This application is a U.S. national stage application under 35 USC 371 of PCT/JP2012/074514 filed Sep. 25, 2012 and claims foreign priority benefit of Japanese Application No. 2011-215133 filed Sep. 29, 2011 in the Japanese Intellectual Property Office, the contents of which are incorporated herein by reference.
The present invention relates to a highly accurate method for correlation of phase equilibrium data using relationships between infinite dilution pressure gradients and vapor pressures, and a method for prediction of phase equilibrium data using this highly accurate method for correlation of phase equilibrium data. The present invention also relates to a method and an apparatus for designing or controlling a component separator or refiner such as a distillation column, an extraction column, or a crystallizer on the basis of values obtained by the method for prediction of phase equilibrium data. The present invention further relates to a program for designing or controlling a component separator or refiner such as a distillation column, an extraction column, or a crystallizer.
A chemical production process involves a reaction step followed by the step of separating or refining products from by-products. This process often uses distillation and also commonly uses absorption, extraction, or crystallization. Meanwhile, distillation columns are used in component separation for petroleum. Also, component separation is performed in natural gas refining. The component separation principle in such a separation/refining step is based on phase equilibrium relationship. Vapor-liquid equilibrium (VLE) for distillation or absorption, liquid-liquid equilibrium (LLE) for extraction, and solid-liquid equilibrium (SLE) for crystallization serve as central factors determining separation limits or energies required for separation. Thus, rational apparatus or operational design or process step selection cannot be performed without the determination of precise phase equilibrium relationship.
Although the phase equilibrium relationship is exceedingly important for chemical, petroleum, or natural gas refining as described above, a problem that is faced by using the phase equilibrium relationship in such a chemical production or petroleum or natural gas refining step is the imprecise prediction of the phase equilibrium relationship. This is because non-ideality in the liquid phase (i.e., the property in which the mixture is no longer regarded as a single component due to the value of activity coefficient deviated from 1) cannot be predicted. Fundamental problems that are encountered in trying to solve this problem are the unpredictable intermolecular interaction strength and molecular orientation of non-ideal solutions. This blocks theoretical progress. There also remains a practical issue: unknown phase equilibrium relationship hinders a production process from being determined or an apparatus from being designed. Taking distillation column design as an example, the number of contact stages or the height of a packed column cannot be determined. Under the circumstances, the phase equilibrium relationship is actually measured for a system that is subject to separation, and correlated with operating parameters, and the resulting correlation is used in design calculation. Although a lot of vapor-liquid equilibrium data (see e.g., Non-patent Document 1), liquid-liquid equilibrium data (see e.g., Non-patent Document 2), or solid-liquid equilibrium data has been reported for use in the design of the separator, every such data is actually measured values. The actually measured values, however, are accompanied by errors (statistical errors responsible for variations and systematic errors responsible for imprecision). In fact, since precise phase equilibrium relationship is unknown, apparatus design is performed in expectation of large safety factors in order to secure product properties (e.g., purity) or productivity (i.e., yield). Such large safety factors are significantly economically inefficient because chemical production uses large-scale apparatus. Hereinafter, thermodynamic relationship satisfied by true values free from such errors will be described first.
When phases I and II reach equilibrium upon contact, the equilibrium relationship of components constituting these phases with component i is given by the following equation (see e.g., Non-patent Document 3):
[Formula 1]
(fi)I=(fi)II (1)
(Method for Correlation of Low-Pressure Binary Vapor-Liquid Equilibrium Data)
First, assuming that liquid and vapor phases consisting of components 1 and 2 are in equilibrium at a low pressure, the equation (1) is specifically represented as follows for this low-pressure binary vapor-liquid equilibrium (VLE) (see e.g., Non-patent Document 3):
[Formula 2]
Py1=γ1x1p1s (2)
[Formula 3]
Py2=γ2x2p2s (3)
wherein P represents a system pressure; y1 and y2 represent the mole fractions of components 1 and 2, respectively, in the vapor phase; x1 and x2 represent the mole fractions of components 1 and 2, respectively, in the liquid phase; γ1 and γ2 represent the activity coefficients of components 1 and 2, respectively, in the liquid phase; p1s and p2s represent the vapor pressures of components 1 and 2, respectively, at a system temperature T. The activity coefficients are introduced for representing non-ideality in the liquid phase. γ1 (activity coefficient of component i)=1 holds for ideal solutions. Many activity coefficient equations have been proposed for indicating non-ideality in the liquid phase. For example, the equation (4) or (5) (the Margules equation) is often used as the activity coefficient equation. Other known activity coefficient equations include van Laar, UNIQUAC, NRTL, Wilson, and Redlich-Kister equations.
[Formula 4]
ln γ1=x22[A+2(B−A)x1] (4)
[Formula 5]
ln γ2=x12[B+2(A−B)x2] (5)
wherein x1 represents the mole fraction of component 1 in the liquid phase, and x2 represents the mole fraction of component 2 in the liquid phase. Binary parameters A and B are given by the following equations (6) and (7):
[Formula 6]
A=ln γ1∞ (6)
[Formula 7]
B=ln γ2∞ (7)
wherein γ1∞ and γ2∞ represent the infinite dilution activity coefficients of components 1 and 2, respectively, in the liquid phase. Specifically, the binary parameters A and B are expressed in terms of the infinite dilution activity coefficients γ1∞ and γ2∞ by considering x1→0 and x2→0 as limits in the equations (4) and (5).
Specifically, P-x data and P-y data for the methanol (1)-water (2) system at a temperature of 323.15 K are shown in
In
The system pressure P is given by the following equation (8) from the sum of the equations (2) and (3) by considering y1+y2=1:
[Formula 8]
P=+γ1x1p1s+γ2x2p2s (8)
The binary parameters A and B were determined using the method of least squares to most represent actually measured P-x relationships. From the values of A and B (A=0.6506 and B=0.5204) thus determined, P-x relationships were calculated according to the Margules equation and indicated by the solid line (-) in
Also, P-y1 relationships were calculated according to the following equation (9) using the binary parameters A and B representing P-x relationships and indicated by the dotted line ( . . . ) in
[Formula 9]
y1=γ1x1p1s/P (9)
Likewise, binary parameters A and B correlating constant-pressure binary vapor-liquid equilibrium data can also be determined. In addition to the Margules equation, other activity coefficient equations, such as van Laar, Wohl, UNIQUAC, NRTL, and Wilson equations, may be used in the correlation (see Non-patent Document 3). Non-patent Document 1 discloses examples of correlation of binary vapor-liquid equilibrium data for more than 12500 systems. Also, this literature provides binary parameters most representing constant-temperature P-x data and constant-pressure T-x data using each activity coefficient equation. Further, this literature provides binary parameters most representing constant-temperature P-x-y data and constant-pressure T-x-y data using vapor-phase mole fraction data. These binary parameters can be converted to A and B that provide infinite dilution activity coefficients. Even if binary parameters representing P-x data are determined using the activity coefficient equation, correlation results do not always produce true values due to measurement errors (statistical errors and systematic errors) contained in the data. Depending on VLE data, there may exist an activity coefficient equation that is capable of correlation with particularly high accuracy. The precision of VLE data, however, is not directly related to correlation errors unless experimental errors are removed. A method for determining binary parameters by excluding measurement errors from VLE data has not yet been found, though the vapor-liquid equilibrium relationship can be determined from the given two binary parameters, A and B.
(Method for Correlation of Binary Liquid-Liquid Equilibrium Data)
When liquid phases I and II consisting of a binary system are in liquid-liquid equilibrium, the equation (1) is specifically represented as follows (see Non-patent Document 3):
wherein γi represents the activity coefficient of component i in each liquid phase I or II, and xi represents the mole fraction of component i in each liquid phase.
For data correlation, parameters A and B can be determined according to the equations (4), (5), and (10) from binary liquid-liquid equilibrium data (mutual solubility data) at one temperature, for example, in the case of using the Margules equation. Unfortunately, a method for accurately correlating relationships between the parameter A and temperature over a wide temperature range has not yet been found. This holds true for relationships between the parameter B and temperature.
