The present invention relates generally to trawl doors, and more particularly to pelagic trawl doors capable of providing enhanced and rather high efficiency in field operations. Trawl doors of the present invention are capable of significantly reducing the drag of a total trawl system and thus conserving fuel of the fishing trawler, with concurrent increased efficiency.
The trend in the art in pelagic trawl door design and manufacture is both to provide pelagic trawl doors of maximal efficiency and as well to produce flat trawl doors, as opposed to Vee trawl doors. It is widely believed and thus far unanimously experimentally confirmed that the greatest efficiency obtainable for pelagic trawl doors is by using flat trawl doors, rather than Vee shaped trawl doors. Thus, the trend in the industry to design only flat trawl doors when high efficiency pelagic trawl door constructions employ a flat trawl door construction, rather than a Vee shaped trawl door construction. In fact, in many developed high value pelagic trawl fisheries, such as for example the Alaska Pollock fishery, Vee shaped pelagic trawl doors either are not in use, or are in use in such small numbers as to be insignificant.
As mentioned above, the trend in the art in the engineering, manufacture and use of pelagic trawl doors is to construct and deploy in the field flat trawl door designs with the goal of increasing efficiency, it being widely held if not universally believed in the field that only flat trawl door designs are able to maximise the efficiency of the trawl door's performance. That is to maximise the horizontal spread of a given pelagic trawl net under a given set of conditions from a certain trawler, while minimizing the water resistance (drag) on the certain trawler, thus permitting lower fuel consumption, leading to maximal efficiency of the pelagic trawling operation.
Thus, it may be observed that while the trend in the art is to engineer, manufacture and use flat pelagic trawl door constructions, as opposed to Vee shaped pelagic trawl door constructions, the basis for such a trend is that fact and thus far it is flat pelagic trawl door constructions that have optimised field operation efficiency for pelagic trawlers. In attempting to better address the need for maximal efficiency pelagic trawl doors, wide trawl doors that maximise buoyancy as well as airfoil shaped trawl doors that maximise lift (i.e. thrust) and minimize drag have also been proposed. An example of such a trawl door is that disclosed in U.S. Pat. No. 4,640,037 which discloses a trawl door of generally airofoil cross section made from plate material. The door consists of a main deflector having a modified shape to form a plurality of slots along the forward edge of the main deflector in order to contribute to the hydrodynamic properties of the door.
However, it is unusually expensive to manufacture wide trawl doors of steel, plate steel being the primary universal material for pelagic trawl door construction, and likewise it is unusually and even prohibitively expensive to manufacture true optimised airfoil shaped trawl door constructions of steel.
In an attempt to redress these difficulties, currently pending Icelandic Patent Application number 7371 titled: “HIGH SPEED, INCREASED HYDRODYNAMIC EFFICIENCY, LIGHT-WEIGHT MOLDED TRAWL DOOR AND METHODS FOR USE AND MANUFACTURE” proposes the use of a special plastics material that is both capable of withstanding the rigors of field conditions experienced by pelagic trawl doors, unlike previous plastics employed in trawl doors, providing improved buoyancy in water, while simultaneously is capable of being molded into any shape by the placement of a liquid solution into a mold of any shape, the liquid then solidifying into the desired solid plastic having the shape of the mold.
However, while the teachings of currently pending Icelandic Patent Application no. 7371 actually appear to teach a trawl door construction and methods for an optimally efficient pelagic trawl door, it is a fact that the method of manufacturing of such a trawl door is entirely unprecedented, and the start up costs to obtain and to put into production the needed manufacture machinery is too expensive to be useful to the vast majority of pelagic trawl door manufacturers. Additionally, the necessary plastics material itself is proprietary and not currently available to the vast majority of trawl door manufacturers.
Therefore, it may be appreciated that a continuing long felt need exists in the field for a pelagic trawl door construction made from universally available materials and using widely accessible and already in place production machinery and methods, that also is substantially more efficient than known trawl door constructions which also use such universally available materials, widely accessible production machinery and methods.
