that occur with it, can cause component failures and disruptions in operation in the X-ray device.
In reality, however, the terminal by itself, with parallel terminal resistors 37, 38 (RA), would not be usable, since in the operating state, the entire operating voltage would be present at both terminal resistors 37 (RA) and 38 (RA) and would drop off toward ground, which would lead to permanent and extremely high power losses. Moreover, the terminal resistor 38 (RA) toward the X-ray tube would be short-circuited by the short circuit in the X-ray tube 15 and hence would be unable to build up any damping action.
Therefore to supplement the terminal resistors 37, 38 (RA), high-voltage smoothing capacitors 41 (CH) are provided, which are connected in series between these resistors and the ground 23. The high-voltage smoothing capacitors 41 (CH) have the task of allowing high-frequency interference signals and over-voltages to pass to the ground 23, but to block low-frequency and direct-voltage useful signals. They accordingly serve as a high-pass filter, whose frequency is to be selected such that interference signals can flow away to the ground, but with regard to useful signals, no lost power occurs. The high-voltage smoothing capacitors 41 (CH) moreover prevent the terminal resistor 38 (RA) toward the X-ray tube from being short-circuited by the short circuit in the X-ray tube 15 and therefore remaining ineffective. Because of the high frequencies of the interference signals, a high-pass filter with a relatively high limit frequency is required; a capacitance of the high-voltage smoothing capacitors 41 (CH) on the order of magnitude of approximately 50 nano-farads is therefore selected. Ceramic or foil capacitors, such that, for example, can be connected by soldering, may be employed.
Since the damping resistor RD that is normally to be provided is on the order of magnitude of a plurality of kilo-ohms, the terminal resistor 39 (RA), which is on the order of magnitude of a few tens of ohms, does not offer the same protection against over-voltages in the X-ray generator 1. Hence the X-ray generator 1 would have to be dimensioned in a sufficiently sturdy manner so as to be able to withstand currents in the kilo-ampere range in the event of a short circuit in the X-ray tube 15.
In a modified variant of the circuit of
Of the two waves, moving apart from one another for charge compensation in the high-voltage lines 11 and 13 and having the voltages +U0/2 and −U0/2, respectively, only that wave that is running in the direction of the X-ray generator 1 is reflected, since an impedance discontinuity occurs only toward the generator. In the direction toward the X-ray tube 15 that is equipped with terminal resistors 39 (RA), the waves travel onward without being reflected, and the charges can flow away. The process of charge compensation therefore ends after reflection has occurred only once. The only unilateral termination of the high-voltage lines 11 and 13 thus offers fast enough fading of the interference signals and hence adequate damping of over-voltages.
On the cathodic high-voltage side, the special feature occurs that the cathode is supplied with not only the negative part of the X-ray tube voltage but also with the heating current for the cathode. In a conventional dual-focus tube, there are accordingly a total of three lines, which supply the two cathode coils with heating current and with the cathodic X-ray voltage. If a terminal resistor were to be inserted into the heating current supply as well, then unjustifiably heavy losses in the heating current—which still amounts to several amperes—would be the result. Since the three terminal resistors would be connected parallel to one another on the lines, they would furthermore have to have three times higher a resistance than the single terminal resistor 39 (RA), and the heating current losses would therefore even triple.
In order nevertheless to protect the heating current transformer 21 against over-voltages and interference signals in the event of a short circuit in the X-ray tube 15, additional filter inductors 40 are therefore introduced, instead of terminal resistors. These additional filter inductors 40 are embodied as current-compensated chokes and as a rule are joined together by soldering, or other suitable means. They have the task of blocking the high-frequency interference signals in the high-voltage line 13 but conversely allowing the low-frequency heating current to pass through. In that sense they represent a low-pass filter. For that purpose, they are disposed in a series circuit between the X-ray tube 15 and the high-voltage line 13 and the heating current transformer 21 and in a parallel circuit to the terminal resistor 39 (RA). The size of the filter inductors 40 should be determined as a function of the interference signals in the high-voltage line 13 or 11, as applicable. Since the interference signals vary in the megahertz range and the heating current typically varies in the kilohertz range, the filter inductors 40 should have a size of approximately 50 micro-henrys.
In an improved embodiment of this circuit, it would be possible for the filter inductors 40 on the cathodic high-voltage side to be embodied as current-compensated chokes, in order to further reduce the total inductance compared to the heating current, without reducing the filter efficiency with respect to the high-frequency interference signals.
It is clear that the implementation of this embodiment necessitates a change in the layout of the entire X-ray generator. Conversely, such changes as supplementing terminal resistors and additional filter inductors can be made at considerably less expense.
Between the terminal resistors 39 (RA) and the damping resistors 9 (RD) of the X-ray generator 1, high-voltage smoothing capacitors 41 (CH) are provided, as a rule ceramic or foil capacitors, which may be joined by soldering or other suitable means. The high-voltage smoothing capacitors 41 (CH) are connected to the respective connecting point between the damping resistors 9 (RD) and the terminal resistors 39 (RA) and to the respective ground 23. That is, they are connected parallel to the damping resistors 9 (RD) and parallel to the terminal resistors 39 (RA).
In this variant of the circuit, the high-voltage lines 11 and 13 are terminated with the series circuit of the respective terminal resistors 39 (RA) and the respective high-voltage smoothing capacitor 41 (CH). So that approximately only the ohmic resistance of the terminal resistors 39 (RA) will contribute to the line impedance, the high-voltage smoothing capacitors 41 (CH) must be selected as large enough to act with low impedance with regard to the compensation events in the high-voltage lines 11 and 13. With the requisite resistance for this purpose of approximately 50 nano-farads, this variant of the circuit is of interest particularly in the case of X-ray devices in whose high-voltage circuit, a large high-voltage smoothing capacitor is provided from the very outset.
With the introduction of terminal resistors, it is accordingly successfully possible to maximally protect the X-ray device against malfunctions and damage from the consequences of a short circuit in the X-ray tube. Only a brief time is needed until, after the end of a short circuit in the X-ray tube, the X-ray voltage is again reached, so that the operation of the X-ray device can then continue.
It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
10300542.0 | Jan 2003 | DE | national |
PCT/EP03/14257 | Dec 2003 | WO | international |
This application is related to and claims the benefit of priority under 35 U.S.C. §§ 120, 271 and 365 to Patent Cooperation Treaty patent application no. PCT/EP2003/014257, filed on Dec. 15, 2003, which was published at WO 2004/064458, in German. This application is further related to and claims benefit of priority under 35 U.S.C. § 119 to the filing date of Jan. 9, 2003 of German patent application no. 10300542.0 DE, filed on Jan. 9, 2003.