Non-patent Document 2 discloses a lot of binary mutual solubility data. Values of binary parameters were determined according to the UNIQUAC activity coefficient equation for each mutual solubility data. As specific examples, binary liquid-liquid equilibrium data for the 1-butanol (1)-water (2) system is shown in
(Method for Correlation of High-Pressure Binary Vapor-Liquid Equilibrium Data)
In one approach, the equation (1) is specifically represented as follows for high-pressure vapor-liquid equilibrium data (see Non-patent Document 3):
[Formula 12]
φiVyi=φiLxi (12)
wherein φiV represents the fugacity coefficient of component i in the vapor-phase mixture; φiL represents the fugacity coefficient of component i in the liquid-phase mixture; xi represents the mole fraction of component i in the liquid phase; and yi represents the mole fraction of component i in the vapor phase. The fugacity coefficients are used in the high-pressure system to represent not only non-ideality in the vapor phase, but also non-ideality in the liquid phase. The fugacity coefficients can be expressed using the equation of state and mixing rules for pure components, albeit in a complicated manner. The mixing rules include system-dependent interaction parameters. The method used involves adjusting values of the interaction parameters to simultaneously correlate high-pressure P-x data and P-y data. The interaction parameters thus obtained by correlation are further used in the prediction of phase equilibrium relationship. Such a method for correlation of high-pressure phase equilibrium has the disadvantages that: i) the calculation of fugacity coefficients is complicated; ii) interaction parameters do not exhibit correlation as a function of operating parameters (temperature, pressure, etc.) or factors characteristic of the system (polarizability, etc.); and iii) some regions including the vicinity of critical points are observed with significantly low correlation accuracy.
Secondly, the high-pressure vapor-liquid equilibrium is represented by expressing non-ideality in the liquid phase in terms of activity coefficients and given as follows (see Non-patent Document 3):
wherein γi(Pa) represents the activity coefficient of component i at a system temperature T and a pressure Pa in the liquid phase; viL represents the partial molar volume of component i in the liquid phase; vio represents the molar volume of pure liquid i; and R represents a gas constant. In this context, φiV represents the fugacity coefficient of component i in the vapor-phase mixture; xi represents the mole fraction of component i in the liquid phase; yi represents the mole fraction of component i in the vapor phase; P represents a system pressure; and Pis represents the vapor pressure of component i at a system temperature T.
The equation (13) expresses non-ideality in the vapor phase in terms of fugacity coefficients and thus incorporates three disadvantages described above in their entirety. Although non-ideality in the liquid phase is also expressed in terms of activity coefficients, this is not practical due to insufficient physical data (e.g., partial molar volume) necessary for determining exponential terms on the right side representing pressure dependence. The correlation of high-pressure vapor-liquid equilibrium data is much more complicated than that of low-pressure data. For apparatus design, there is no choice but to adopt a method using data obtained in a practical operating range.
The values of A and B must be known for the prediction of phase equilibrium using activity coefficients shown above. Since excess partial molar free energies are obtained by multiplying logarithmic values of the infinite dilution activity coefficients represented by the equations (6) and (7) by RT, ln γ1∞ and ln γ2∞ are naturally predicted to be monotone functions of 1/T, as in many thermodynamic rules. Non-patent Document 1 has reported 60 vapor-liquid equilibrium data sets for the methanol (1)-water (2) system and also reported values of Margules binary parameters A and B representing these VLE data sets. Thus, a plot of A=ln γ1∞ and B=ln γ2∞ for the methanol (1)-water (2) system against 1/T is shown in
By contrast, a group contribution method, such as the UNIFAC or ASOG method, involves dividing molecules in the phase equilibrium-forming system into atomic groups such as CH2 and OH, determining the rates of contribution of the atomic groups to binary parameters from a large number of binary phase equilibrium data, and predicting phase equilibrium using the rates. This method, albeit simple, exhibits significantly low prediction accuracy and is thus used only for grasping the outline of phase equilibrium. Still, measurement data must be used for detailed design.
Recently, the present inventor has found an accurate method for correlation of phase equilibrium data and filed patent applications (Japanese Patent Application Nos. 2010-58632 (Patent Document 1) and 2010-112357 (Patent Document 2)). This correlation utilizes the property in which phase equilibrium data highly accurately converges to the thermodynamic consistency line represented by the equation (14):
wherein A and B represent binary parameters; P represents a system pressure; a and b represent constants specific for the binary system; β represents a polarity exclusion factor; and F represents deviation from A=B in the one-parameter Margules equation. F is defined according to the following equation:
wherein y1k,smooth represents a value of the mole fraction y1 of component 1 in the vapor phase with respect to x1k (value of x1 in the k-th part of the liquid-phase mole fraction x1 of component 1 divided into n equal parts (e.g., n=40) between 0 and 1). The value of y1k,smooth is determined using the equations (2) to (5) and (9) from binary parameters A and B determined to represent P-x relationships. y1k,M1 represents a value of y1 calculated using one parameter obtained by the correlation of P-x relationships using the one-parameter Margules equation that satisfies A=B (Patent Document 1). Alternatively, the value of y1k,M1 may be calculated more simply according to the one-parameter Margules equations shown below and the equations (2) and (3) using E determined according to the following equation (16) using Margules equation incorporating one parameter E (=A=B) in activity coefficients in the equation (8):
[Formula 16]
P=ex
(Patent Document 2 and Non-patent Document 4). E is defined according to the following one-parameter Margules equations wherein x1 and x2 represent the mole fractions of components 1 and 2, respectively, in the liquid phase; P represents a system pressure; and p1s and p2s represent the vapor pressures of components 1 and 2, respectively, at a system temperature T:
[Formula 17]
ln γ1=x22E (17)
[Formula 18]
ln γ2=x12E (18)
wherein γ1 and γ2 represent the activity coefficients of components 1 and 2, respectively.
The equation (14) indicates relationships for constant-pressure data. For constant-temperature data, an average vapor pressure ps,ave obtained according to the following equation can be used instead of P:
The thermodynamic consistency line of constant-temperature data agrees with that of constant-pressure data (Patent Document 2 and Non-patent Document 4). This property relating to VLE data, i.e., the property in which constant-pressure data and constant-temperature data exhibit the same thermodynamic consistency lines, has been found for the first time by the invention described in Japanese Patent Application No. 2010-112357 (Patent Document 2). The correlation based on the equation (14) is highly accurate. Taking the 60 data sets for the methanol (1)-water (2) binary system described above as an example, correlation errors derived from the equation (14) are merely 0.25% for 18 constant-temperature data sets and 0.55% for 42 constant-pressure data sets, demonstrating the exceedingly high convergence of β vs. pressure relationships compared with the low convergence of A and B shown in
The values of two binary parameters, A and B, must be known as functions of temperature or pressure in order to predict binary vapor-liquid equilibrium relationship using activity coefficients. In the prediction of phase equilibrium relationship using the thermodynamic consistency line obtained in the invention described in the patent application mentioned above, the equilibrium relationship cannot be determined directly because only one relationship of A and B (only the thermodynamic consistency line) is known. Thus, it is required to find highly converged correlations of A and B independent of the equation (14). For this purpose, relationships between the following deviation D from the Gibbs-Duhem equation and experimental errors can be used (Patent Document 1):
[Formula 20]
D=2(B−A)Δx12 (20)
wherein D represents deviation from the Gibbs-Duhem equation, and Δx1 represents an experimental error appearing in the mole fraction of component 1 in the liquid phase. The equation (20) is an approximation of the Gibbs-Duhem (GD) equation obtained by applying the Margules equation to the activity coefficient incorporated in the GD equation under isothermal and isobaric conditions and applying the central difference scheme to the derivative of ln γi with respect to change in x1.
According to the Gibbs-Duhem equation, D=0 in the following equation:
wherein x1 represents the mole fraction of component 1, and γ1 and γ2 represent the activity coefficients of components 1 and 2, respectively.
The values of activity coefficients representing binary vapor-liquid equilibrium data must satisfy the Gibbs-Duhem equation, i.e., D=0, under constant-temperature and constant-pressure conditions. Since the values of B and A representing VLE data are different from each other, the equation (20) shows that the GD equation is not satisfied unless experimental errors are removed. This means that precise phase equilibrium relationship does not hold in Δx1≠0. Since a method for eliminating experimental errors has not been found previously, a method for prediction of phase equilibrium has not been established. The method for eliminating experimental errors is to obtain converged correlations using a lot of phase equilibrium data which are obtained in different measurement apparatuses, measurement methods, or measurers. The equation (14) provides linear relationships that hold for data differing in apparatuses, methods, or measurers. Thus, consistent relationships that satisfy the GD equation without errors are shown on this line.
As described above, methods for correlation and prediction of phase equilibrium data cannot be completed without finding a method for obtaining one or at least one converged correlation in addition to the equation (14). An object of the present invention is to provide a method for obtaining the additional converged correlation.
A further object of the present invention is to provide a method for prediction of phase equilibrium using one set of infinite dilution activity coefficients or binary parameters A and B obtained from the thus-obtained two or more converged correlations.
A further object of the present invention is to provide a method for designing or controlling a component separator or a refiner using values obtained by the method for prediction of phase equilibrium data, an apparatus for designing or controlling a component separator or a refiner, and a program for designing this design or control apparatus.