ASPECT RATIO: means the Trawl Door Height relative to the Trawl Door Width. For example, a trawl door having a height of two (2) meters and a width of one (1) meter has an Aspect Ratio of 2:1 (two to one).
PROFILE: means the cross sectional shape of a trawl door or of a portion of a trawl door as viewed in a plane perpendicular to the vertical dimension of that portion of the trawl door.
TRAWL DOOR: means any of a variety of essentially rigid structures having generally rigid deflectors (e.g. not formed of a foldable fabric as a kite) and capable of being deployed in a body of water behind a towing vessel, and usually attached at a fore end to a terminal end of a main towing warp or other towing line depending from the towing vessel and at an aft end to another line itself ultimately attached to another towed item. In operation, trawl doors have the function of converting a portion of forward motion and/or energy that is imparted by the towing vessel into horizontally directed force for the purpose of spreading in a generally horizontal orientation a trawl net, seismic surveillance towed array complex, paravene line or the like.
TRAWL DOOR HEIGHT: the height of a trawl door is defined by the shortest distance between the trawl door's upper edge and the trawl door's lower edge. The Trawl Door Height measurement generally does not include any aspect of a purely weight shoe, or the like, but rather relates to the portion of the trawl door's structure that is capable of efficiently generating lift and/or thrust.
TRAWL DOOR WIDTH: the width of a trawl door is defined by the shortest distance between the trawl door leading and trailing edges as taken from a profile of a portion of the trawl door. For trawl doors with straight leading and trailing edges, the width is generally the same anywhere along the vertical dimension of the trawl door. For a trawl door with a “swept back” configuration, the trawl door's width also may be expressed as an average of a sum of several trawl door width measurements taken at various profile locations located at varying positions along the vertical dimension of the trawl door, as such trawl doors typically have narrower widths at their top and bottom extremities than at their central portion.
It is an object of the present invention to provide for a trawl door that is capable of operating with substantially higher efficiencies than known trawl doors currently on the market.
It is yet another object of the present invention to provide for a trawl door construction permitting more economically lowered water resistance and simultaneously increased trawl mouth horizontal opening (spread) as compared with other known trawl door constructions.
The present invention provides a trawl door assembly comprising a trawl door comprising first and second door portions each having opposed leading and trailing edges joined by opposed upper and lower edges, the door portions being joined together along facing and lower and upper edges respectively such that they lie in different planes, the ratio of the distance between the free upper and lower edges to the distance between the leading and trailing edges being at least 2:1.
It is preferred to form the trawl door so as to provide an aspect ratio of over 2.4:1. The preferred embodiment of the present invention provides trawl door which includes a lift enhancing structure in the form of two slats with varying slat angles disposed forward of main deflector plate. A trawl door having all these features in combination exhibits, contrary to the state of the knowledge in the field and contrary to the trend in the art, improved efficiency during actual trawling operations when compared to flat trawl doors of any type, and in particular provides for greater trawl spread while simultaneously never before has been achieved.
It has been found that a Vee-shaped trawl door with a 3:1 aspect ratio provides a 50% better performance than existing trawl doors.
A trawl door according to the preferred embodiment of the present invention comprises a Vee-shaped door having a high aspect ratio of at least 2:1 and preferably 3:1 and above.
As shown in
The trawl door is formed by an upper trawl door section 28 and a lower trawl door section 29 joined together by a centre plate 26. Each trawl door section 28,29 is formed by a main deflector body 24,25 and each main deflector body is provided with a leading edge lift enhancing structure in the form of one or more slats 20,22 which form leading edge slots. As shown, two leading edge slats 20,22 are provided in end main deflector body. The leading slat 20 has a leading edge which constitutes the leading edge 12 of the trawl door while trailing slat 22 is situated aft of the leading slat 20 and forward of the leading edge of the main deflector. The trailing edge of the main deflector constitutes the trailing edge 14 of the trawl door.