In order to attain the objects, the present inventor has made attempts at many correlation methods. Some of these many correlation methods were performed by inference and the others were tested at random. This is because a method for obtaining true values by removing experimental errors from measurement data (in this case, which is synonymous with a method for satisfying the Gibbs-Duhem equation by removing experimental errors) cannot be obtained by guess. The present situation, where a method for obtaining true values of phase equilibrium relationship has not been found over a long period exceeding 100 years, validates the fact that the method for obtaining true values by removing experimental errors is not guessable.
The present inventor has variously devised plots on the abscissa and the ordinate for the purpose of finding a correlation method for converging a lot of binary VLE data obtained by many measurers using different apparatuses and methods, as single functions (single-valued functions) of a certain independent variable. The present inventor has made attempts at highly accurate correlation considering, for example, operating parameters, the physical properties of systems, and thermodynamic properties relating to entropy and enthalpy effects in order to reflect the principle that holds for phase equilibrium. These attempts also include an approach of advancing the thermodynamic consistency line according to the invention described in the patent application mentioned above. Unfortunately, the invention described in the patent application has the great disadvantage that, as is clearly demonstrated by the equation (15), it cannot reflect the basic nature in which phase equilibrium relationship is a continuous function of composition, because the phase equilibrium relationship (relationship of T, P, x1, and y1) is analyzed using only discrete values. In spite of attempts at many correlation factors to obtain highly accurate correlation based on but independent of the invention described in the patent application mentioned above, the highly accurate correlation based on the invention described in the patent application has not succeeded due to this fundamental disadvantage. Thus, the present inventor has made attempts at many correlation factors on the basis of continuous phase equilibrium relationships for composition and consequently found a highly accurate correlation method using a derivative relating to x1 as shown below.
Specifically, the present invention relates to a method for correlation of binary phase equilibrium data, comprising calculating an index X of proximity ratio to critical points and infinite dilution pressure gradients Y1 and Y2 using binary phase equilibrium measurement data, and correlating the obtained index X of proximity ratio to critical points with the infinite dilution pressure gradients Y1 and Y2 to calculate infinite dilution activity coefficients and γ2∞ or binary parameters A and B from the X-Y1 correlation and the X-Y2 correlation, respectively. In this method, the index X of proximity ratio to critical points can be calculated according to the following equation (22), and the infinite dilution pressure gradients Y1 and Y2 can be calculated according to the following equations (24) and (25), and it is preferred to use these equations for the calculations:
Index X of Proximity Ratio to Critical Points:
wherein Pc1 represents the critical pressure of component 1 in the binary system, and p1s and p2s represent the vapor pressures of components 1 and 2, respectively, at a temperature T.
Preferably, a component having a high vapor pressure in a temperature range to be analyzed is assigned into component 1 while a component having a low vapor pressure in this range is assigned into component 2. In the case where the high and low vapor pressures may be inverted in the temperature range to be analyzed, the component assignment may be fixed on the basis of the relationship between high and low vapor pressures at a temperature of, for example, 298.15 K. The equation (22) is used in the analysis of constant-temperature data. For the analysis of constant-pressure data, X may be calculated using vapor pressures at an arithmetic average temperature tb,ave for the boiling points of a pure component at a system pressure. Specifically, for the analysis of constant-pressure data, boiling points tb1 and tb2 of a pure component can be determined from a system pressure P; an average value tb,ave can be determined according to the equation (23); and X can be determined according to the equation (22) using vapor pressures p1s and p2s at the average temperature tb,ave.
wherein tb1 and tb2 represent the boiling points of components 1 and 2, respectively, at a system pressure P.
When the critical temperature of component 1 is defined as Tc1, the equation (22) shows X=0 at a temperature T=0 and X=1 at T=Tc1. Accordingly, X represents an index of proximity ratio to critical points.
Infinite Dilution Pressure Gradients Y1 and Y2:
wherein γi∞ represents the infinite dilution activity coefficient of component i in the liquid phase; and Pc1, P1s, and P2s are as defined in the equation (22).
In this context, a numerator on the right side of the equation (24) is equal to (∂P/∂x1)|x1=0 (∂P/∂x1 at x1=0) at a system temperature T, and a numerator on the right side of the equation (25) is equal to (∂P/θx1)|x1=1 at a system temperature T. ∂P/∂x1 indicates that P is differentiated partially by x1 at constant T. Thus, Y1 and Y2 represent infinite dilution nondimensional pressure gradients. The essence of the present invention is that the infinite dilution pressure gradients are introduced for the correlation of phase equilibrium data.
The denominators in the equations (24) and (25) are introduced for nondimensionalization. The infinite dilution pressure gradients Y1=0 and Y2=0 hold for the equations (24) and (25) at a temperature T=0 (X=0). Since p1s>>p2s holds for an asymmetric system (i.e., a binary system significantly differing in vapor pressures), the equation (26) holds:
Since (∂P/∂x1)|x1=1<0 holds for a symmetric system that forms minimum boiling azeotropes, the equation (27) holds:
[Formula 27]
Y2<0 (27)
Highly accurately converged X vs. Y1 and X vs. Y2 relationships will be shown later using data. In general, the correlation between the index X of proximity ratio to critical points and the infinite dilution pressure gradients Y1 and Y2 is expressed in a graph with X plotted on the abscissa against Y1 or Y2 on the ordinate. However, the correlation therebetween may be expressed in a graph with Y1 or Y2 plotted on the abscissa against X on the ordinate.
As shown in the equations (12) and (13), non-ideality in the vapor phase in the high-pressure VLE system is expressed in terms of fugacity coefficients. Recently, a promising method for describing VLE relationship by lumping non-ideality parameters for the liquid and vapor phases (i.e., representing non-ideality in the liquid and vapor phases using one binary parameter) has been proposed (Non-patent Document 4). This lumped non-ideality correlation uses an activity coefficient γi defined as follows:
Specifically, the liquid-phase non-ideality parameter on the right side of the equation (13) is divided by the vapor-phase non-ideality parameter on the left side thereof for lumping. In this lumped correlation, γi defined by the equation (28) is free from pressure dependence even for high-pressure phase equilibrium data. Thus, this value is calculated according to the equation (4) or (5). Specifically, the equation (2) or (3) is directly applied even to high-pressure data. Since φiV=1 holds for low-pressure VLE data, this method is frequently used. In fact, this method was applied to more than 12500 binary VLE data sets included in Non-patent Document 1, to determine binary parameters A and B. Interestingly, it has been demonstrated on the basis of high-pressure VLE data for the argon-oxygen, carbon dioxide-ethane, carbon dioxide-decane, and carbon dioxide-methanol systems that P-x relationships can be correlated favorably even for high-pressure data with T<Tc1 (Tc1 represents the critical temperature of component 1) (Non-patent Document 4). In the present invention, the generalization of this lumped correlation will be shown later on the basis of data.
In the present invention, preferably, X vs. Y1 and X vs. Y2 correlations are obtained by incorporating the reliability of data. Specifically, the correlations are determined by confirming that data satisfies the thermodynamic consistency line within a predetermined error range (e.g., within 1%) (data consistency). In this case, errors can be evaluated using H in the following equation (29):
wherein βexp represents a value of β that is calculated according to F/|B−A| using F, A, and B determined from actually measured values, and βcal represents a value of β that is calculated from the right side in the equation (14) using values of a and b obtained by correlation of actually measured values. For detailed information, see Patent Documents 1 and 2 and Non-patent Document 4. In this context, Patent Documents 1 and 2 show examples using a pressure P, in addition to the use of the equation (15) as an equation that defines F. The step of defining F using a pressure P includes a calculation process for optimization according to the one-parameter Margules equations (17) and (18) in the determination of the value of F, and thus requires more complicated calculation than the step of defining F using the vapor-phase mole fraction of component 1 according to the equation (15). Thus, the present invention employs the step of defining F using the equation (15) since the step is simple and clear. Further, the cumulative frequency distribution of the number of binary systems for the value of H is shown in Non-patent Document 4 and is helpful in the selection of the value of H.
Preferably, the correlation of X with Y1 and Y2 is performed according to the following procedures (i) to (v):
(i) Collection of literature data;
(ii) Determination of binary parameters A and B using an activity coefficient equation most representing phase equilibrium data;
(iii) Determination of a thermodynamic consistency line;
(iv) Determination of X vs. Y1 and X vs. Y2 correlation functions; and
(v) Correlation of X vs. Y1 and X vs. Y2 relationships.
Hereinafter, each of these steps will be described more specifically.
(i) Collection of Literature Data
First, a binary system for obtaining phase equilibrium relationship is identified from components in a compound that is subject to separation or refining. For this binary system, existing vapor-liquid, liquid-liquid, or solid-liquid equilibrium data is collected.
(ii) Determination of Binary Parameters A and B Using an Activity Coefficient Equation
For data sets of each binary system, for example, for VLE data sets, binary parameters A and B are determined using the Margules equations (4) and (5) which most represent constant-temperature P-x data and constant-pressure T-x data. In this case, A and B can also be determined using constant-temperature P-x-y data and constant-pressure T-x-y data as well as x-y data. In general, constant-temperature P-x data and constant-pressure T-x data are regarded as being highly accurate (Non-patent Document 3) and as such, are preferably used. Alternatively, other activity coefficient equations, such as the UNIQUAC, Wilson, NRTL, van Laar, and Wohl equations, can be used instead of the Margules equation. When the UNIQUAC equation is used as an activity coefficient equation, a binary parameter τij (consisting of τ12 and τ21) is determined according to the equation (38). When the Wilson equation is used, binary parameters Λ12 and Λ21 are determined according to the equations (36) and (37). In this case, the binary parameters may be converted to infinite dilution activity coefficients to determine the values of A and B. For example, when the UNIQUAC equation is used, a binary parameter τij (consisting of τ12 and τ21) can be used to determine an infinite dilution activity coefficient according to the equation (42), thereby determining binary parameters A and B according to the equations (6) and (7). Important is to use an activity coefficient equation most representing phase equilibrium data.
(iii) Determination of a Thermodynamic Consistency Line
From the values of A and B, each β in the equation (29) is determined according to the equation (14). Then, β is plotted against a pressure P or an average vapor pressure ps,ave on a log-log paper to identify data for which a relative difference H according to the equation (29) converges within a predetermined error range (e.g., within 1%), as a highly reliable data, to obtain a thermodynamic consistency line. From the highly reliable data, constants a and b in the equation (14) are defined based on the obtained thermodynamic consistency line. In this context, it is not required to use a thermodynamic consistency line when correlation accuracy described below in (iv) is high.
(iv) Determination of X Vs. Y1 and X vs. Y2 Correlation Functions
Since both X vs. Y1 and X vs. Y2 relationships exhibit high data convergence, function forms well representing them are selected. In this regard, for example, polynomials relating to X can be selected. Specifically, the following equations (30) and (31) hold in relatively many cases:
[Formula 30]
Y1=s10+s11X+s12X2+s13 ln(1+X) (30)
[Formula 31]
Y2=s20+s21X+s22X2+s23 ln(1+X) (31)
wherein s10 to s23 represent correlation constants. In the case of a small number of data points, the number of terms can be decreased in the equations (30) and (31). Also, s10 and s20 may be excluded in a low-temperature region in order to satisfy the thermodynamic requirements of Y1→0 and Y2→0 in X→0. Alternatively, correlation based on logarithmic functions of the following equations can be used in many cases:
[Formula 32]
Y1=s11Xs
[Formula 33]
Y2=s21Xs
To improve correlation accuracy in the determination of these correlation functions, when Y1 or Y2 has a negative value (azeotropes are formed), these correlation functions are preferably determined with the values of Y1 and Y2 that are accompanied with negative signs.
(v) Correlation of X Vs. Y1 and X Vs. Y2 Relationships
Reliable data and, by extension, correlation functions are selected in consideration of data consistency based on the thermodynamic consistency line. Then, X vs. Y1 and X vs. Y2 relationships are individually correlated. Alternatively, X vs. Y1 and X vs. Y2 relationships and P vs. β relationships may be optimized simultaneously, including the thermodynamic consistency line. Specifically, correlation constants (s01 to s23) can be determined to achieve the minimum absolute value of the difference between Y1, Y2, and β determined from actually measured values and the corresponding values determined according to the correlation equation. From these X vs. Y1 and X vs. Y2 correlations, one set of infinite dilution activity coefficients (or binary parameters A and B) is determined according to the equations (24) and (25).
Specifically, the present invention also relates to a method for prediction of binary phase equilibrium data, comprising newly calculating binary phase equilibrium data (or experimental error-free phase equilibrium relationship) using the values of the infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B calculated by the method for correlation of binary phase equilibrium data of the present invention.
As described above, in the present invention, the converged X vs. Y1 and X vs. Y2 relationships can be correlated by the procedures (i) to (v). Phase equilibrium can be predicted using one set of infinite dilution activity coefficients (or binary parameters A and B) obtained on the basis of this correlation. The new phase equilibrium data this obtained can be used in the design of a component separator or refiner (plant) or the control of an existing refining plant to refine various chemicals, petroleum, natural gases, etc. Thus, the design of a refining plant or the control of an existing refining plant can be performed in a more precise manner than conventional methods.
Thus, the present invention provides even a method for designing or controlling a component separator or refiner using the binary phase equilibrium data obtained by the method for prediction of binary phase equilibrium data of the present invention.
Hereinafter, one example will be shown as the procedures of designing or controlling a component separator or refiner using the data obtained by the method for prediction of binary phase equilibrium data.
(vi) Determination of Variables Necessary for Design
Variables necessary for apparatus or operational design are determined from among temperature, pressure, liquid-phase mole fractions, and vapor-phase mole fractions. The obtained values are added to design conditions.
(vii) Determination of Infinite Dilution Activity Coefficients Appropriate for the Design Conditions
The correlations determined above in (v) are used to determine the values of infinite dilution activity coefficients (values of A and B) appropriate for the design conditions obtained in (vi).
(viii) Calculation of Phase Equilibrium Relationship
The phase equilibrium relationship (temperature, pressure, and mole fractions in each phase) is calculated using the equation (1) on the basis of the design conditions and the infinite dilution activity coefficients. Preferably, the activity coefficient equation used in the parameter determination of (ii) is used as this activity coefficient equation.
(ix) Calculation of Phase Equilibrium Relationship Using the Homologous Series Method for a System on which Phase Equilibrium Data has not been Found
Although the phase equilibrium relationship is necessary, its data may not be found. In such a case, the procedures (i) to (vii) are repeated for homologous series to determine infinite dilution activity coefficients or binary parameters A and B for the homologous series. For example, when reliable vapor-liquid equilibrium data cannot be found for the pentanol (1)-water (2) system, infinite dilution activity coefficients are determined for the alkanol (1)-water (2) systems using existing data on the methanol-water system, the ethanol-water system, . . . , the octanol-water system. These values are plotted against the number of carbon atoms in alkanols or the molecular surface areas of alkanols. The infinite dilution activity coefficients for the pentanol (1)-water (2) system are determined by interpolation or extrapolation. Subsequently, the phase equilibrium relationship is calculated according to the step (viii).
The phase equilibrium relationship in the steps (viii) and (ix) encompasses: VLE relationships such as (a) P-x relationships, (b) P-y relationships, (c) x-y relationships, (d) y/x distribution ratios, and (e) azeotropic points; and LLE relationships such as (f) mutual solubility and (g) liquid-liquid distribution ratios.
Preferably, the equation (22) is used as an independent variable X for the selection of correlation functions in the step (iv). Alternatively, vapor pressures p1s+p2s, or p1s for the nearly asymmetric system, or hypothetical vapor pressure (e.g., a fixed multiple of p1s) may be used instead of X. Specifically, for the abscissa according to the present invention, it is absolutely necessary to select the sum p1s+p2s of vapor pressures or an average vapor pressure ps,ave. Also preferably, the equations (24) and (25) are used for Y1 and Y2, respectively. Alternatively, the denominator introduced for the nondimensionalization of infinite dilution pressure gradients may be removed, or nondimensionalization may be performed in a manner different from the equations (24) and (25). Also, non-ideality parameters different from the equation (28) may be defined to determine infinite dilution pressure gradients. In order to obtain the correlations, the abscissa and the ordinate may be exchanged therebetween for data correlation, as described above.
In these procedures (i) to (ix), data calculation can be performed using a computer. This computational calculation is carried out, for example, by a method comprising the steps of: recording existing binary phase equilibrium data input to a computer through an information input unit, on a phase equilibrium information recording unit in the computer; calculating an index X of proximity ratio to critical points and infinite dilution pressure gradients Y1 and Y2 by means of a phase equilibrium correlation unit in the computer on the basis of the binary phase equilibrium data output from the phase equilibrium information recording unit, and correlating the obtained index X of proximity ratio to critical points with the infinite dilution pressure gradients Y1 and Y2 to calculate infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B from the X-Y1 correlation and the X-Y2 correlation, respectively; inputting the thus-obtained infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B to a phase equilibrium prediction unit in the computer to newly predict binary phase equilibrium data; and inputting the calculated new binary phase equilibrium data to a component separator/refiner design/control unit to design or control the component separator or refiner.