The slots formed by the leading edge slats 20,22 extend substantially the whole length of the main deflector body of each trawl door section 28,29 and are held in position due to the ends of the slats 20,22 being located in plates 31,33 (
Center plate 26 is part of a load bearing frame that assists in transmitting towing loads from the towing vessel to the towed trawl or other item, and upon which is located a towing warp connector (not shown). Detachably affixed to trawl door lower section 29 is variable mass weight plate 30, for aiding in the stabilization of trawl door 10 during field operations by permitting selection of an appropriate amount of weight of the intended altitude in the water column and use of trawl door 10 of the present invention.
As shown in
It has been found that the aspect ratio of the door is important. We have found that the higher the aspect ratio the better as long as the trawl door remains rigid in use. We have found that with aspect ratio at least 2:1 improved performance of a Vee-shaped door can be achieved. Preferably, the aspect ratio is at least 2.4:1 or 2.5:1. The practical upper limit for a trawl door made of plate material i.e. of uniform thickness, is of the order of 6:1. As a result, we prefer to use aspect ratios of 3:1 and above with at least 3.2:1 or 3.3:1 being preferred. However, we would prefer to use at least 4:1 or 5:1. It has been found that as the aspect ratio increases, it may be necessary to decrease the included angle between the sections 28, 29.
As also shown in
Hoisting ring 35 is located upon upper load bearing plate 31 for the purpose of providing an easily accessible connection point for the securing and lifting of trawl door 10, such as may occur during transport, positioning aboard the vessel and storage.
As shown, leading slat 20 includes a leading slat leading edge 12 that is also trawl door leading edge 12. Leading slat 20 also includes a leading slat trailing edge 36, leading slat inner side surface 51 and leading slat outer side surface 52.
Similarly, trailing slat 22 includes trailing slat leading edge 38, trailing slat trailing edge 40, trailing slat inner side surface 53 and trailing slat outer side surface 54.
Similarly again, main deflector 24 includes main deflector leading edge 42, main deflector trailing edge 44, main deflector inner side surface 51 and main deflector outer side surface 52.
The main deflector 24 and slates 20 and 22 are all formed from plate material, preferably steel. The main deflector is an arc of a circle. Consequently, the inner and outer surfaces of each member have the same curvature. Preferably the slats are also arcs of circles and even more preferably the same circle as that of the main deflector
In further reference to
Imaginary straight dashed line 81 joins leading and trailing edges 12, 36 of leading slat 20. Imaginary straight dashed line 82 joins leading and trailing edges 38, 40 of trailing slat 22. Imaginary straight dashed line 83 joins the trawl door leading and trailing edges 12, 14 as well as the leading edges 38, 42 of the trailing slate 22 and main deflector 24, respectively.
Reference numeral line 91 indicates a “leading slat angle”. The leading slat angle is defined as the angle of convergence of imaginary straight dashed lines 82 and 83 on that side of imaginary straight dashed line 83 that is most proximal the inner side surface 51 of leading slat 20. That is, and in other words, the leading spoiler angle is defined as the acute angle made by the convergence of a first imaginary line connecting the shortest distance between leading and trailing edges 12, 36 of leading slate 20 with a second imaginary line connecting the shortest distance between leading and trailing edges 12, 14 of trawl door 10, as taken in a same plane, and co-planar to a profile of trawl door 10.
Similarly, reference numeral 92 indicates a “trailing slat angle”. The trailing slat angle is defined as the angle of convergence of imaginary straight dashed lines 82 and 83 on that side of imaginary straight dashed line 83 that is most proximal the inner side surface 53 of trailing slat 22. That is, and in other words, the trailing slat angle is defined as the acute angle made by the convergence of a first imaginary line connecting the shortest distance between leading and trailing edges 38, 40 of trailing slat 22 with a second imaginary line connecting the shortest distance between leading and trailing edges 12, 14 of trawl door 10, as taken in a same plane, and co-planar to a profile of trawl door 10.