In this method, one set of infinite dilution activity coefficients (or binary parameters A and B) is calculated by means of the phase equilibrium correlation unit. Preferably, in the step of defining X, Y1, and Y2, the equation (22) is used for calculating X while the equations (24) and (25) are used for calculating Y1 and Y2. Preferably, before inputting the phase equilibrium information to the phase equilibrium correlation unit, the method further comprises the step of inputting the information output from the phase equilibrium information recording unit to a thermodynamic consistency assessment/output unit to assess thermodynamic consistency, preferably, according to the equation (29), and then inputting only the thermodynamically consistent information to the phase equilibrium correlation unit. In order to cope with the system on which existing phase equilibrium data has not been found as in the step (ix), also preferably, the method further comprises the step of predicting an index X of proximity ratio to critical points and infinite dilution pressure gradients Y1 and Y2 for homologous series of the system of interest from phase equilibrium information derived from a plurality of systems of homologous series, and inputting these data to a homologous-series phase equilibrium value prediction unit to predict phase equilibrium values for the system of interest.
The thus-obtained prediction information is inputted to a design/control unit for a component separator or refiner such as a distillation column, an extraction column, or a crystallizer, i.e., a refining plant, to calculate component separator/refiner design or control information. If necessary, the component separator or refiner is designed or controlled on the basis of this information. In this case, variables necessary for design or control are determined, as described above in (vi), and design conditions including these values are input in advance to the component separator/refiner design/control unit.
Also, phase equilibrium can be predicted by the same operation as in the conventional group contribution method using the values of infinite dilution activity coefficients (or binary parameters A and B) obtained by the correlation method and the method for prediction of phase equilibrium of the present invention. The data obtained by the method of the present invention contains the values of A and B more accurate than numeric values used in calculation according to the conventional group contribution method. Thus, the method of the present invention can produce data more highly accurate than that in the conventional group contribution method. Thus, in the calculation method described above, also preferably, the calculation of design or control information is further provided with the step of inputting the data to a group contribution method calculation unit to calculate infinite dilution activity coefficients (or binary parameters A and B) for atomic groups involved in the group contribution method. The thus-calculated information of infinite dilution activity coefficients (or binary parameters A and B) for atomic groups is input to the component separator/refiner design/control unit to design or control the component separator or refiner. The group contribution method permits convenient calculation of the component separator/refiner design or control information and as such, is often utilized for the conventional rough calculation in the component separator/refiner (e.g., distillation column, extraction column, or crystallizer) design/control unit. Thus, such a method is also recommended for the present invention. As a matter of course, the calculation of design or control information is not limited thereto.
The apparatus for designing or controlling a component separator or refiner such as a distillation column, an extraction column, or a crystallizer comprises: (1) a phase equilibrium information recording unit which receives existing binary phase equilibrium data input to a computer through an information input unit; (2) a phase equilibrium correlation unit which calculates an index X of proximity ratio to critical points and infinite dilution pressure gradients Y1 and Y2 on the basis of the binary phase equilibrium data output from the phase equilibrium information recording unit, and correlates the obtained index X of proximity ratio to critical points with the infinite dilution pressure gradients Y1 and Y2 to calculate infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B from the X-Y1 correlation and the X-Y2 correlation, respectively; (3) a phase equilibrium prediction unit which receives the input of the infinite dilution activity coefficients γ1∞ and γ7∞ or binary parameters A and B output from the phase equilibrium correlation unit to newly predict binary phase equilibrium data; (4) a component separator/refiner design/control information calculation unit which receives the input of the calculated new binary phase equilibrium data output from the phase equilibrium prediction unit to calculate component separator/refiner design or control information; and (5) a component separator/refiner design/control unit which designs or controls the component separator or the refiner on the basis of the information calculated through the component separator/refiner design/control information calculation unit. The apparatus for designing or controlling a component separator or refiner may be provided, if necessary, with a data output apparatus such as a printer or a liquid crystal display. In this apparatus, a networked remote computer may be used as the computer.
The present invention further provides even a program for designing or controlling a component separator or refiner such as a distillation column, an extraction column, or a crystallizer, the program executing the method or apparatus for designing or controlling a component separator or refiner such as a distillation column, an extraction column, or a crystallizer. This program may be recorded, if necessary, on an appropriate recording medium such as CD or USB.
In addition, multicomponent data can be obtained using the binary data obtained by the correlation method and the method for prediction of phase equilibrium of the present invention.
The embodiments of the present invention are summarized as follows:
[1] A method for correlating or predicting binary phase equilibrium data, comprising:
calculating an index X of proximity ratio to critical points and infinite dilution pressure gradients Y1 and Y2 using binary phase equilibrium measurement data;
correlating the obtained index X of proximity ratio to critical points with the infinite dilution pressure gradients Y1 and Y2 and calculating infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B from the X-Y1 correlation and the X-Y2 correlation, respectively; and
predicting new binary phase equilibrium data using the calculated values of the infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B.
[2] The method for correlating or predicting binary phase equilibrium data according to [1] above, wherein the index X of proximity ratio to critical points is calculated according to the equation (22):
wherein Pc1 represents the critical pressure of a lighter component in the binary system; and p1s and p2s represent the vapor pressures of components 1 and 2, respectively, at a temperature T, and
the infinite dilution pressure gradients Y1 and Y2 are calculated according to the equation (24):
and the equation (25):
wherein γi∞ represents the infinite dilution activity coefficient of component i in the liquid phase; and Pc1, p1s, and p2s are as defined in the equation (22).
[3] The method for correlating or predicting binary phase equilibrium data according to [1] above, further comprising evaluating the thermodynamic consistency of the X-Y1 and X-Y2 correlation data according to the following equation (29), and correlating X with Y1 and Y2 using only thermodynamically consistent data:
wherein βexp represents a value of β that is calculated according to F/|B−A| using F, A, and B determined from actually measured values; and βcal represents a value of β that is calculated from the right side in the following equation (14) using values of a and b obtained by correlation of actually measured values:
wherein A and B represent binary parameters; F represents deviation from A=B in the one-parameter Margules equation; P represents a pressure or an average vapor pressure; and a and b represent constants specific for the binary system.
[4] A method for designing or controlling a component separator or a refiner, comprising the steps of:
recording existing binary phase equilibrium data;
implementing the method for correlating or predicting binary phase equilibrium data according to [1] above; and
inputting the calculated new binary phase equilibrium data to a component separator/refiner design/control unit to design or control the component separator or the refiner.
[5] The method for designing or controlling a component separator or refiner according to [4] above, wherein the index X of proximity ratio to critical points is calculated according to the equation (22):
wherein Pc1 represents the critical pressure of a lighter component in the binary system; and p1s and p2s represent the vapor pressures of components 1 and 2, respectively, at a temperature T, and the infinite dilution pressure gradients Y1 and Y2 are calculated according to the equation (24):
and the equation (25):
wherein γi∞ represents the infinite dilution activity coefficient of component i in the liquid phase; and Pc1, p1s, and p2s are as defined in the equation (22).
[6] The method for designing or controlling a component separator or refiner according to [4] above, further comprising evaluating the thermodynamic consistency of the X-Y1 and X-Y2 correlation data according to the following equation (29), and correlating X with Y1 and Y2 using only thermodynamically consistent data:
wherein βexp represents a value of β that is calculated according to F/|B−A| using F, A, and B determined from actually measured values; and βcal represents a value off β that is calculated from the right side in the following equation (14) using values of a and b obtained by correlation of actually measured values:
wherein A and B represent binary parameters; F represents deviation from A=B in the one-parameter Margules equation; P represents a pressure or an average vapor pressure; and a and b represent constants specific for the binary system.
[7] The method for designing or controlling a component separator or refiner according to [4] above, wherein the infinite dilution activity coefficients γ1∞ and γ2∞ or the binary parameters A and B are data from a plurality of systems of homologous series, and infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B in other systems of homologous series are predicted from the data from a plurality of systems of homologous series.
[8] The method for designing or controlling a component separator or refiner according to [4] above, further comprising calculating infinite dilution activity coefficients, or binary parameters for atomic groups from the calculated infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B, and predicting new binary phase equilibrium data based on the calculated infinite dilution activity coefficients or binary parameters for atomic groups.
[9] A program for designing or controlling a component separator or a refiner, the program allowing a computer having an arithmetic processing unit and a data storage unit or a networked computer having an arithmetic processing unit and a data storage unit to function to implement the method for designing or controlling a component separator or refiner according to [4] above, the method comprising the steps of:
storing existing binary phase equilibrium data on the data storage unit;
outputting the binary phase equilibrium data from the data storage unit to the arithmetic processing unit and a predetermined arithmetic expression stored on the data storage unit in advance, substituting the binary phase equilibrium data into the arithmetic expression by means of the arithmetic processing unit to calculate an index X of proximity ratio to critical points and infinite dilution pressure gradients Y1 and Y2, correlating the obtained index X of proximity ratio to critical points with the infinite dilution pressure gradients Y1 and Y2, and calculating infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B from the X-Y1 correlation and the X-Y2 correlation, respectively;
processing the infinite dilution activity coefficients γ1∞ and γ2∞ or the binary parameters A and B to predict new binary phase equilibrium data; and
calculating information for designing or controlling the component separator or the refiner from the new binary phase equilibrium data.
[10] An apparatus for designing or controlling a component separator or a refiner, comprising:
a phase equilibrium information recording unit which receives existing binary phase equilibrium data input to a computer through an information input unit;
a phase equilibrium correlation unit which calculates an index X of proximity ratio to critical points and infinite dilution pressure gradients Y1 and Y2 on the basis of the binary phase equilibrium data output from the phase equilibrium information recording unit, and correlates the obtained index X of proximity ratio to critical points with the infinite dilution pressure gradients Y1 and Y2 to calculate infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B from the X-Y1 correlation and the X-Y2 correlation, respectively;
a phase equilibrium prediction unit which receives the input of the infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B output from the phase equilibrium correlation unit to predict new binary phase equilibrium data;
a component separator/refiner design/control information calculation unit which receives the input of the new binary phase equilibrium data output from the phase equilibrium prediction unit to calculate component separator/refiner design/control information; and
a component separator/refiner design/control unit which designs or controls the component separator or the refiner on the basis of the information calculated through the component separator/refiner design/control information calculation unit.
[11] The apparatus for designing or controlling a component separator or refiner according to [10] above, wherein the index X of proximity ratio to critical points is calculated according to the equation (22):
wherein Pc1 represents the critical pressure of a lighter component in the binary system; and p1s and p2s represent the vapor pressures of components 1 and 2, respectively, at a temperature T, and
the infinite dilution pressure gradients Y1 and Y2 are calculated according to the equation (24):
and the equation (25):
wherein γi∞ represents the infinite dilution activity coefficient of component i in the liquid phase; and Pc1, p1s, and p2s are as defined in the equation (22).
[12] The apparatus for designing or controlling a component separator or refiner according to [10] above, further comprising evaluating the thermodynamic consistency of the X-Y1 and X-Y2 correlation data according to the following equation (29), and correlating X with Y1 and Y2 using only thermodynamically consistent data:
wherein βexp represents a value of β that is calculated according to F/|B−A| using F, A, and B determined from actually measured values; and βcal represents a value of β that is calculated from the right side in the following equation (14) using values of a and b obtained by correlation of actually measured values:
wherein A and B represent binary parameters; F represents deviation from A=B in the one-parameter Margules equation; P represents a pressure or an average vapor pressure; and a and b represent constants specific for the binary system.
[13] The apparatus for designing or controlling a component separator or refiner according to [10] above, wherein the infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B calculated through the phase equilibrium correlation unit are data from a plurality of systems of homologous series, and infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B in other systems of homologous series are predicted from the data from a plurality of systems of homologous series.
[14] The apparatus for designing or controlling a component separator or refiner according to [10] above, wherein the phase equilibrium correlation unit calculates infinite dilution activity coefficients or binary parameters for atomic groups from the calculated infinite dilution activity coefficients γ1∞ and γ2∞ or binary parameters A and B, and the phase equilibrium prediction unit receives the input of the calculated infinite dilution activity coefficients or binary parameters for atomic groups.
The present invention has achieved the highly accurate correlation of phase equilibrium data by use of relationships between infinite dilution pressure gradients and vapor pressures in the binary system and thereby enabled one set of infinite dilution activity coefficients (or binary parameters A and B) to be precisely calculated. As a result, phase equilibrium relationship can be predicted in a highly accurate manner that has not been achieved by conventional methods. Thus, binary phase equilibrium relationship can be determined precisely from existing data and can be used to precisely design or control a component separator or refiner such as a distillation column, an extraction column, or a crystallizer. This apparatus design neither requires further experimentally obtaining or validating binary phase equilibrium data nor has to be performed in expectation of safety factors larger than necessary. Thus, an apparatus that can be operated inexpensively in a simple process can be designed, i.e., an economically excellent apparatus can be designed. In addition, an existing apparatus can be controlled on the basis of phase equilibrium data more precise than that at the time of its design. As a result, component separation or refining for chemicals, petroleum, or natural gases can be carried out more precisely under inexpensive operational conditions by, for example, the correction of existing data. Also, the present invention produces precise phase equilibrium data and thus has the advantage that apparatus design procedures can be simplified more than ever before. The precise phase equilibrium data thus obtained can contribute to the improvement of solution models representing non-ideality in the liquid phase, such as activity coefficient equations or group contribution methods. Thus, the present invention can make a significant contribution to industry.
Hereinafter, the method for correlation of binary phase equilibrium data, the method for prediction of binary phase equilibrium data, and the method and apparatus for designing or controlling a component separator or refiner according to the present invention will be described more specifically.
First, the highly accurate method for correlation of phase equilibrium data of the present invention using relationships between infinite dilution pressure gradients and vapor pressures, and the method for prediction of binary phase equilibrium data based on the correlation results will be described specifically.
[Correlation of Low-Pressure VLE Data]
(i) Methanol (1)-Water (2) System
In this context, the correlation line optimized using the equation (30) was calculated as follows: first, a thermodynamic consistency line was determined from the 60 data sets shown in
[Formula 49]
Y1=−0.00070−0.2573X+0.63004X2+1.753191n(1+X) (34)
In
[Formula 50]
Y2=0.2985X0.882 (35)
(ii) Heptane (1)-Octane (2) System
In order to examine the applicability of the present invention to the ideal system (yi=1),
(iii) 1-Propanol (1)-Water (2) System (Minimum Boiling Azeotrope)
The Wilson equation was as follows:
wherein γ1 and γ2 represent the activity coefficients of components 1 and 2, respectively; x1 and x2 represent the mole fractions of components 1 and 2, respectively, in the liquid phase; and Λ12 and Λ21 represent binary parameters. The infinite dilution activity coefficients can be associated with Λ12 and Λ21 by considering x1=0 in the equation (36) and x2=0 in the equation (37).
(iv) Acetone-Chloroform System (Maximum Boiling Azeotrope)
[Correlation of LLE Data]
Next, the correlation of LLE data will be described in detail with reference to specific examples.
(i) 1-Butanol (1)-Water (2) System
Infinite dilution activity coefficients γ1∞ and γ2∞ can be defined from binary liquid-liquid equilibrium (mutual solubility) to determine Y1 and Y2. Preferably, the following UNIQUAC equation, which calculationally provides the highest convergence, is used for determining γ1∞ and γ2∞ from mutual solubility:
In the above equations, ri represents a molecular volume index, and qi represents a molecular surface area index. These values are provided by Non-patent Document 2. Also, x; represents the mole fraction of component i; z is equal to 10 and fixed; τij and τji represent binary parameters; and Φi, θi, and li represent variables defined by the equations (39), (40), and (41), respectively. xi=0 is substituted into the equation (38) to obtain the following equation for an infinite dilution activity coefficient:
Thus, τij and τji are determined according to the equations (10) and (38) from mutual solubility data at a certain temperature. Infinite dilution activity coefficients are determined according to the equation (42). Then, A and B can be determined according to the equations (6) and (7). After A and B are determined, β, X, Y1, and Y2 can be calculated according to the equations (14), (22), (24) and (25), respectively.
(ii) 2-Butanone (1)-Water (2) System
[Correlation of High-Pressure VLE Data]
(i) Lumped Non-Ideality Correlation
A method involving lumping parameters for non-ideality in the liquid phase and non-ideality in the vapor phase and representing non-ideality according to the equation (28) was examined for its effectiveness. Non-patent Document 1 has reported more than 12500 low-pressure data sets, to which the lumped non-ideality correlation was applied. Correlation errors have also been reported therein. Table 1 shows relative values of correlation errors in constant-temperature P-x data according to the Margules equation reported in Non-patent Document 1.
1) (100/n)ΣΔPi/Ps, ave
Table 1 shows the increasing tendency of correlation errors in polar mixtures compared with errors on the order of 1% in non-polar mixtures. Table 1 also reveals the degree of correlation errors derived from the lumped non-ideality correlation previously applied to low-pressure data. A large number of binary high-pressure VLE data sets are listed in Non-patent Document 6. Thus, P-x relationships for constant-temperature VLE data that satisfied T<Tc1 (Tc1 represents the critical temperature of a light component, i.e., a component having a high vapor pressure) were subjected to the lumped non-ideality correlation according to the Margules equation to determine correlation errors of pressure in each data set. The average relative errors thereof were indicated in Table 1. Table 1 shows that correlation errors even in the high-pressure P-x data are equal to or lower than the level of hydrocarbon mixtures in low-pressure vapor-liquid equilibrium. This means that the lumped non-ideality correlation of P-x data is effective even for high-pressure data, as in low-pressure data. The conventional correlation using mixing rules for high-pressure data has the disadvantage that it cannot be applied to the prediction of VLE relationship. By contrast, particularly notable is the accomplishment of the present invention, which has found that the lumped non-ideality correlation is effective even for high-pressure data. This is because the method of the present invention can determine X vs. Y1 and X vs. Y2 relationships even for high-pressure VLE data at totally the same level as in low-pressure data and can be used with its effectiveness easily proved.