In the instant example of trawl door 10 of the present invention, the “main deflector angle” is zero. That is because the main deflector angle, as defined by the acute angle created by the divergence of an imaginary straight line joining the leading and trailing edges 12, 14 of trawl door 10 from the imaginary straight line 88 which joins the leading and trailing edges 42, 14 of main deflector 24, is coaxial (as well as parallel), and thus its angle of convergence and/or divergence is zero degrees. However, some variants of trawl door 10 of the present invention may be proposed where there exists a main deflector angle that is greater than zero.
The actuate length of the slat 20, i.e. the distance between the leading and trailing edges of the slat 20 is such that the trailing edge 36 of the slat 20 is on the tangent plane of the main deflector 24 which is parallel to the dashed line 88 while the trailing edge 40 of the slat 22 extends beyond this tangent plane.
In order to make a presently preferred embodiment of trawl door 10 of the present invention, trawl door 10 of the present invention is a Vee-shaped trawl door, which includes two trawl door sections 24, 25 mounted at an angle with respect to each other such that the included angle is approximately 170°: and preferably 173°. Each door section comprises:
Such an embodiment of a trawl door 10 of the present invention has shown in direct scale modelling to create significantly greater trawl mouth spread for a given amount of drag. Surprising, unexpectedly and contrary to the state of the art as well as contrary to the state of knowledge in the field, the spreading forces generated by such a trawl door construction of the present invention as well as the distribution and magnitude of the spreading forces is maximised by the use of a Vee shaped construction for a trawl door 10 of the present invention made in the fashion described above. In fact, a Vee shaped construction of the trawl door 10 of the present invention has been shown to provide the greatest trawl net speed, while simultaneously providing for less drag, thus simultaneously permitting greater vessel spread, despite the fact that such result is contrary to the trend in the industry to engineer, manufacture and employ flat pelagic trawl door constructions wherever maximal efficiency of pelagic trawling operations is desired.
Because the main deflector bodies and slats are all made from plate material and are arcs of a circle, they can each be manufactured in a cost-effective manner and the door sections each assembled without the need for specialist tools.
A modification to the trawl door shown in
In further description, profile 227 includes convex outer side 228, concave inner side 229, trailing edge 230 and leading edge 231. The widest point of the profile 227 is approximately seventeen percent to eighteen percent (17% to 18%) of the length of the profiles chord, and is at least eleven percent (11%) of the length of the profiles chord, and is located front of center of the profile's chord. Preferably, the widest point of the profile is located at a point along the profiles chord that corresponds to a distance that is front of center of the chord by at least three percent 3% of the chord's length.
As noted in
As shown in
It is preferred to further accentuate this lift by adding an upper forward trailing slat 270. This slat 270 is located in the slot formed by the seat 260 and has a leading edge 271 in line with the leading edges 261 and 237 as well as a profile which is generally the same as the profile of the outer side 228 at an area defined as rearward of the leading edge 231 but forward of the widest point of the profile 227. the slat 270 thus divides the slot along the leading edge 231 into two which enhances the energisation of the boundary layer. The slat 270 is shorter than the slat 260 being about 50% of the length of the slat 260 and so does not extend above the top surface of the profile 227.
It is to be understood that each body portion of the trawl door will be provided with the leading edge slat arrangement shown in
Such a construction of a trawl door of the present invention has been shown to be useful in field operations when the angle of attack of the trawl door is 18 (eighteen) degrees, allowing much reduced drag. Similarly, while at conventional angles of attack used with known trawl doors, a Vee-shaped trawl door construction with 3:1 aspect ratio produces at least 50 (fifty) percent greater efficiency than any other known trawl door constructions. These superior results lead to substantially greater efficiency of fishing operations and have never been achieved by known trawl door constructions.
Number | Date | Country | Kind |
---|---|---|---|
04025573.9 | Oct 2004 | EP | regional |
PCTIS2005000016 | Jul 2005 | IS | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/11722 | 11/1/2005 | WO | 00 | 2/21/2008 |
Number | Date | Country | |
---|---|---|---|
60625560 | Nov 2004 | US |