(ii) Correlation of Constant-Temperature/High-Pressure VLE Data for Carbon Dioxide (1)-Ethane (2) System
Binary high-pressure VLE data is compiled in Non-patent Document 6. Thus, P-x relationships for the constant-temperature VLE data of the carbon dioxide (1)-water (2) system (see
The most important application of the highly accurate method for correlation of phase equilibrium data of the present invention using relationships between infinite dilution pressure gradients and vapor pressures is the precise pure prediction of vapor-liquid equilibrium (VLE) relationship. Specifically, X vs. Y1 and X vs. Y2 relationships are individually determined by correlation from existing data, and the values of γ1∞ and γ2∞ are determined for the binary system on the basis of these correlations. As a result, phase equilibrium relationship can be predicted purely without the use of individual data. The effectiveness of the present invention for the pure prediction of binary VLE is expressed in terms of an example of the constant-temperature methanol (1)-water (2) system in
Another important application of the correlation method according to the present invention is the pure prediction of mutual solubility. None of the previously proposed methods are capable of highly accurately correlating relationships between mutual solubility and temperature. The application of the correlation method according to the present invention to binary LLE is expressed in terms of the 1-butanol (1)-water (2) system in
The phase equilibrium relationship can be predicted precisely if the values of infinite dilution activity coefficients are correctly determined. The correlation method according to the present invention has the great advantage that it can easily give the values of infinite dilution activity coefficients.
[Prediction of Azeotrope]
Mixtures cannot be enriched by a distillation method at a temperature exceeding the azeotropic point. The definition of relationships between the composition of azeotropes and temperature is exceedingly important for determining the operational conditions of distillation. The method of the present invention can purely predict precise vapor-liquid equilibrium relationship and consequently has the great advantage that it can highly accurately predict azeotropes whose highly accurate prediction has been difficult for conventional methods.
[Assessment of Phase Equilibrium Data Consistency]
Aside from thermodynamic consistency lines, data consistency can be assessed using the data convergence of X vs. Y1 and X vs. Y2 relationships. Particularly, data consistency can be assessed easily if relationships between an index X of proximity ratio to critical points and infinite dilution pressure gradients converge to a line. This assessable data consistency means that the correlation method according to the present invention produces high data convergence.
[Prediction of Ternary VLE]
Three sets of binary parameters for basic binary systems constituting a ternary system can be determined from ternary VLE data by use of activity coefficient equations such as Margules, UNIQUAC, Wilson, and NRTL equations. Thus, when X vs. Y1 and X vs. Y2 relationships determined from ternary VLE data agree with X vs. Y1 and X vs. Y2 relationships determined from binary VLE data, the ternary data can be assessed as being consistent. On the other hand, three sets of binary parameters for basic binary systems can be determined on the basis of X vs. Y1 and X vs. Y2 relationships determined from binary VLE data, and used in the prediction of ternary VLE relationship. An example of the ternary system using the Margules equation is shown below. The activity coefficient equation of component i in the multicomponent system is obtained by differentiating an excess function gE by the number of moles n, of component i as follows:
For the ternary system, gE is represented by the following Margules equation (see Non-patent Document 8):
[Formula 59]
gE=x1x2(x1B12+x2A12)+x2x3(x1B13+x3A13)+x2x3(x2B23+x3A23)+x1x2x3(B12+A13+B23) (44)
wherein gE represents an excess function; xi represents the mole fraction of component i in the liquid phase; and Aij and Bij represent binary parameters consisting of i and j in the binary system. Specific equations for extending the UNIQUAC, NRTL, or Wilson equation to the multicomponent system is shown in Non-patent Document 3. Since three sets of binary parameters constituting the ternary system, i.e., a total of 6 binary parameters, can be determined using the present invention, the excess function and the activity coefficient can be determined according to the equations (44) and (43), respectively. For the multicomponent system, the activity coefficient can be easily determined directly by numerical differentiation of the equation (43). Also, the pressure can be determined according to the following equation:
wherein P represents a system pressure; γk represents the activity coefficient of component k; xk represents the mole fraction of component k in the liquid phase; and pks represents the vapor pressure of component k. In order to demonstrate that the present invention can be applied to the prediction of multicomponent vapor-liquid equilibrium, Table 2 compares predicted values (calculated values) of pressure according to the present invention with actually measured values (the data is cited from Part 1a, p. 494 of Non-patent Document 1) for the water (1)-methanol (2)-ethanol (3) ternary system at 298.15 K. Aij, Bij, etc., in the equation (44) are calculated from the correlation equation according to the present invention using actually measured values of three binary vapor-liquid equilibria consisting of the water (1)-methanol (2) system, the water (1)-ethanol (3) system, and the methanol (2)-ethanol (3) system. Table 2 shows that: the measured and predicted values of pressure agree with each other with a difference of 0.5% when mole fractions x1 and x2 of water and methanol in the liquid phase have various values; and average errors of mole fractions y1 and y2 in the vapor phase are merely 0.8%. Thus, the values are in surprisingly good agreement. These results demonstrate that multicomponent vapor-liquid equilibrium can be predicted with exceedingly high accuracy using the present invention.
[Prediction of Phase Equilibrium Using Homologous Series]
The method according to the present invention has the high correlation accuracy of X vs. Y1 and X vs. Y2 relationships and thus permits phase equilibrium prediction using homologous series, which has been difficult to conventional methods for prediction of phase equilibrium.
[Prediction of Vapor-Liquid Equilibrium Using Atomic Group Contribution Method]
Conventional atomic group contribution methods, such as the UNIFAC method, are characterized in that they are significantly low in prediction accuracy since they determine the values of groups vs. parameters by using all existing phase equilibrium data and the values are used as constant values. By contrast, the atomic group contribution method based on the present invention selects only binary systems including atomic groups required, determines the logarithmic values of infinite dilution activity coefficients from the X vs. Y1 and X vs. Y2 relationships at a temperature or pressure of interest, and determines the group contribution to nondimensional infinite dilution excess partial molar free energy, i.e., ln γi∞. Thus, the method based on the present invention is characterized by high prediction accuracy. An example in which the vapor-liquid equilibrium for a system of 1-propanol (1)+water (2) is predicted by the atomic group contribution method will be explained.
(a) Determination of atomic group: In this step, a methyl group (CH3) and a methylene group (CH2) are indicated by Me, identically, and the system of 1-propanol (1)+water (2) consists of three atomic groups: Me, OH and H2O.
(b) Selection of reference binary systems including atomic groups: A system of methanol (1)+water (2) and a system of ethanol (1)+water (2) are selected as binary systems including Me, OH and H2O.
(c) The values of Y1 and Y2 are determined for the reference binary systems at a temperature or pressure at which vapor-liquid equilibrium is to be determined. For example, for the system of methanol (1)+water (2), Y1 and Y2 are determined according to the equations (34) and (35), respectively. From these values, the values of ln γ1∞ and ln γ2∞ are determined for the respective reference binary systems.
(d) The group contribution to ln γ1∞ and ln γ2∞ is formulated. Specifically, since methanol consists of an Me group and an OH group and ethanol consists of two Me groups and an OH group, the following equation holds for methanol (MeOH):
[Formula 61]
(ln γ1∞)MeOH=ln γMe/H2O∞+ln γOH/H2O∞
The following equation holds for ethanol (EtOH):
[Formula 62]
(ln γ1∞)EtOH=2 ln γMe/H2O∞+ln γOH/H2O∞
wherein (ln γ1∞)MeOH represents the ln γ1∞ of the system of methanol (1)+water (2); (ln γ1∞)EtOH the ln γ1∞ of the system of ethanol (1)+water (2); ln γ1/H2O∞ represents a logarithmic value of an infinite dilution activity coefficient in water for an atomic group i, wherein the logarithmic value is regarded as justifying the additivity of atomic groups. The contribution to the two atomic groups, i.e., ln γMe/H2O∞ and ln γOH/H2O∞, can be determined according to those two equations. ln γ2∞ is represented in the same manner as above. Specifically, the following equation holds for methanol (MeOH):
[Formula 63]
(ln γ2∞)MeOH=ln γMe/H2O∞+ln γH2O/OH∞
The following equation holds for ethanol (EtOH):
[Formula 64]
(ln γ2∞)EtOH=2 ln γH2O/Me∞+ln γH2O/OH∞
wherein (ln γ2∞)MeOH represents the ln γ2∞ of the system of methanol (1)+water (2); (ln γ2∞)EtOH represents the ln γ2∞ of the system of ethanol (1)+water (2); ln γH2O/i∞ represents a logarithmic value of an infinite dilution activity coefficient in a pure atomic group i for water.
The contribution to the two atomic groups, i.e., ln γH2O/Me∞ and ln γH2O/OH∞, can be determined according to those two equations. Since the free energy contribution to the atomic groups has been determined, Margules binary parameters A and B can be determined for the system of 1-propanol (1)+water (2).
[Formula 65]
A=ln γ1∞=3 ln γMe/H2O∞+ln γOH/H2O∞
B=ln γ2∞=3 ln γH2O/Me∞+ln γH2O/OH∞
As a method for prediction of a vapor-liquid equilibrium relationship from the values of A and B, for example, the method described for
The method for prediction of phase equilibrium according to the present invention can be used in the apparatus or operational design of a distillation column, an absorption column, an extraction column, or a crystallizer, which inevitably requires phase equilibrium relationship. For such use, the method of the present invention can be incorporated, as described above, in software for phase equilibrium calculation and applied thereto. Also, such use encompasses the determination of the sizes of individual apparatuses as well as the design and control of a separation process using a plurality of apparatuses in combination. In Example 1, an example of design calculation for determining the number of equilibrium stages in a stage contact-type distillation column is compared between use of the present invention and use of a conventional method dependent on measurement data.
The case is assumed where a 50 mol % methanol (1)-water (2) mixed solution is supplied as a boiling solution to a plate column at 101.3 kPa, and 95% concentrates are obtained from the top of the column while 5% bottoms are obtained from the bottom of the column. The reflux ratio is set to 3. The vapor-liquid equilibrium of the methanol (1)-water (2) system at 101.3 kPa is determined according to the present invention, and x-y relationships are given by the solid line of
A large number of vapor-liquid equilibrium data sets at 101.3 kPa have been reported. Using the data sets listed in Part 1 of page 43 of Non-patent Document 1, x-y relationships are given by the dotted line of
Existing group contribution methods such as the UNIFAC or ASOG method determine group parameters without excluding errors from measurement data, whereas the atomic group contribution method according to the present invention is characterized by exceedingly high accuracy in application because the method uses a highly accurate method for correlation of infinite dilution activity coefficients to exclude measurement errors. In the application of the contribution method, data correlated with high accuracy by excluding measurement errors may also be analyzed in the same manner as a conventional method such as the UNIFAC or ASOG method to determine group parameters. Alternatively, a method of determining the atomic group contribution to nondimensional infinite dilution excess partial molar free energies, ln γ1∞ and ln γ2∞, may be used. Based on the system of alkanol (1)+water (2), an example of the application of the atomic group contribution method will be shown below.
Vapor-liquid equilibrium measurement values for the binary system of n-alkanol (1)+water (2) comprising an alkanol selected from alkanols ranging from methanol to hexanol as a first component and water as a second component are correlated according to the Margules equation to determine Margules binary parameters, which are given by Non-patent Document 1. First, these parameters are used for the highly accurate correlation according to the present invention to determine correlation equations for X vs. Y1 and X vs. Y2 relationships. Since only one data set has been found for the system of 2-hexanol (1)+water (2), the X vs. Y1 relationship is approximated by a straight line connecting (X, Y1) and the origin. The X vs. Y2 relationship is approximated in the same manner as the X vs. Y1 relationship. From these correlation equations, the values of Margules parameters A and B (i.e., nondimensional infinite dilution excess partial molar free energies, ln γ1∞ and ln γ2∞) at 40° C. are calculated and shown in Table 3.
On the other hand, the filled circle (●) in
In
In conventional group contribution methods, the contribution of diol is incorporated by the doubling of the contribution of —OH groups. The value of A for the system of 1,2-propanediol (1)+water (2) is determined as follows according to a conventional method: first, in
However, as shown in Table 3, the actual value of A is A=0.096, indicating that the value of ln γ1∞ becomes closer to zero due to hydrophilicity enhanced by the binding of two OH groups to adjacent carbon atoms. When each —OH group is replaced by an —NH2 group, the synergism effect obtained by this group is further increased as indicated by the value of ethanolamine in Table 3 (A=−0.891). This synergism effect changes in intensity when a solvent other than water is used. Thus,
The atomic group contribution method according to the present invention is characterized by the reliability obtained by the determination of the values of nondimensional infinite dilution excess partial molar free energies (A and B) from a highly accurate correlation line and the exclusion of measurement errors therefrom. Specifically, to determine the value of A for the system of 1,2-diol (1)+water (2), the line indicating the relationship between A and Nc1 for n-alkanol (i.e., the relationship indicated by a solid polygonal line) is parallelly shifted downward to that for 1,2-propanediol to determine the Nc1 dependency of A on the basis of the already known value of the system of 1,2-propanediol (1)+water (2). By this procedure, the synergism effect of diol can be properly incorporated. Likewise, to determine the value of A for the system of alkanolamine (1)+water (2), the line indicating the relationship between A and Nc1 for n-alkanol is parallelly shifted downward to that for ethanolamine to determine the relationship between A and Nc1. Also, the synergism effect can be incorporated by parallel shifting of the line indicating the relationship between B and Nc1 for n-alkanol in the same manner as above. Since there are abundant reports on vapor-liquid equilibrium measurement values for n-alkanol which are obtained using solvents other than water, the respective relationships between A or B and Nc1 can be easily determined. Thus, compared with existing methods using all existing vapor-liquid equilibrium measurement values to determine group contribution on a large scale, the present atomic group contribution method is characterized in that it can determine group contribution individually and easily. Users of the atomic group contribution method specify binary systems and temperature or pressure to prepare the relationship indicated by the solid line in
[Simple Application of Atomic Group Contribution Method]
The atomic group contribution method can also be simply applied.
Number | Date | Country | Kind |
---|---|---|---|
2011-215133 | Sep 2011 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2012/074514 | 9/25/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/047494 | 4/4/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5343407 | Beauford et al. | Aug 1994 | A |
5874657 | Miller | Feb 1999 | A |
7941277 | Chen | May 2011 | B2 |
20070131535 | Shiflett | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
1362825 | Aug 1974 | GB |
Entry |
---|
Extended European Search Report dated Jan. 25, 2016 in corresponding European Patent Application No. 12836019.5. |
“Distillation”, Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc., vol. 8, Aug. 17, 2001, pp. 739-785. |
“Software and Services in Process Simulation”, ProSim, Apr. 27, 2010, retrieved from the Internet, 2 pp. |
Shing, “Infinite-Dilution Activity Coefficients From Computer Simulation”, Chemical Physics Letters, vol. 119, No. 2,3, Aug. 30, 1985, pp. 149-151. |
K. Wohl, “Thermodynamic Evaluation of Binary and Ternary Liquid Systems,” Trans. Am. Inst. Chem. Eng., vol. 42, 1946, pp. 215-249. |
J. Gmehling et al., “Vapor-Liquid Equilibrium Data Collection,” DECHEMA Chemistry Data Series, vol. I, Part 1-8a, 1977. |
J.M. Sorensen et al., “Liquid-Liquid Equilibrium Data Collection, Binary Systems,” DECHEMA Chemistry Data Series, vol. V, Part 1, 1979. |
H. Knapp et al., “Vapor-Liquid Equilibria for Mixtures of Low Boiling Substances,” DECHEMA Chemistry Data Series, vol. VI, 1982. |
R.C. Reid et al., The Properties of Gases and Liquids, New York, McGraw-Hill, 1987. |
K. Kojima et al., “Measuring Methods of Infinite Dilution Activity Coefficients and a Data base for Systems Including Water,” Fluid Phase Equilibria, vol. 131, 1997, pp. 145-179. |
S. Kato et al., “Thermodynamic Consistency Lines of the 511 Mutual Solubility Data and the VLE Data of 7262 Constant-Temperature and 5167 Constant-Pressure Binaries,” Solvent Extraction Research and Development, Japan, vol. 18, 2011, 85-92. |
S. Kato, “An empirical consistency test using thermodynamic consistency lines for the VLE data of 7262 constant-temperature and 5167 constant-pressure binaries,” Fluid Phase Equilibria, vol. 302, 2011, pp. 202-212. |
International Search Report dated Jan. 8, 2013 in corresponding International Patent Application No. PCT/JP2012/074514. |
Number | Date | Country | |
---|---|---|---|
20140288905 A1 | Sep 2014 | US |